
Towards MultiMedia Instruction in
Safe and Secure Systems

Bernd Krieg-Brückner

Bremen Institute of Safe and Secure Systems, Universität Bremen,
Postfach 330440, D-28334 Bremen
bkb@Informatik.Uni-Bremen.DE

Abstract. The aim of the MMiSS project is the construction of a multi-
media Internet-based adaptive educational system. Its content will ini-
tially cover a whole curriculum in the area of Safe and Secure Systems.
Traditional teaching materials (slides, handouts, annotated course mate-
rial, assignments and so on) are to be converted into a new hypermedia
format, integrated with tool interactions for formally developing cor-
rect software; they will be suitable for learning on campus and distance
learning, as well as interactive, supervised, or co-operative self-study.
Coherence and consistency are especially emphasised, through extensive
semantic linking of teaching elements, and through a process model bor-
rowed from the theory of formal software development, enlarging the
knowledge base with the help of version and configuration management,
to ensure “sustainable development”, i.e. continuous long-term usability
of the contents.

1 Aims

The aim of the MMiSS project (MultiMedia instruction in Safe and Secure Sys-
tems), which is supported by the German Ministry for Research and Education,
bmb+f, in its programme “New Media in Education” from 2001 to 2003, is to
set up a multimedia Internet-based adaptive educational system, covering the
area of Safe and Secure Systems. Thanks to a consistent integration of hyper-
media course materials and formal programming tools, teaching in this area will
attain a level hitherto impossible in this form. The system will be as suitable for
learning on campus and for distance-learning with its associated management of
assignments, as it is for interactive, supervised, or co-operative self-study.

The system is to be introduced step by step, over the duration of the project,
into the normal teaching activities of the project partners: Universität Bremen
(Krieg-Brückner, Eckert [now at Darmstadt], Gogolla, Kreowski, Lüth, Peleska,
Roggenbach, Schlingloff [now at HU Berlin], Schröder, Shi et al.), FernUniver-
sität (Distance-University) Hagen (Poetzsch-Heffter, Kraemer et al.), Univer-
sität Freiburg (Basin, Wolff et al.), Ludwig-Maximilians-Universität München
(Wirsing, Kroeger, Merz et al.), and Universität des Saarlandes (Hutter, Melis,
Siekmann, Stephan et al.). However, as the “Open-Source” model is to be used
and teaching materials and tools are to be made freely available, a much greater



2 Krieg-Brückner

national and international take-up is to be expected. To assist this, a MMiSS
Forum is to be founded with German, international, and industrial members,
to evaluate the emerging curriculum and assist its development and distribu-
tion. The Advisory Board shall advise the project from a scientific as well as an
industrial perspective, with a view to future applications.

The area of “Safe and Secure Systems” has in the last few years become
increasingly important. Software is increasingly used to control safety-critical
embedded systems, in aeroplanes, spaceships, trains and cars, and electronic
trading over the Internet, with its associated security risks, is rapidly expanding;
all this requires qualitatively and quantitatively better training. To go with the
planned deployment at universities, a number of well-known German companies
have already expressed, through the various industrial contacts of the project
partners, an interest in measures for further in-house training.

At the core of the system is the hypermedial adaptation of a series of classes
or lectures on the development of Safe and Secure Systems. The lecturers should
be able to store various sorts of course material, such as overheads, commentary,
bibliographies, books, lecture notes, exercises, animations and so on, and retrieve
them again for use in teaching. The system provides a formal framework for the
integration of teaching materials based on a semantic structure (ontology) and
enables fast directed access to individual teaching elements. An initial collection
of teaching materials is already available and should be further hypermedially
developed as part of the project. It covers the use of formal methods in the
development of (provably) correct software. Highlights include data modelling
using algebraic specifications; modelling of distributed reactive systems; handling
of real-time with discrete events; and the development of hybrid systems with
continuous technical processes, so-called safety-critical systems. The curriculum
also covers informal aspects of modelling, and introduces into the management
of complex developments and security .

The system will also contain a meta-database, containing methodological,
ontological and paedagogical knowledge about the contents. The teaching mate-
rials should, where possible, be available in several different variants. It should
be left to the teachers, or the students, to choose between variants, according to
the educational or application context. For example reactive systems could be
modelled with either process algebras or Petri-nets.

An important educational aspect is to teach about the possibilities and limits
of formal tools. Tools for formal software development should be integrated in
the system, to illustrate and intensify the contents to be taught. Thus students
doing assignments can use the system to test their own solutions, while gathering
experience with non-trivial formal tools. The integration of didactic aspects with
formal methods constitutes a new quality of teaching. It will become possible,
for the first time in formal methods, both to present a variety of formal tools as
a subject for teaching, and to use them as a new medium. Thus an algorithm
can for example be simultaneously developed, visualised, and verified.

The goal of applying the new system in as many universities and companies
as possible, and the fact that the area of Safe and Secure Systems will continue



MMiSS 3

to develop in future, requires the highest level of flexibility, extensibility and
reusability of the content. It should be possible to incrementally extend or adapt
content and meta-data, to suit the teacher’s individual requirements, and to keep
them up-to-date.

As the individual parts of the curriculum rely on each other, there is a net-
work of semantic dependencies, which the system should be able to administer;
thus it must at the least handle version- and configuration-management. The on-
tology additionally allows better support for orientation and navigation within
the content. It should also form the basis for adaptation to the user, for example
by learning from exercises which concepts the students have understood, and
adapting future assignments accordingly.

