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Abstract

This report describes the feedback in ACTIVEMATH, a learning envi-
ronment for mathematics. In particular, we distinguish local and global
feedbacks. For the global feedback we describe the blackboard-architecture
with its reusable and easily modifiable components, specify the current
evaluators of the learners actions, and present the user-adaptive global
learning suggestions implemented so far. The report also describes the
design of the suggestion user interface that is based on empirical results
about feedback described in the literature. Finally, remaining questions
that need to be clarified by empirical research are discussed.

1 Introduction

ACTIVEMATH is a user-adaptive web-based learning environment for mathemat-
ics. It generates learning material for the individual learner according to her
learning goals, preferences, and mastery of concepts as well as to the choosen
learning scenario [20].

ACTIVEMATH’s user model consists of the components history, profile, and a
database of mastery-level for the learning objects. The history contains infor-
mation about the user’s activities (reading time for items, exercise success rate,
editing of user model). The user profile contains her preferences, scenario, goals
submitted for the session. To represent the concept mastery assessment, the
user model contains values for a subset of the competences of Bloom’s mastery
taxonomy [6]:

e Knowledge
e Comprehension
e Application.

We assume that knowledge-mastery is reached by reading a text but also from
examples and exercises. Bloom defines the skills needed for ’knowing’ as recall of
information, knowledge of major ideas; Comprehension-mastery can be achieved
by relating several concepts and then answer questions and understand examples.
Bloom defines the needed skills as understanding information, translating knowl-
edge into a new context, predicting consequences; Application-mastery relates
to solving problems by applying the concept. Bloom defines the needed skills
as usage of the concept (in new situations), solving problems using the required
skills or concepts.! Similar categorizations of mastery have been employed by
several researchers, e.g., Merrill and Shute [25] in their taxonomies of outcome
types. Finishing an exercise or going to another page triggers an updating of the
user model in ACTIVEMATH. Different types of user actions influence the values
of corresponding competencies because each reflects a different competency 2. In

! Transfer-mastery could be the most advanced mastery but currently, we subsume this in
application currently.

2The implicit connection between competencies is also considered but will be better formal-
ized in Bayesian Net user model which is in progress.



particular, reading concepts corresponds to ’Knowledge’, following examples cor-
responds to "Comprehension’, and solving exercises corresponds to "Application’.
So far, ACTIVEMATH primarily served the adaptive (static) document generation,
the integration of service systems, and local feedback in exercises. This report
addresses an extension and discusses different types of feedback in ACTIVEMATH.
We suggest to distinguish local and global feedback. The global feedback is a
new service of ACTIVEMATH which is described in this report. In particular, we
describe the architecture, the kinds of evaluators of student action, and some of
the user-adaptive global learning suggestions implemented so far.

2 Separation of Local and Global Feedback

Traditionally, user-adaptive feedback and help in tutor systems (ITSs) has been
designed for a direct response to students’ problem solving actions and the feed-
back is designed to help students to accomplish a solution, e.g., in the PACT
tutors [5] or in CAPIT [19]. Frequently, this feedback is an explicitly authored
text that reflects the author’s experience with typical errors in a specific problem
solving context. In some sense, the specific feedback is questionable because au-
thoring all the specific feedback is a very laborious task (see e.g., [29]) and often
requires an extreme authoring effort for explicitly authoring what can go wrong
and what the reason is for each erroneous action in each exercising. Therefore,
we try to avoid such a kind of diagnosis and corresponding feedback in ACTIVE-
MATH. Moreover, the usage and benefit of more and more detailed help may
strongly depend on the individual user [1] and some users might even dislike
frequent suggestions and intrusion [8].

Although in most ITSs the feedback is a direct answer to single problem solv-
ing steps, some systems provide feedback targeting meta-cognitive skills of the
student. For instance, [13, 2| try to support self-explanation of worked-out ex-
amples; SciWise [31] provides feedback for planning and reflecting activities in
experimental science and for collaboration.

Generally, two kinds of feedback and guidance can be provided by an ITS, a local
response to student activities which is supposed to coach the recognition of errors
and the correction of single problem solving steps of the learner and a global
feedback targeting the entire learning process. This differentiation somewhat
resembles the distinction of task-level and high-level described in the b4-process
model of [3].

These two kinds of feedback differ with respect to time, realm, content, and aim.
For instance, local feedback is provided immediately after each problem solving
action of the user and local feedback should be given directly attached to the
problem solving activity and possibly presented in the exercise window. Instead,
the global feedback and suggestions can be provided independently and may be
delayed, i.e. delivered, when the user has finished reading a text, studying an
example, or working on an exercise.

