
Lworld: An Animation System Based on Rewriting

Hansrudi Noser
University of Zurich, Institute of Computer Technology, Multimedia Laboratory

Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
noser@ifi.unizh.ch

Abstract

Lworld is a computer graphics animation system based
on L-systems, a parallel rewriting technique used primar-
ily in computer graphics for plant modeling. Because rule-
based programming is a powerful technique, we use it as
a basis for a general-purpose animation system. We de-
scribe the architecture, the features, and the programming
language of the animation system. It is particularly well
suited to model fractal curves, plants, fractal landscapes,
group animation, visualization, and evolutionary optimiza-
tions. Lworld allows users to create real-time animations
as well as raytraced image sequences for further movie pro-
duction. It is freely available, and runs on PCs.

1. Introduction

Modeling and animation by rules is not wide spread.
L-system based software are mostly research tools with a
cryptic modeling language, or educational software serving
to demonstrate the mechanism of production rules. But the
work of Prusinkiewicz [4] or Parish [3] shows the inherent
potential of rule-based programming by modeling with few
rules complex plants and huge cities. Therefore, we devel-
oped a general-purpose animation system [1] based on par-
allel rewriting that enables designers of virtual 3D worlds to
experience rule-based programming. The software contains
many features that make it suitable for many tasks in vi-
sualization, interactive animation, research, education, and
raytraced (Rayshade) movie generation.

2. Concept of the animation system

Rewriting is a powerful concept for modeling complex
objects. We use this technique not only for modeling plants,
but also as the basic principle for a general-purpose anima-
tion system. Parallel, timed rules can model not only hierar-
chical objects, but also their animation, complex behaviors,

and interaction. Timed and parametric rules combine in one
language the modeling of complete virtual worlds including
structured objects, their piecewise-continuous development,
their animation, and user interaction.

In computer graphics, an L-system describes a 3D object
by an axiom and a set of production rules, also called its
grammar. The axiom and the rules are composed of sym-
bols of the L-system’s alphabet. From such an L-system, the
computer can derive formal symbol sequences from the ax-
iom by a series of parallel rewriting steps where symbols are
replaced according to the rules. Furthermore, the computer
can visualize the derived symbolic objects by interpreting
them as a kind of turtle-graphics language. This modeling
principle is particularly advantageous for complex, struc-
tured objects for which we can find its grammar. Such a de-
scription is mostly compact and can provide immense data
amplification factors.

The system we propose supports most features of ad-
vanced parallel rewriting techniques, such as timed, para-
metric, stochastic, bracketed, environmentally sensitive,
networked, and behavioral [2] L-systems. At a higher
level, we integrated fractal mountains, sound playback, net-
working, optimization and evolution by genetic algorithms,
tropism forces, a particle system, synthetic vision for au-
tonomous actors, as well as a design model for modeling
physically correct static trees that visualizes the forces and
moments at the tree joints. Figure 1 illustrates the archi-
tecture of the animation system. At runtime the applica-
tion parses user defined L-systems and compiles them into
an internal representation of the axiom and the rules. The
iterator and interpreter modules are essential parts of the
real-time animation loop. At each frame the loop executes
first code for frame initialization. Then, the iterator applies
all triggering rules to the symbolic object by replacing the
corresponding symbols by the rules’ right side. The inter-
preter module then executes the resulting symbolic objects
that can be considered as a turtle program, and visualizes
the resulting 3D world of the frame on the screen. If au-
tonomous actors with synthetic vision have been declared
in an animation, the frame is rendered for each actor into



their vision window. Finally, the frame is terminated and
the global animation time is incremented by the time step.
The software written in C++ (OpenGL/GLUT) runs under
Windows98/NT/2000/XP. It is freely available on the In-
ternet [1]. Most existing languages for defining L-system

Figure 1. The architecture of the parallel
rewriting-based animation system.

rules are somewhat cryptic and difficult to read for inex-
perienced designers. Therefore, we developed a new rule-
language similar to C being familiar to most programmers.
The execution model determined by the parallel rewriting
paradigm, however, is not sequential and must be carefully
studied by designers.

The animation system can be viewed as a virtual ma-
chine, defined by status variables that can be set by as-
signments or procedure calls within parameter and attribute
blocks of symbols. The status variables define partially
the viewing parameters, rendering features, animation con-
trol, and physical models. Actually, we implemented more
than 80 symbols representing the alphabet of the L-systems.
They can be grouped according to their semantic. Some of
them manipulate the turtle state or the rendering mode. Oth-
ers correspond to geometric primitives, sounds, or particu-
lar design models such as tropism forces or particles. Others
control user interaction, networking, or the interpretation of

the symbolic object. The actual set of implemented sym-
bols, variables, and procedures allows programmers to de-
sign a vast variety of animated, interactive, and networked
virtual 3D worlds.

3. Examples

Figure 1 showing lworld’s architecture is a raytraced pic-
ture of an L-system that uses 3D text and arrow symbols.
Figure 2 illustrates lworld’s features in creating complex
raytraced landscapes including fractal mountains with thou-
sands of automatically placed growing plants and group an-
imation realized with a force field based particle system. In
the example, the butterflies fly around a flower. Differential
equations that are defined by the designer in the correspond-
ing animation file determine their behavior.

Figure 2. Raytraced landscape with fractal
mountains, automatically placed plants, and
butterflies animated by a particle system.

References

[1] H. Noser. Lworld: An animation system based on rewrit-
ing. http://www.ifi.unizh.ch/ noser/Lworld/lworld.html, July
2002.

[2] H. Noser and D. Thalmann. A rule-based interactive be-
havioral animation system for humanoids. IEEE Transac-
tions on Visualization and Computer Graphics, 5(4):281–307,
October-December 1999.

[3] Y. I. H. Parish and P. Müller. Procedural modeling of cities.
In SIGGRAPH 2001, Conference Proceedings, August 12-17,
pages 301–308, 2001.

[4] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic
Beauty of Plants. Springer Verlag, 1990.