The formalisation of semantic dependencies means that the system can help
maintain the consistency of the content. Definitions must be coordinated to suit
each other; the removal or adaptation of part of the material may force the re-
moval or adaptation of all dependent concepts. In formal software development,
a similar problem has to be solved: there are also semantic dependencies be-
tween different parts of a development, for example between specification and
implementation. Some of the project partners have already developed techniques
for the administration of such dependencies as things change, and implemented
them in development tools. Here we perceive an important synergy between ex-
pertise in formal software development – and support tools – and the demands
of long-term sustainable administration of consistent multimedia materials in an
efficient and productive educational system.

2 Sustainable Development of the Content

The problem of “sustainable development”, i.e. how to continuously develop and
maintain multimedia educational content, is to a large extent unsolved:

To help realise complex systems, tools are needed to support the de-
velopment process from initial design to maintenance. ... Tools are also
becoming ever more important, to co-ordinate team-work and guaran-
tee consistency during development and beyond. The existing tools have
substantial deficiencies. Support is especially lacking for the early stages
of development, as is a suitable methodological framework. ... The com-
mercially available systems ... offer a wide range of possibilities, though
the ... results are hardly understandable or maintainable. ... Generation
and reuse of previously developed components in a new project is as
good as not supported. A further grave problem is the deficient or in-
adequate support of quality control during development. ... This leads
later to maintenance problems, as with current software systems. ... The
story is similar with the development of educational systems, for which
the development methods and tools in use today correspond to the state
of the art 20 or 30 years ago. [36]

In the MMiSS project, the elimination of these deficiencies is a priority.



4 Krieg-Brückner

In teaching practice there is a series of specific problems in the area of formal
methods, for example:

– the adequate communication of abstract mathematical concepts;
– the communication of course material which has a complex structure, is often

presented in a non-uniform way, and develops dynamically;
– the integration of practical aspects, such as process models [16] and tools.

Teaching Material for Safe and Secure Systems. The area of Formal Meth-
ods, the basis for the content to be developed during the project, is established
in academia and on the threshold of coming into the industrial mainstream. It
is differentiated into a variety of competing alternatives and orthogonal, poten-
tially complementary approaches. Like many mathematical theories, the different
methods have a complex internal structure. Due partly to the rapid development
of the last 15 years, there also remains a certain lack of uniformity in the pre-
sentation of the theoretical foundations, with corresponding consequences for
teaching. For the content, the project will address standardisation as a priority
in the short term, work out approaches for integration, and devise principles for
the comparison and presentation of alternatives. We will now sketch previous
work of the project partners in this direction, reflected in the comprehensive
teaching material that is already available.

Several project members were involved in the bmb+f project KORSO (“Cor-
rect Software” [12]), which laid the foundations for this co-operation; of these,
several have been working for many years on Algebraic Specification [11, 13, ?,4]
in a rather closed-knit international community, funded for many years by the
EU as ESPRIT WG COMPASS [23] and migrating eventually into the IFIP
WG 1.3 (Foundations of System Specification) The Common Framework Initia-
tive for Algebraic Specification and Development (CoFI) [28, 14] of IFIP WG 1.3,
which originated from COMPASS, aimed at the development of an internation-
ally standardised family of specification languages [2, 15, 35, 29]. CASL, the core
language of this family, shall be a standard in the project for all teaching con-
tent concerned with mathematical foundations, algebraic specification and data
modelling; it is well-supported by tools [27, 26], and its development methodol-
ogy receives increased attention [31–33]; its link to the functional programming
language Haskell as a target is well under way [35].

Work at Ludwig-Maximilians-Universität München and at Universität Bre-
men will be important for integrating the content with which we are concerned
here into the whole subject of software development. This work aims to build
bridges between Formal Methods, and those informal methods and languages
which are in practice now a de facto standard, such as UML and Java. Tech-
niques for specification and verification of object-oriented programs have been
developed at FernUniversität Hagen.

The situation is less unified in the area of the formal treatment of concurrent
reactive distributive systems, up to and including (hard) realtime and hybrid
systems. One possibility is the hierarchy of languages established at Univer-
sität Bremen, which stretches from the widely-used language CSP [19, 34, 38] via



MMiSS 5

Timed-CSP [25] and HybridCSP [1] to hybrid automata and the duration calcu-
lus, to be combined with Casl [30]. The foundations of temporal logic have been
analysed at Ludwig-Maximilians-Universität München and used there and at
Universität Bremen in the teaching of model-checking. At Universität Freiburg,
it was demonstrated how decidable monadic second-order logics can be used to
model and to reason about such systems (e.g. [9]). Within courses on ”Software
Techniques”, ”Testing” and ”Proofs and Modelling”, a wide range of content on
the subject of ”Integrating Formal Methods into the Software Design Process”
(cf. e.g. [10]) has been created.

The proof system INKA, the VSE-method and its derivatives [6, 5, 7, 8], de-
veloped at Universität des Saarlandes (DFKI), combine development methods
for abstract datatypes with temporal logic. Educationally, VSE has principally
been used in industrial seminars. During the adaption of content in this area,
the aim is to further work out existing approaches for integration, and to delimit
and classify alternative methods as they apply to particular applications.