Many ITSs do not provide global feedback at all. And even if they do, such as
SQL-Tutor [21] and CAPIT [19], they do not separate local and global feedback,
say architecturally. external e.g.,



In AcTivEMATH, local and global feedback is distinguished because of their
different aims, different foci, different learning dimensions, and different mech-
anisms. In addition, the employment of service systems for the check of the
correctness of a problem solving step and for the generation of local problem
solving feedback [7] is a practical reason for separating local and global feedback.
The local feedback such as ’syntax error’, ’step not correct, because...”, ’task not
finished yet’, or ’step not applicable’ is computed by a system and related to a
problem solving step in an exercise or to the final achievement in an exercise. The
current implementation of local feedback is explained in [7] and more technically
in http://www.ags.uni-sb.de/"adrianf/activemath/.

As opposed to the local feedback, the global feedback scaffolds the student’s nav-
igation, her meta-cognition, and dynamically suggests appropriate presentations
of content (including examples and exercises). The global feedback and sug-
gestions may concern, e.g., what to learn, to repeat, to look at, or to do next,
navigating the content, reflecting, monitoring.

The computation of global feedback requires diagnostic information of several
user activities. The information about the student’s navigation, reading, under-
standing, and problem solving actions, e.g. their duration, and success rate, has
to be used as a basis for user-adaptive suggestions. That is, information about the
history of the learner’s actions and information from her user model is necessary
to generate useful suggestions.

In what follows we deal with global feedback only.

Notation. Note that K/C/A-present(c) is an abbreviation for: present con-
tent contributing to the concept ¢ in a K-, C-, or A-oriented way respectively.
K/C/A-present(c) are functions of the ACTIVEMATH’ existing course generator.
K-oriented means present just concepts and possibly explanations; C-oriented
means present concepts and examples; A-oriented means present the full spec-
trum of content including concepts, examples, and exercises.

3 Blackboard Architecture for Global Feedback

The architecture for the global suggestion mechanism in ACTIVEMATH clearly
separates diagnoses and suggestions as shown in in Figure 1. An advantage of
the separation of evaluation and suggestions is that the same evaluation results
can be used by different suggestion mechanisms, in different pedagogical strate-
gies, and later also by a dialog system. For instance, if the diagnosis yields a
seen(example, insufficient)?, then example is presented again in a strict-
guidance strategy but not in a weak-guidance strategy.

Evaluators Some evaluators provide a diagnosis immediately from one of a
user’s action while other evaluators infer a diagnosis from the immediate diagnoses
and additional information In Figure 1, several immediate and one intermediate
evaluator are displayed. New immediate and intermediate diagnosis agents can
be easily added, e.g., an evaluator for the individual average reading time.

3i.e., the time for reading the example is less than a threshold

4



user actions

212 19 |z
3 o 2 |8
® Q O

2 < o
IS o @ e
=} g é )
@ 2 g2 | g
S S i .

* * 8 |2 execution

—_—
Y Y

Diagnosis Blagkboard

user model

Figure 1: The architecture of evaluator and suggestion mechanisms

Suggestion Blackboard

The immediate evaluators each watch one of the following types of activities
e navigation
e reading (time)
e problem solving (assessed performance)

— MCQ exercises
— exercises with a Computer Algebra System

— exercises with the Omega proof planner

The immediate evaluators pass their results to a diagnosis blackboard (DBB) and
to the user model (user’s mastery-level of concepts and to the activity history).
The current updating mechanism for mastery-values in the user model is described
in [20]. Essentially, K-mastery values are triggered by reading, C-mastery values
by dealing with examples, and A-mastery values by dealing with exercises. A
Bayesian Net user model including its updating mechanism is future work.
Intermediate diagnoses are computed by other evaluators from the information
on the DBB and in the user model. These diagnosis are written on the DBB too.
As displayed in Figure 1, several suggestors compute global feedback from the
diagnoses on the DBB and write on the suggestion blackboard (SBB). If necessary,
the results are sent to a ConflictManager that rates the different suggestions on
the SBB. Then the best rated suggestions are executed.

4 Evaluators/Diagnoses

Currently, ACTIVEMATH has the following evaluators, each one watching a par-
ticular type of activity of the user or the DBB.



navigation
reading

exercises

— MCQ exercises
— exercises with a CAS

— exercises with the Omega proof planner

intermediate evaluators

These evaluators return diagnoses, among them

mastery with values poor or okay. Poor means that the success rating was
below 30%. This evaluator acts when the user has finished an exercise.

navigation with values okay/(irrational, ?start), where irrational
is diagnosed in case the user navigated from one concept to another without
following any dependency.

focus-concept(”c)

seen with arguments ID and one of the values okay/notSeen/insufficient
for evaluated reading time of an item ID.