Coherent and Consistent Teaching Materials. One problem with the de-
velopment of a national curriculum on “Safe and Secure Systems” is the wide
variety of different and partly competing approaches. Here a unifying approach,
at an international level, presents itself, via the specification language CASL.
The proposed system may be instrumental in spreading such standardising ap-
proaches, and, via New Media education, create an new identity in the field.
In an analogous way, the restriction, at first, to a few established and well-
supported languages and tools for reactive and hybrid systems should lead to
coherence in the curriculum. Initial experience from industrial training has been
very promising. Up to now the preparation of content has been done locally
from the specialised viewpoint of individual teachers; the comprehensive consis-
tent integration of content will overcome this, and so contribute to a uniform
understanding of the whole area throughout Germany, and, as a perspective,
beyond.

Semantic Linking of the Content. Many beginners find the subject matter
very complicated at first, because of the many dependencies between the vari-
ous fundamental formalisms. It is tiresome and time-consuming to communicate
conceptual dependencies and conceptual analogies to students. The proposed
system can play a decisive role, by providing a hierarchy of concepts (an on-
tology) throughout the whole material, making the complexity manageable for
students as well as teachers.

The author of content will be able to assemble teaching units from a struc-
tured system of individual modules and elements, by using the structural and
semantic relations explicit in the representation, such as pre-conditions, cross-
references, related units and alternatives. Thus content can be prepared by dif-
ferent people with different goals and requirements, but together and as part of
the same repository, possibly in different variants and views.



6 Krieg-Brückner

Students will also be able to side-step a prescribed order of presentation for
course content, navigate by themselves and make use of related materials as their
own needs dictate. Rapid access to semantically related concepts and theories
will significantly help users in forming an overall picture.

It is expected that this project will influence other areas, such as Mathematics
or other areas in Computing Science, in the short run, and so lead to a persistent
improvement in the teaching methodology of interrelated theories.

Reusability and Extensibility. One major problem with the preparation
of teaching materials of any kind is that the adaptations necessary for each
teacher and each year make reuse of older material almost impossible. It is
often necessary to completely restructure a course to integrate new developments
and results into hand-outs and overheads. Thus a major goal of the proposed
system is to guarantee users the highest degree of flexibility, extensibility and
reusability of the materials stored within it. It should be easy for teachers to
combine different materials, even from different authors, into a whole, and for
students to use alternative material. The planned mechanisms to support this,
such as version and configuration-management, consistency-preservation, and a
tool-supported development methodology, will also be available for other similar
systems, and are expected to substantially improve the long-term development
of coherent and consistent teaching content in the New Media.

Extensible Knowledge-Base. The speed at which knowledge develops is a
special problem in the areas of Computing Science and Safe and Secure Sys-
tems. It is imperative to be able to continuously extend and modify the stored
knowledge. This leads to consistency problems, in particular for multimedia pre-
sentations. For example, it must be clearly specified whether a cross-reference
(hyperlink) refers to the newest version (whatever it is), or to some specific older
version; these could be lost or outdated because of modifications to the refer-
enced content. This is especially important in the context of Formal Methods:
a referenced definition must fit into the application context which may not nec-
essarily be compatible. For example, the name of the term defined by the other
author may be different, or, worse, the other author may use the same name for
an entity that has a subtly different semantics. The system to be constructed
shall solve this by keeping track of semantically different entities, independently
of their apparent name in a specific context, and by storing additional meta-
data in the knowledge-base. Semantics and functionality of knowledge are to be
separated from representation.

There is also the problem of granularity. An element in the content may
be an entire lecture, a particular topic, a overhead (or something structurally
equivalent to it) on a subtopic, or indeed a single definition or theorem. This
problem is to be solved by structuring the teaching materials into a semantically-
based hierarchy, reached via, and defined in their granularity by, the ontology.



MMiSS 7

Fig. 1. Document Structure and Development Graph

Semantic Relations in the Development Graph. Figure 1 shows, as an
example of the structure, a section of a document containing mathematical def-
initions, theorems and proofs (with connecting texts); a similar situation arises
with overhead transparencies for lectures. Texts, on the other hand, contain
embedded formal components (theorems, formulas, proof-scripts) which can of
themselves be processed by corresponding systems. A textual nesting (the ”is
contained in” relation) yields at first a tree structure. This is extended by se-
mantic relations, defined explictly by the user or implicitly by the system. For
formal components this structure is evident; a formula representing a theorem
to be proved lives in a theory; a proof-script that proves this theorem within
a proof-system is subordinate to this theorem, or in general to a relation con-
taining a proof obligation (proves). In the course of development, alternatives
arise, for example an alternative proof in the example; this, like earlier versions,
must be preserved so that it is possible to return to it. Thus there is in general
a Development Graph containing one or more formal development graphs as
subgraphs.

Development Methodology. Semantic approaches from software engineering
and, in particular, Formal Methods, can cure the hitherto unsolved problem of
how to develop sustainable multimedia teaching content. Here the development
methodology of (stepwise) refinement is already known (compare with ”is re-
finement of” in Figure 1); this could for example be applied to working out the
materials with more precision or in more detail. The important point is that a
reference to this activity of refinement is preserved. Another concept borrowed



8 Krieg-Brückner

from Formal Methods is the so-called conservative extension, which preserves
the original content so that a reference to the extended version remains valid for
the original meaning. An example of this is a theory whose axioms are kept, but
which is extended by further properties derived as theorems (compare with ”is
conservative extension of” in Figure 1). This concept has a well defined verifiable
semantics, which naturally cannot be guaranteed for textual, or other multime-
dia, content. Thus consistency must be preserved through discipline among the
developers, rather than formal proofs. In any case we can, as a semantic re-
lation, distinguish conservative extension from a real change: the latter forces
all dependent content to be reworked (this can be automatically recognised and
communicated to the authors), while a conservative extension does not do.

Version and Configuration Management. An important dimension for De-
velopment Graphs is that of versions and their administration. Filtered views
(realised by the graph-visualisation system daVinci [18, 17]) should help the
user. Usually only the current version is of interest and all earlier ones are
not shown; however, an option should make alternatives to a version visible. It
should be possible to select between variants, such as the language used (for ex-
ample “British English” or “German”), the formalism (for example “CASL” or
“CSP”), or the level of detail (for example “Lecture Notes”, i.e. overheads aug-
mented by comments and explanations, suitable for study after presentation in
class), and so on. The notion of a consistent configuration is important here; all
objects related to a particular selected object should belong to the same version,
or at least to a semantically compatible one. The document actually displayed (a
subgraph) should in a well-defined sense be complete; thus when for example the
formalism“CASL” is chosen as a variant, examples should generally be available
in the formalism“CASL”, and similarly when a particular level of detail is cho-
sen. It is then possible to freeze a configuration as a publicly-accessible edition.
All these functions, especially verifying consistency and completeness, should be
supported by the system.

Scenarios and Roles. The knowledge-base is to be read, enriched or extended
by different groups of people, according to the educational context. As sketched
above, we recommend a semantics-driven process model for the development
of multimedia educational content in which the different scenarios and rôles of
those involved are differentiated:

– The author provides the initial groundwork (such as overheads), supplements
it as required with animations or tool demonstrations, reacts to feedback
from students and teachers, adds commentary, and expands it to create
hypermedially-related teaching material, such as lecture notes or courses
for distance learning (whether tutored or not).

– The teacher uses the teaching material stored in the knowledge base for
teaching on campus, adapts it to his or her specific requirements (by selection
or extension), and stores it back in the system.



MMiSS 9

– The tutor also uses the existing material, but in a different teaching situation;
s/he compiles explanatory commentary, answers questions, puts frequently
asked questions and answers together, sets and corrects assignments, and so
on.

– The student uses the (prepared) teaching materials for a review after class;
for self-study of the fundamentals or of additional background material; for
assignments; and so on. The system helps to navigate or leads through the
materials. It also contains (meta) information to support the selection of
material according to the student’s progress.

– The system developer extends the underlying system, incorporating existing
and recently developed tools, especially for Safe and Secure Systems, into
the development system.

– The tool developer works on particular tools, particularly for authoring.
– The administrator manages the system and cares especially for version and

configuration management both of the content and the system itself. S/he
moderates editions and arranges their distribution, including ones for par-
ticular user groups (such as authors, teachers, students attending particular
courses); creates user groups and manages them; supports the distribution
and installation of system versions .

2.1 A MultiMedia Platform for Educational Content

To support didactically worthwhile multimedia training that is genuinely inter-
active and cognitively adequate, powerful support systems must be developed,
particularly in formal areas (Mathematics, Formal Methods); they should be
adaptable to the user. Up to now, there are few such systems; the Springer-
Verlag’s interactive textbooks represent the first steps in this direction. These
textbooks all belong to the first generation, which has no KI-methods such as
user-modelling and diagnosis, learning, knowledge-representation, distributed ar-
chitecture (multiple agents), and which makes little use of results from Cognitive
Psychology or the theory of Education (cf. also the recent efforts of ActiveMath
[24] at Universität des Saarlandes).

The ability to structure theories hierarchically, compare alternative approaches,
combine complementary approaches usefully, and abstract away differences in
presentation is, sometimes with difficulty, to be found among experts, but hardly
among students. Currently, teaching of formal methods is predominantly char-
acterised by being based on (or restricted to) the “local theory environment”.
Methodologically, classical methods such as lectures (with little or no interaction)
and exercise sessions predominate. A comprehensive inter-relation of content is
therefore impossible without co-operation and system support during creation.
It is often a problem just to combine two, in principle complementary, but in
detail differently constructed, textbooks. There is no support for recombination
and further development of content, a particular problem given the rapid devel-
opment of the subject area.



10 Krieg-Brückner

Structure of the Support System. The support system should have an open
architecture and accommodate various user models. This requires, in the simplest
case, a coarse static classification by user category or rôle in the learning process,
such as Diploma or Master’s student, student still learning the basics, (external)
student in further training, or industrial user; such a classification should be
universally introduced. It is also intended to take advantage of the opportunities
available for educational systems which dynamically adapt to the progress of the
user. Thus the proposed system is divided into components, which are presented
to the user in a view depending on the scenario:

– The authoring system contains various tools for the preparation, semantic
linking and extension of content.

– The teaching system serves primarily to support teaching on campus, but is
also suitable for tutored distance-learning.

– The learning system contains materials for students and supports various
learning situations.

– The development system for Safe and Secure Systems permits the integrated
use of tools for demonstrations and exercises.