K,C,A-mastery of a concept with values that correspond to a percentage.
This is passed to the user model for updating and written onto the DBB.

solution with the arguments ID (of exercise) and one of the values correct/incorrect.

teacherDiagnosis(?x), where 7x is the name of a typical error. If the
learner’s input matches with a typical error, typicalError(7x), pre-defined by

the author of an exercise, the evaluator returns to the DBB a corresponding

tuple (teacherDiagnosis(?x), teacherFeedback(?x), teacherReaction(?x))
that is pre-defined by the author. If teacherDiagnosis(?7x) provides a
mastery diagnosis, then it is passed to the user model as well.

The following intermediate features can be inferred from information in the DBB
and in the user model:

missingPrerequisite(?concept, ?level), where ?level can be K, C,
or A currently. This fact means that ?concept is a prerequisite concept of
the focus-concept and its ?level-mastery in the user model is insufficient.
This fact is inferred only in case of an insufficient result of the user actions
related to the focus-concept.

SeenAndKnown (?level), notSeenButKnown(?level),SeenButUnknown(?level),
notSeenAndUnknown (?1level), all meant for the focus-concept, where ?1level

is one of the values K, C, or A. These intermediate features can be in-
ferred from the focus-concept, from the seen diagnoses of the items



contributing to the focus-concept, and from the K,C,A-mastery for the
focus-concept.

to
The following diagnostic features may be added later.
e self-guidedness

e average reading speed

CAS-ability

Omega-ability

the user’s motivational state.

e percentage of guess and/or slip

In the following, we describe the evaluators for reading, navigation and for the
intermediate features in more detail. The evaluators for exercises are directly
implemented in the exercise environment and pass their results to the DBB.

4.1 Evaluators for Reading

The device the reading evaluator is based upon is a poor man’s eye tracker [28].
This is a software component that, based on mouse movement, can approximately
measure the time a user spends looking at a unit, i.e., a definition, a motivation,
a theorem, an exercise, or an example.

A reading evaluator calculates its results from the actual reading time for a unit
returned by ACTIVEMATH’ poor man’s eye tracker and from the averageReadingSpeed.
The evaluator can provide the values okay, notSeen, insufficient, and unclear of
the feature seen. Note that the required threshold for a sufficient reading time
might vary between a definition, a theorem, an explanation, an example, and an
exercise. Note also that the reading speed for formulas may individually differ
from the reading time for text.

A read-evaluator updates the user model’s K-value for a concept (i.e., the value
for knowledge-level mastery) after the user has looked at an instructional item
that contributes to learning the concept and C-values (for comprehension-level
mastery) after reading examples in particular.

4.2 Evaluators for Navigation

The navigation behaviour of a student has to be monitored because a user with
little experience may get lost in a (collection of) hypermedia document [22].
AcCTIVEMATH's user tracking device, DFKeye [28], communicates to the reading
evaluator the page and the time the student spent on it. The evaluator diagnoses,
whether the navigation behaviour makes sense according to

e the position of the page relative to the previous one in the user’s history



e the relation of the focus concept on the current page with the focus concept
of the preceeding one.

If the current page is immediately following or preceeding the previous page, the
navigation is rated okay. In this case, the user is either following the curriculum
that was proposed, or is going back to see the last concept that was presented
again. If the new focus is in any relation with the old one (e.g., a precondition),
then the navigation is also okay. These conditions define the positive navigation
actions. If a navigational action is not positive, we call it negative. The evaluator
keeps track of both types of navigational actions. If the user seems to be lost,
that is, she performs many negative navigational actions, it diagnoses irrational
navigation and passes this to the DBB. This can lead to the generation of a hint
that helps the user on her way through the hypertext. Conversely, if the user’s
navigational actions are rated positively, then it diagnoses navigation okay and
this can cause the generation of reassuring feedback.

A more complicated evaluation function is planned that results in the diagnose
self-guided navigation for a navigation behaviour that does not fully follow the
sequencing suggested by the system (static book or dynamic suggestions) but is in
line with the user’s mastery level. That is, if the user discovers that she does not
know enough about several prerequisites and navigates back to pages concerned
with the prerequisite-concepts or -items and then returns to the current page, this
is taken as an evidence for her awareness of the course structure and dependencies
as well as for self-guidedness.

4.3 Evaluators for Intermediate Features

Each evaluator for intermediate diagnosis watches the DBB-entries and the user
model and infers intermediate diagnoses. Currently, these are the following:

e missingPrerequisite(concept, level), where level can be K(nowledge),
C(omprehension), or A(pplication). missingPrerequisite is inferred only
in case of an insufficient result for an exercise related to the concept which
is in focus. This fact means that concept is a prerequisite concept or item
of the insufficiently mastered focus-concept and its level-mastery in the
user model is also insufficient. (The mastery of the focus-concept itself is
not intermediate but immediate.)

e SeenAndKnown(level), notSeenButKnown(level), SeenButUnknown(level),
notSeenAndUnknown (level) are all stated for the focus-concept, where
level is one of the values K, C, or A. xxUnknown(K) means that in the
user model the K-value (for the focus-concept) is insufficient (say, less than
80%). xxUnknown(C) means that in the user model the C-value (for the
focus-concept) is insufficient but not the K-value. xxUnknown(A) means
that in the user model the A-value (for the focus-concept) is insufficient
but not the K- and C-values.

The intermediate features are inferred for the focus-concept, using the
Seen diagnoses of those items that contribute to the focus-concept in the
learning material and the K,C,A-mastery for the focus-concept.
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5 Suggestion Mechanisms

A suggestor evaluates rules and writes its results on the SBB. Based on the facts
on the SBB, the actual suggestion presentation is generated to deliver

e a smile/noSmile puzzled, neutral, happy (smile), or sad (noSmile) face
(which is thought as a shortcut). The default expression is neutral.

e the more detailed and personalized feedback that consists of a verbal feed-
back (only abbreviated in the tables below) and

e one or several presentation-actions.

We specified the reassuring ’smile’ feedback as part of the GUI presented in
Figure 2 because we feel that reassurance and positive feedback is important for
motivational reasons [18] and for avoiding situations in which the learner feels
insecure.

5.1 Suggestors

The presentation-actions include
1. navigation help
2. content suggestions

e present new or skipped example

e present similar example

e present new exercise

e present same exercise

e present again the focus-concept maybe also examples, exercises
e present (missed) instructional items*

e present certain prerequisites maybe together with examples and exer-
cises

4if misunderstanding of concept not attributed to prerequisites or reading time



e K-present a concept. This means a presentation of items that intends
the improvement of the user’s knowlege of a concept. Mainly defini-
tions and elaborations will be shown.

e C-present a concept. The goal of this action is to lead the user to an
understanding of the concept. Currently, this is tried by presenting
items like examples and understanding questions.

e A-present a concept, i.e., present some exercises and other items that
help the user to learn how to apply the concept.

For each learning-goal level (K-, C-, or A), a suggestion strategy can be designed
as a set of suggestors. In what follows, we present the suggestors of an A-level
oriented suggestion strategy which (1) reacts to navigation problems and (2)
suggests content. First, we explain the essence of each rule and then the actual
rules follow.

Note that = in the expression seenButUnknown(z) denotes the missing level of
mastery of the focus-concept.

Rules for Navigation Suggestions are needed because ACTIVEMATH deliv-
ers a hypertext learning document and it is known that navigation in hypertexts
needs special attention [22] and being lost in hyperspace puts an additional load
on the learner.

e if the user navigated appropriately, then provide reassuring feedback (ab-
breviated by ’smile’).

IF Navig(okay) THEN - smile -

e if an irrational navigation is diagnosed that started at point ?start of the
table of contents (TOC), then two pointers show the current position in the
TOC and the ?start position. In this case, the user can click the ?start
position to return to a 'useful’ learning path.

IF Navig(irrational,?start) THEN - noSmile -
¢‘did you get lost by chance?’’
pointer (current) and pointer(?start)

Rules for Content Suggestions are needed because if the goal-level of mas-
tery is not yet reached by the learner, then the presentation of appropriate con-
tent might help to improve. As opposed to the local feedback that corrects
single problem solving steps, the global feedback described below prompts and
supports the learner in activities such as reading, repeating, self-explaining, com-
paring, varying, information gathering that are known to improve learning, see,
e.g., [11, 2, 24, 27, 12].

e If the last exercise was solved correctly and the concept in focus is mastered,
then provide reassurance.

10



IF Known(A ?focus) THEN - smile -

A second rule belongs to a more elaborate strategy that assumes that even if
the mastery-level is reached, more exercising can strengthen the mastery of
the concept and the confidence for less confident learners. This rule requires
that, if there is an exercise that is more difficult than those solved already,
then present it.