– The assignment system manages assignments; solutions to exercises are dis-
patched for correction, the corrections administrated, and the corrected so-
lutions returned to the students.

A detailed architecture will be designed on the basis of the process model and
the methodology, which in turn serve as basis for the implementation of the sys-
tem. In particular the architecture will specify the individual components and
how they communicate. It will also be necessary to consider how development
tools fit into the system, the various supporting formats for encoding overheads
or assignments, as well as the technical representations of ontological and paed-
agogical knowledge.

Knowledge-Base. All the content should be stored in the knowledge-base,
which will administer the above-mentioned Development Graph with various
views, including version and configuration management. Content is to be stored
in its primary format, as well as possibly in automatically derived formats (for
example texts should be stored in the LaTeX, XML and OMDoc [20, 21] formats),
if possible distributed. In particular, the content developed during the project
should be made available on special archive servers, while students are to have
personal knowledge-bases, in which examples can be explored, annotations made,
or exercises solved before being sent to a tutor. The personal knowledge-base can
also serve as a local copy (or cache) for the students, making them less dependent
on their local network.

Standards. Standards are decisive for the technical coupling, but also for se-
mantic integration. Therefore current standardisation attempts in Mathematics
and Formal Methods should be adhered to.



MMiSS 11

The educational content, the description of the meta-structures and the inter-
nal communication of the software systems are to be based on the new Internet
standard XML. Embedded structuring elements are to be tagged with the special
formalism used, such as CASL for the integration of structured algebraic spec-
ifications, or input formats for the formal software systems and visualisation
components involved in the project; this way, these elements can be analysed
by appropriate tools. Formal content should be adapted to the XML dialect
OMDoc (OpenMath Documents [20, 21]), which is an extension of the Open-
Math standards. OMDoc allows materials to be presented in a series of formats,
such as LaTeX, DVI and PostScript for printed documentation, HTML for in-
teractive books or browsable presentations, or MathML for special handling of
mathematical formulae.

3 Learning Environment and Communicative Elements

For each rôle (among others authors, teachers and students) the system appears
as an individual environment. In the following we will consider the learning
environment and its elements in more detail. The learning environment supports
the students in various situations:

– selecting (or generating) learning materials from the knowledge base;
– studying the course material interactively;
– communicating with tutors and other students;
– perfoming exercises, practicing and experimenting;
– administrating assignments; evaluating progress.

Tutored and Co-operative Learning, Assignments. Experience at Fer-
nUniversität (Distance-University) Hagen shows that the New Media are very
good at supporting tutored and co-operative learning. This new way of learning
has not yet been generally accepted in the other universities, except in isolated
experiments. This will change through the continual availability and extensibility
of the system to be constructed by the MMiSS project; its extensive deployment
should bring about a new quality of learning.

Modern communication technology permits asynchronous and documented
discussion of questions, problems and solutions within structured content-specific
discussion-forums (similar to newsgroups) which should be integrated with the
course material. In particular such forums can be used for efficient tutoring. It
is also possible to realise different levels of visibility (for example, visible for a
whole group and its tutors, or only for a particular subgroup); this is known to
increase the students’ willingness for co-operation.

In tutored learning, a tutor is available on the net to answer questions about
the content, the use of the system and its tools, or assignments – either syn-
chronously (“talk”) or asynchronously (via electronic mail). Co-operative learn-
ing usually implies a group of students who co-operate in studying a large
amount of content (for example a major course) together. A number of learning
situations, described by different metaphors, should be supported, for example



12 Krieg-Brückner

– newspaper stand : latest information from the teaching staff is distributed
– café: a few participants meet in unmoderated synchronous conversation
– market place: many communicate asynchronously, for example all partici-

pants in a course.

The organisation of assignments poses additional problems. Exercises and sample
solutions must be handed out (perhaps for quite different areas and levels of
expertise of groups of participants in a course); it is also necessary to administer
the forwarding of solutions to the tutors, returning the corrected exercises, and
so on. At FernUniversität Hagen, Six’s team have developed a tool to address
these problems, WebAssign which has already been used in a large number of
courses with occasionally more than a thousand students each. This system will
be integrated into the current project.

The added value of this new form of education is that it raises the quality of
learning and makes tutoring more efficient and effective, particularly in a sub-
ject area with as many students as Computing Science. Experience at Universität
Bremen has also shown that alternative forums for interaction and communica-
tion improve the students’ willingness for and enjoyment of co-operation and
help them express themselves; optional anonymity can be useful here. Thus new
chances for learning arise and the students are motivated by their own sense of
success. Women-only learning scenarios (for example a women-only café) be-
come possible. Another advantage of having support for tutored or co-operative
learning is that there is very good feedback about student progress, and criti-
cism about the materials can easily be forwarded to the tutors and authors; this
clearly assists quality-control. The suitability of such approaches to the area of
Safe and Secure Systems and Formal Methods becomes even more plausible as
the objects of study (specifications, proofs) are per se of a written nature.