IF Known(A ?focus) THEN - smile -
AND solution(?id correct) ‘“see more’’
AND exerciseFor(?focus ?7id) present (7excl)

AND exerciseFor(?focus moreDiff (?id 7excl))
AND notSeen(?excl)

If seenButUnknown(A) holds for the focus-concept, then present examples
similar to the failed exercise of the focus-concept, unseen simpler exer-
cises, and then again the incorrectly solved exercise of the focus-concept.
This suggestion is made because A-mastery is the learning goal but not
yet achieved, and therefore another exercise for the focus-concept should
be offered to be solved. This exercise should be a bit simpler in order to
keep the user’s motivation up (in the proximal zone of development [30]).
Then an example similar to the exercise should be shown for comparison.
Finally, the originally failed exercises should be presented again.

IF SeenButUnknown(A ?focus) - noSmile -
AND solution(?7id incorrect) THEN ‘‘go deeper into the problem’’
AND exerciseFor(?focus 7id) exerciseFor(?focus lessDiff(?id 7excl))

exampleFor (?focus simTo(7id 7exml))
present (7exml 7excl 7id)

If seenButUnknown(C) holds for the focus-concept, then show not yet sufficiently
seen examples and counter-examples (if available) and ask for an explanation of
the examples.

This suggestion is made because C-mastery of the focus-concept is not yet achieved
and therefore, this comprehension has to be supported. This is tried by showing
more examples and prompting the learner to engage herself in self-explanation.

IF SeenButUnknown(C ?focus) - noSmile -
AND exampleFor (?focus 7exm) THEN ‘‘please explain example’’
AND NOT Seen(okay 7exm) present (7exm)

If seenButUnknown(C) holds for the focus-concept then prompt the learner to
explain and vary an example of the focus-concept. This suggestion is made
because C-mastery of the focus-concept is not yet achieved and therefore, this
comprehension has to be supported. This is tried by showing more examples and
prompting the learner to engage herself in self-explanation.

11



IF SeenButUnknown(C ?focus) - noSmile -
AND exampleFor (?focus Pexm) THEN ¢‘please explain and vary example’’
AND Seen(okay 7exm) present (7exm)

e if seenButUnknown(K) holds for the focus-concept, then the user should re-read
the last page on which the concept has been elaborated. This suggestion is made
because K-mastery (and also A- and C-mastery) is not yet achieved. Since A-
mastery is the learning goal in the overall strategy, everything (reading, examples,
and exercises) for the focus-concept, except any solved exercises, needs to be
repeated.

IF seenButUnknown(K ?focus) THEN - noSmile -
‘‘please return to last page’’
present (lastPage)

e if notSeenAndUnknown(K/C/A) holds for the focus-concept, then K/C/A-present,
respectively. This suggestion is made because A-mastery is the learning goal and
so content for every level not mastered yet is suggested again.

IF notSeenAndUnknown(K/C/A) THEN ¢‘repeat’’
K/C/A-present (focus)

e if there is a missing K/C/A-prerequisite ¢ (that is, a prerequisite concept that
whose mastery level has not reached K/C/A), then K/C/A-present that prereq-
uisite ¢ according to what is missing for the mastery. No further substantiation
needed because the failure is likely to be caused by the missing mastery of the
prerequisites of the focus-concept.

IF missingPre(?c, 7level) THEN -noSmile -
‘‘missing prerequisite’’
?level-present (?7c)

e if an item ID has been seen sufficiently and more than twice, then do not present
automatically ID again. Otherwise the motivation might drop. This selection is
made in the suggestion generator.

5.2 Conflict Management

It is possible that conflicting suggestions occur on the SBB, in case a user action
triggers several rules. For instance, when a new page is selected by the user, this
can trigger a navigation suggestion as well as a conflicting concept presentation
suggestion. If not all of the suggestions can be presented at the same time, then
a rating has to indicate the priorities, and only the rules with the highest rating
will generate their suggestions.

For the decision it makes a difference whether two suggestions are both of the
same class, say navigation suggestion, or not. Therefore, the rules are classified as
navigation, content, and ezercises rules, currently. A conflict between two rules
from the same class is resolved by a default resolution (e.g., more specific rules

12



have higher rating). A conflict between rules from different classes is resolved
based on a particular conflict resolution strategy. The simplest strategy decides
according to a fixed priority rating of the classes. If the highest rated rule cannot
generate a suggestion, e.g., because there is no counter example, then the it gives
up and the next best rated rule takes the turn.

For the implementation of a conflict resolution strategy in ACTIVEMATH the JESS
[15]-interface strategy and its method compare are employed. The strategy
can be easily configured in the ACTIVEMATH property list.

6 Implementation

The described mechanisms are implemented by a JESS-application. This section
covers the interfaces to other components of ACTIVEMATH as well as internal
reasoning mechanisms. The suggestion mechanism runs in three phases. First,
the evaluators communicate their results to a diagnosis component. This po-
tentially triggers the inference of intermediate diagnoses/facts (1. phase). Then,
suggestions are generated from the intermediate diagnoses and put on the SBB (2.
phase). The third phase resolves existing conflicts and realizes the presentation
of content if needed.