Adaptive Learning Environment. Since the system to be constructed should
be available to a large user community, we can expect a variety of different ap-
plication scenarios: on campus learning, self-study, tutored distance-learning,
preparation and subsequent assessments of industrial projects, and so on. The
educational environment should therefore contain an adaptive user-modelling
component, and be oriented to universally understood metaphors when guiding
the user; this will significantly increase user acceptance. The learning environ-
ment should be able to generate a personalised document from the knowledge-
base, covering a special subject-area and configured according to a particular
personal profile, with a variety of interaction possibilities. Document generation
is to be based on the ontology and dependencies between the terms and the con-
cepts and methods to be learnt. By this personalisation, the learning materials,
examples, assignments and the way in which the knowledge is presented can be
adapted to the student’s state of knowledge and requirements. This adaptability
entails on one hand a more individualised support, on the other a flexible re-use
of teaching materials.

The foundation for the user-adaptive generation of learning elements is a
general, partly semantic (and thereby reusable) knowledge representation. To



MMiSS 13

adapt to the profile, goals and the context of the user, such meta-data are ac-
quired in a user model and can be updated for use in a pedagogical presentation
planner. The user model will contain, for example, the user’s status as a student
or industrial trainee, the level of detail the user requires, or whether the user is
preparing for an examination.

Interactive Learning. For the study of a content package, the learning envi-
ronment provides the technical content in an adequate multimedia presentation,
for example texts, graphics, pictures, animations, simulations, audio- and video-
sequences, and semantic hyperlinks between them. A navigational aid leads the
students through the content, based on the onotology. Little exercises provide
self-tests to check the progress.

Within the learning environment, the presentation of the material can be
closely interrelated with other functionality; for example the assignments can be
referenced directly from the teaching content. This also applies to the embedding
of software-development tools. The learning environment also offers direct access
to the course-specific communication and evaluation mechanisms.

Support for Assignments and Practical Work. The learning environment
will include an assignment component; this will integrate and simplify embed-
dings of software-development tools specific to the course. It will authenticate
students, administrate their solutions and keep track of course marks. Various
types of exercises shall be supported:

– multiple choice; exercises with textual or graphical answers;
– creation/modification of specifications, proofs or programs with tool support;
– solution of exercises by dialog with an interactive system.

Evaluation. The learning environment offers, on all those levels we have con-
sidered, the possibility of including support for its evaluation in the content. As
part of the presentation, students can answer questions on the course and add
commentary. It will also be possible to analyse all the students’ responses to an
exercise. Points of view publicly put forward as part of communication between
students or with the tutors are also potentially useful material for evaluation.
The learning environment will provide technical support for managing this data.

4 Embedding of Tools for Safe and Secure Software

The integration of existing formal software development tools shall make teach-
ing more flexible and dynamic. Various interaction levels should be possible,
such as “movie-demos” of tools; replays of developments in the tool; completion
and extension of developments using the tool; independent working on exercises;
working on a project as a team.



14 Krieg-Brückner

Use of Software-Development Tools in Teaching. An important part of
training is the familiarisation with computerised tools for developing Safe and
Secure Systems. Tools and their methodical use in practical scenarios have, so
far, only been integrated into courses in an isolated way, at the moment mostly in
the form of complementary tutored exercise sessions. A complete integration into
the curriculum has yet to happen, not least because of the general restriction of
teaching content to locally-available tools, and the difficulty of providing general
methodical integration into the content while avoiding too much detail only of
interest in the special case.

As well as educating people in the use of tools, we are also concerned with
the methodical improvement of teaching from the point of view of educational
theory; an increased use of animations, visualisation and active experimentation
can considerably reduce the difficulty of grasping abstract concepts. The user can
be aided in make knowledge explicit through an experimental and explorative
approach to problem-solving. As is known from Cognitive Psychology, this is an
important basis for learning.

As well as integrating tools into teaching content, we should also consider
the integration of different tools, and the re-use of developments (represented in
a common language) in another (tool-) context; without this coherent teaching
is not possible. The project partners have developed (and continue to develop)
numerous tools, and demonstrated these in practical applications, up to and
including co-operation in large commercial software projects. Above all two ap-
proaches that have been developed are relevant. The bmb+f-supported develop-
ment of UniForM (Universal development environment for Formal Methods [22])
at Universität Bremen supports the close interaction and integration of tools.
The MathWeb architecture and the OMDoc format [20, 21], both developed at
Universität des Saarlandes, support the loose coupling of tools and the common
representation of formal development. Both partners cooperate in developing
support for development graphs, their visualisation and administration [8].

Integrated Development Tools. Several formal development tools must be
integrated in the learning system, if knowledge of how to use them is to be ade-
quately communicated. This entails consistency problems not just between the
tools, but also with the other content. The system must hence be configurable,
and support input and output in the most popular formats on the basis of new
standards.

The tool support for Formal Methods includes editing, syntactic and static
semantic analysis and visualisation of specifications, their animation, interactive
proof-development, fully-automated decisions procedures and test-procedures.
In addition to systems which address one or other of these tasks, there are also
development tools which integrate several sub-systems and so provide general
support for formal development. The existing tools differ in their functionality
and their fundamental formal approach.

This potential should be exploited in teaching, by complementing the passive
absorption of teaching content with active explorative components. We see here



MMiSS 15

the beginnings of a new, decisive approach to improving teaching. Up to now, it
is too often the case that what is taught is only of limited applicability, and only
limited understanding can actually be said to have been attained. For Formal
Methods in particular, current quantitatively and qualitatively limited methods
doing assignments (proofs cannot really be worked out) provide no solution.