The next subsections go into more detail.

6.1 Interfaces

We need to consider several interfaces. First we have to look at the evaluators,
because their diagnosis blackboard generates the diagnoses needed by suggestion
mechanism to make the suggestions. Then, we will have a closer look at the
suggestion mechanism’s interface and the functionality it offers. Finally, we’ll
briefly discuss the presentation servlet.

6.1.1 Evaluator Interface

As the evaluators have to be notified about the user’s actions their interface is
based on methods designed to do this job. There are some central actions a user
can perform in ACTIVEMATH currently. Each is reported using a corresponding
method:

startPageBrowsed the user has come to a new page.
endPageBrowsed the user has finished a page.

startExercise the user started an exercise.

endExercise the user finished an exercise.

enableEyeTracker the user is using the poor man’s eyetracker

elementHasBeenSeen the user has seen an item on the current page (this is used
only when the poor man’s eyetracker is enabled).
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This interface provides access the different evaluators, it will propagate the method
calls to those evaluators registered for each action. For instance, the information

in the endExercise method is only relevant to the exercise evaluator, so the other
evaluators need not to be notified of this. In contrast to the endExercise method

the output of endPageBrowsed is needed both, by the read and the navigation
evaluator.

For a more technical description of these methods, see
http://www.activemath.org/~ilo/java-doc/org/activemath/abstractcontent/
AbstractUserModel.htm.

6.1.2 The Suggestion Mechanism Interface

The suggestion mechanism has to be notified, when an evaluator delivers a diag-
nose. This is realized by the addDiagnose method, which will insert the diagnose
into the suggestion blackboard. When the mechanism generates a suggestion, it
notifies the servlet that deals with displaying and rendering. This servlet receives
the suggestion that is to be presented by the method getNextBestAdvice.
Since the user can also actively request some advice, the servlet needs a possibility
to tell suggestion mechanism to generate a suggestion. requestNextBestAdvice
is the method to be called in this case. Summarizing, we have the following
methods in the interface

addDiagnose to inform suggestion mechanism about new diagnoses
getNextBestAdvice to allow the presentation servlet to access the suggestion

requestNextBestAdvice to explicitely request a suggestion.

6.1.3 Presentation Interface

The presentation servlet is accessible for other modules via HTTP. It realizes the
following functionalities

e visual notification that a new suggestion is available
e display of the suggestion text
e display of the suggestion content

e pass an active user request for the generation of a suggestion.

6.2 The Diagnosis Blackboard

There is one DBB per user. This allows to keep the JEss fact base clean and to
speed up the suggestion generation. A DBB receives input from the evaluators,
reasons about this input, and then transmits its diagnoses to the SBB as described
in the following.

Once the evaluators have processed the raw input coming from the user-tracking
servlets, they pass first diagnoses to the DBB. For instance, if the student finished
an exercise, the ExerciseEvaluator is notified by the user-tracking device with
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a call to endExercise, it performs some simple evaluations, and then inserts a
new fact into the DBB, namely

(solution <exercise> <rating>),

where <exercise> is the exercise’s ID and <rating> is one of the values POOR,
OK or GOOD.

The DBB contains a JESS rule engine to reason about the incoming facts. Its
rules infer the intermediate facts in the DBB. For instance, if the performance was
rated POOR, the rule engine will try to find out why the student performed poorly.
A reason could be that one of the prerequisites of this exercise was unknown to
the student. In this case, a rule will fire and insert a new fact into the DBB fact
base. The concrete fact is

(missing-prerequisite <dimension> <exercise> <item>),

where <dimension> is the target mastery level, <exercise> is the ID of the
exercise for which the missing prerequisite was found, and <item> is the ID of
the missing prerequisite. All the currently available DBB-facts can be found in
table 1.

Technical Description The Java code in the DBB serves as a wrapper for
the rule engine JESS, a Java Expert System Shell. In the following, we present
selected rules that run on the DBB, namely those needed to infer that the student
missed a prerequisite to solve an exercise.

To continue the example, the search for missing prerequisites starts, when the
fact (solution exercise POOR) is added to the fact base.

This triggers a rule that queries the user model for the student’s mastery values
of the prerequisites of the exercise. Both, the concepts that the exercise is for
as well as the concepts the exercise depends-on, are needed in the general diag-
nosis procedure. In our example, we only need the mastery values of concepts
that the exercise depends on (these are precisely the prerequisites) to diagnose
prerequisites that are insufficiently known.
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‘ Fact

‘ Options

‘ Interpretation

PRIMITIVE FACTS

navigation

OKAY

IRRATIONAL, start

student is aware of her position in
the course

student navigates without follow-
ing any dependencies or following
the outline of the course since po-
sition start

seen

item, NOTSEEN

item, SHORT

item, OK

item, LONG

item was on the last page, but the
student did not read it at all.
item was on the last page, and
the student did not read it long
enough.

item was on the last page, and
the student has read it long
enough.

item was on the last page, and
the student has read it far longer
than the average reading time.

solution

exercise, POOR

exercise, OK

exercise, GOOD

the student performed poorly in
an exercise exercise.

the student performed neither
well nor poorly in an exercise
exercise.

the student performed well in an
exercise exercise.

INTERMEDIATE FACTS

missing-prerequisite

K, exercise, item

C, exercise, item

exercise, item

item is a missing prerequisite for
the student to solve exercise be-
cause she does not know it well
enough.

item is a missing prerequisite for
the student to solve exercise be-
cause she does not truly under-
stand it.

item is a missing prerequisite for
the student to solve exercise be-
cause she cannot apply it prop-
erly.

seen-but-unknown

not-seen-and-unknown

K. concept

C. concept

A. concept

item 16

concept has been seen several
times but the user still does not
know it.

concept has been seen several
times but the user still does not
understand it.

concept has been seen several
times but the user still cannot ap-
ply it.

The user has finished with a page
but its focus-concept hasn’t been




The JESS rule that collects the concepts the exercise depends on is given in the
following.?

(defrule start-performance-diagnosis

;5 IF

;5 Student has solved exercise 7exc with success rating 7r
(solution 7exc ?r)

;5 AND
;; The reference to the user model is 7model
(model 7model)

;3 THEN

;; Load the mastery-values of 7user for exercise 7exc was for
;; from 7model into the the fact base

(get-for-what ?exc 7user 7model)

;5 AND

;; Load the mastery-values of 7user for prerequisites of exercise 7exc
;; from 7model into the the fact base

(get-prerequisites 7exc ?user 7?model)

)

The rule calls the functions get-prerequisites and get-for-what which load
the student’s mastery values of concepts into the JESS fact base.

Specifically, get-prerequisites queries the knowledge base MBASE for the con-
cepts exercise depends on, that is, its prerequisites, and inserts facts such
as (dependency ON MONOID-EXERCISE DEF-MONOID) which expresses that the
MONOID-EXERCISE needs the concept defined in DEF-MONOID as a prerequisite.
get-for-what fetches the concepts exercise is for. We say that those concepts
are the goals of the exercise.

Then, the DBB queries the user model for the user’s mastery values and new facts
such as (mastery-value K DEF-MONOID 0.4) are asserted. This fact states that
the likelyhood that the learner Knows the concept Monoid is 0.4. Once the fact
base contains the needed information about the student’s mastery of the related
concepts, the next rule that fires is poor-perf-poor-application that inserts
new intermediate diagnoses into the DBB.

(defrule poor-perf-poor-application

;5 IF

;; The student has given a POOR solution to exercise 7exc
(solution 7exc POOR)

;5 AND

5The syntax is simplified. ?xx indicates that ?xx is a variable, ;; declares comments.
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;; exercise 7exc depends on concept 7id

(dependency ON ?7id 7exc)

;5 AND

;; The application value for item ?7id is low (below 0.3)
(mastery-value A 7id ?val &: (< ?7val 0.3))

;3 THEN

;; assert that the missing prerequisite item 7id has been found for 7exc.
;; There was a lack at the application-level.

(assert ("missingPrerequisite" "A" ?7id 7exc))

)

Now those diagnoses can be processed by the knowledge sources that insert facts
into the suggestion blackboard. The following rule performs such a transition to
the SBB.

(defrule diagnosed-missing-prerequisite

; ;NotSeenAndUnkown holds for the focus concept
;; Our missing prerequisite
("missingPrerequisite" "A" ?id ?exc)

;; The username

(user 7user-name)

;; Reference to the suggestion blackboard.
(nextbest 7sbb)

;;9end a suggestion to a-present the 7id for 7user because it is a missing preco
(suggest 7user 7sbb ("A-present" ?7id "You should have a look at some items that
needed to solve this exercise which you are not comfortable enough with" "MISSING_

)

6.3 The Suggestion Blackboard

The suggestion rules watch the diagnoses on the DBB and put new facts on the
SBB. The rules compute the suggestions and their presentation via ACTIVEMATH
with a specialized course generator. Moreover, the SBB can resolve potential
conflicts between suggestions.