Because the whole subject area should be covered here, and we aim to be
able to adapt to individual special needs and further tool development, the
semantically consistent integration of tools and their technical coupling is of
high importance; for application-oriented training it is indispensable.

5 Outlook

The project has made good progress during its first year. Many lectures have
been converted to the initial LATEX-oriented input format, with good quality
output as overhead transparencies in PDF-format. This material is now awaiting
further coordination and refinement, as well as semantic interlinking using devel-
opment graphs in the repository. The Development Manager, and other editing
and authoring tools, are well under way towards completion.

Acknowledgement

We are grateful to the members of the Advisory Board, V. Lotz (Siemens AG,
München), H. Reichel (TU Dresden), W. Reisig (HU Berlin), D.T. Sannella
(University of Edinburgh), and M. Ullmann (BSI [Federal Institute for Security
in Information Technology], Bonn), for their advice, and to G. Russel for his
help with the manuscript.

References

1. Peter Amthor. Structural Decomposition of Hybrid Systems – Test Automation for
Hybrid Reactive Systems. PhD thesis. Universität Bremen, 1999. Monographs of
the Bremen Institute of Safe Systems 13. Shaker.

2. Egidio Astesiano, Michel Bidoit, Hélène Kirchner, Bernd Krieg-Brückner, Peter
D. Mosses, Donald Sannella and Andrzej Tarlecki. Casl: The Common Algebraic
Specification Language. Theoretical Computer Science, to appear 2003.

3. Egidio Astesiano, Michel Bidoit, Hélène Kirchner, Bernd Krieg-Brückner, Peter
D. Mosses, Donald Sannella and Andrzej Tarlecki. (eds.). Casl- the CoFI Alge-
braic Specification Language: Tutorial Introduction, Language Summary, Formal
Definition, Basic Data Types. (submitted).

4. Egidio Astesiano, Hans-Jörg Kreowski, and Bernd Krieg-Brückner (eds.). Algebraic
Foundations of System Specification. IFIP State-of-the-Art Reports, Springer 2000.

5. Serge Autexier, Dieter Hutter, Bruno Langenstein, Heiko Mantel, Georg Rock,
Axel Schairer, Werner Stephan, Roland Vogt, and Andreas Wolpers. VSE: Formal
Methods Meet Industrial Needs. International Journal on Software Tools for Tech-
nology Transfer, Special Issue on Mechanized Theorem Proving for Technology, Vol.
3:1, pages 66–77. Springer, 2000. (see also www.dfki.de/vse/.)



16 Krieg-Brückner

6. Serge Autexier, Dieter Hutter, Heiko Mantel, and Axel Schairer. INKA 5.0: a
logic voyager. Proc. 16th Intl. Conference on Automated Deduction, Trento. LNAI
volume 1632, pages 207–211. Springer, 1999.

7. Serge Autexier, Dieter Hutter, Heiko Mantel, and Axel Schairer. Towards an Evo-
lutionary Formal Software Development Using Casl. In Christine Choppy, Didier
Bert, and Peter Mosses (eds.): Recent Developments in Algebraic Development
Techniques, 14th International Workshop, WADT’99, Chateau de Bonas, France.
LNCS volume 1827, pages 73–88. Springer, 2000.

8. Serge Autexier and Till Mossakowski. Integrating HOLCASL into the development
graph manager MAYA. In: A. Armando (ed.). Frontiers of Combining Systems, 4th
International Workshop. LNCS volume 2309, pages 2–17. Springer, 2002.

9. David A. Basin and N. Klarlund. Automata based symbolic reasoning in hardware
verification. Formal Methods in Systems Design, 13(3):255–288, November 1998.

10. David A. Basin and Bernd Krieg-Brückner. Formalization of the Development
Process. In [4]. 521–562.

11. Michel Bidoit, Hans-Jörg Kreowski, Pierre Lescanne, Fernando Orejas, and Donald
Sannella (eds.). Algebraic System Specification and Development: A Survey and
Annotated Bibliography, LNCS volume 501. Springer 1991.

12. Manfred Broy and Stefan Jähnichen (eds.). KORSO: Methods, Languages, and
Tools for the Construction of Correct Software – Final Report, LNCS volume 1009.
Springer, 1995.

13. Maura Cerioli, Martin Gogolla, Hélène Kirchner, Bernd Krieg-Brückner, Zhenyu
Qian, and Markus Wolf (eds.). Algebraic System Specification and Development:
Survey and Annotated Bibliography. 2nd edition, 1997. Monographs of the Bremen
Institute of Safe Systems 3. ISBN 3-8265-4067-0. Aachen: Shaker, 1998.

14. CoFI. The Common Framework Initiative for algebraic specification and develop-
ment, electronic archives. Notes and Documents accessible at http://www.cofi.info.

15. CoFI Language Design Task Group. Casl – The CoFI Algebraic Specification
Language – Summary. in [14].

16. Carla Freericks. Open-Source Standards on Software Process: A Practical Appli-
cation. In K. Jakobs (ed.). IEEE Communications Magazine, Vol. 39, N 4 (2001)
116–123. See also www.tzi.de/gdpa/

17. Michael Fröhlich. Inkrementelles Graphlayout im Visualisierungssystem daVinci.
Dissertation. Monographs of the Bremen Institute of Safe Systems 6. ISBN 3-8265-
4069-7. Shaker, 1998.

18. Michael Fröhlich and Mattias Werner. The interactive Graph-Visualization System
daVinci - A User Interface for Applications. Informatik Bericht Nr. 5/94 (1994).
Universität Bremen. Up-to-date documentation: www.tzi.de/~daVinci.

19. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International
Series in Computer Science, 1985.

20. Manfred Kohlhase. OMDoc: Towards an OpenMath representation of mathemat-
ical documents. SEKI Report SR-00-02, Fachbereich Informatik, Universität des
Saarlandes, 2000. www.mathweb.org/ilo/omdoc/

21. Manfred Kohlhase. OMDoc: Towards an Internat Standard for the Administration,
Distribution and Teaching of Mathematical Knowledge. Proc. Artificial Intelligence
and Symbolic Computation. LNAI. Springer, 2000.

22. Bernd Krieg-Brückner, Jan Peleska, Ernst-Rüdiger Olderog, and Alexander Baer.
The UniForM Workbench, a Universal Development Environment for Formal
Methods. In: J. M. Wing, J. Woodcock, and J. Davies (eds.): FM’99, Formal
Methods. Proceedings, Vol. II. LNCS Volume 1709, pages 1186-1205. Springer,
1999.



MMiSS 17

23. Bernd Krieg-Brückner. Seven Years of COMPASS. In 11th Workshop on Speci-
fication of Abstract Data Types, Joint with the 8th COMPASS Workshop, Oslo,
LNCS volume 1130, pages 1–13. Springer, 1996.

24. Erica Melis, Eric Andres, Georgi Goguadse, Paul Libbrecht, Martin Pollet, and
Cartsen Ulrich. ActiveMath: System description. In Johanna D. Moore, Carol Red-
field, and W. Lewis Johnson (eds.): Artificial Intelligence in Education. IOS Press
(2001) 580–582.

25. Oliver Meyer. Structural Decomposition of Timed CSP and its Application in Real-
Time Testing. PhD thesis. Universität Bremen, 2001. (To appear in Monographs
of the Bremen Institute of Safe Systems. Logos Verlag.)

26. Till Mossakowski. Casl: From Semantics to Tools. In S. Graf and M. Schwartzbach
(eds.) Tools and Alogorithms for the Construction and Analysis of Systems, Pro-
ceedings TACAS 2000. LNCS volume 1785, pages 93–108. Springer, 2000.

27. Till Mossakowski, Kolyang, and Bernd Krieg-Brückner. Static semantic analysis
and theorem proving for Casl. In 12th Workshop on Algebraic Development Tech-
niques, Tarquinia, LNCS volume 1376, pages 333–348. Springer, 1998. (For the
Bremen CoFI Tools see http://www.tzi.de/cofi.)

28. Peter D. Mosses. CoFI: The Common Framework Initiative for Algebraic Spec-
ification and Development. In TAPSOFT ’97: Theory and Practice of Software
Development, LNCS volume 1214, pages 115–137. Springer, 1997.

29. Horst Reichel, Till Mossakowski, Markus Roggenbach, and Lutz Schröder. Co-
CASL - Proof support for co-algebraic specification. In Recent Trends in Alge-
braic Development Techniques, 16th International Workshop, WADT’02, LNCS.
Springer (accepted for presentation).

30. Markus Roggenbach. CSP-CASL - A new Integration of Process Algebra and Al-
gebraic Specification. In Recent Trends in Algebraic Development Techniques, 16th
International Workshop, WADT’02, LNCS. Springer (accepted for presentation).

31. Markus Roggenbach and Till Mossakowski. What is a good Casl specification? In
Recent Trends in Algebraic Development Techniques, 16th International Workshop,
WADT’02, LNCS. Springer (accepted for presentation).

32. Markus Roggenbach and Lutz Schröder. Towards Trustworthy Specifications I:
Consistency Checks. In M. Cerioli and G. Reggio (eds.). Recent Trends in Algebraic
Development Techniques, 15th International Workshop, WADT’01, Genova, LNCS
volume 2267. Springer. 305-327.

33. Markus Roggenbach and Lutz Schröder. Towards Trustworthy Specifications II:
Testing by Proof. In Recent Trends in Algebraic Development Techniques, 16th
International Workshop, WADT’02, LNCS. Springer (accepted for presentation).

34. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Interna-
tional Series in Computer Science, 1998.

35. Lutz Schröder and Till Mossakowski. HasCASL: Towards integrated specification
and development of Haskell programs. In Proc. AMAST 2002, LNCS. Springer (to
appear).

36. Forschergruppe SofTecNRW. Studie über Softwaretechnische Anforderungen an
multimediale Lehr- und Lernsysteme. Sept. 1999. See also: www.uvm-nw.de, [37].

37. G. Engels, U. Kelter, R. Depke, and K. Mehner. Unterstützende Angebote der Soft-
warebegleitgruppe. E. E. Doberkat et al. (eds.). Multimedia in der wirtschaftswis-
senschaftlichen Lehre – Erfahrungsbericht. LIT Verlag, Münster (2000) 27–56.

38. Haykal Tej and Burkhart Wolf. A Corrected Failure-Divergence Model for CSP in
Isabelle/HOL. In Proc. FME 97 - Industrial Applications and Strengthened Foun-
dations of Formal Methods. LNCS, volume 1313. Springer (1997) 318-337.