Let us continue the example from the last section. Once the fact

("A-present" ?7id "You should have a look at some items that are
needed to solve this exercise which you are not comfortable enough
with" "MISSING-PRECONDITION")

has been put onto the SBB, a suggestion rule fires that calls presentation functions
for content generation:
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(defrule do-a-present

;5 IF

;;there is a diagnose yielding the need to a-present 7id
("A-Present" 7id 7message 7type)

;  AND

; ;The Nextbest object is 7nextbest. This is needed to pass the resulting
;; suggestion.

(nextbest 7nextbest)

;  AND

; ;the username is ?user
(user-name 7user)

; ; THEN

; ;set the correct presentation scenario
(bind 7scenario "A-present")

;;create a nextbest presentation generator for the item 7what,using the
scenario 7scenario

(bind 7nextbest-pp (new NextBestPP 7id 7user 7scenario ))

;;run it
(call ?nextbest-pp run)

;;get the generated document
(bind 7document (call 7nextbestb-pp getStaticBook))

; ;generate the Suggestion Object
(bind 7suggestion (call ?nextbest createSuggestion))

; ;set the expression of the little face
(call ?suggestion setMood "unhappy")

;;8et the message that should be displayed
(call 7suggestion setMessage 7message)

;;8et the 7document as content
(call 7suggestion setPresentation ?document)

;;8et the type of the suggestion to be 7type
(call ?suggestion setType 7type))

;;tell nextbest to send the suggestion to the presentation servlet.
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(call ?nextbest makeSuggestion ?suggestion)

)

When the generation process is finished, suggestion mechanism’s graphical user
interface displays a text saying <”You should have a look at some items that
are needed to solve this exercise which you are not comfortable enough with” >
followed by a generated HTML link to the suggestion’s content.

Technical Description The SBB is implemented using a JESS engine wrapped
by Java code that controls the access. The interface of the SBB is the following.

interface AbstractNextBestCentral

{
getNextBestAdvice (id, user);

createNextBestFor (user) ;

requestNextBestAdvice (user, topic);

addDiagnose (user, factname, args);

public void suggestionFollowed(String user, int suggestion_type);

public void suggestionIgnored(String user, int suggestion_type);

7 Design of the Suggestion User Interface

The primary user interface of the global suggestion mechanism consists of a
face/companion with a variety of possible types of states. This face moves regu-
larly even if the user does well and there is no new suggestion. This is implemented
in order to prevent the user wondering about the mechanism being stuck. This
face informs the user whether the system wants to offer a suggestion or not. If
not, it reassures the learner by looking happily.

When new coaching can be suggested by the system, the face changes and the
student can now choose to follow or to ignore the suggestion. The offer expires
after some time and then disappears. The suggestions are personalized in that
the messages address the learner by the first name she has introduced at login.
To follow the offer, the learner presses a button for requesting the detailed sug-
gestions. Then, a new browser window pops up that contains the generated
content.

The user interface also includes buttons for requesting more specific information
and content as described in 7.

20



Active vs. Passive Feedback Several empirical investigations [10, 23] found
that feedback on demand (we shall call it active feedback here) typically yields
longer learning time than automatic feedback. However, feedback on demand
yields deeper knowledge, i.e., better transfer ability and more self-regulation,
-monitoring, and motivation.

Therefore, the global feedback GUI in ACTIVEMATH has two different compo-
nents: general feedback is provided that the learner receives rather passively as
well as buttons for more specialized requests and for more specific feedback on
demand. ACTIVEMATH realizes the active feedback by buttons that the user can
click on, whereas passive feedback means the user does not request the informa-
tion but receives it automatically in the NextBest window through an initiative
of the system.

777user chooses time and type of information and therefore needs to think about
her learning requirements more actively in case she requests more specific infor-
mation. Not invasisve in both cases

In the passive mode, if the user does not click a specific button (i.e., she is passive),
there are two alternatives. Either the system presents the highest rated amongst
all suggestions to the user or a dialog is started to find out what would be the
appropriate and desired help. The latter way will be explored in the future only.
The first button for a specific global feedback request implemented in ACTIVE-
MATH is the GIVEMEMORE button. The learner can use it to ask for more
exercises, similar to one she worked on recently, or for a similar example.

We plan to design other buttons with a telling name for each of the suggestion
mechanisms , e.g., whereAmlI?, DolKnow?, CorrectSolution? LookUpYourUser-
Model!, WhichPrerequisites?, explainMore! This is a first step towards a tutorial
dialog.

8 Future Work

Some future work has been mentioned already. In this section, we describe the
plans more systematically. In particular, we mention the extensions and improve-
ments of the diagnosis and suggestion mechanisms including the consideration of
the learner’s motivation and different suggestion strategies for different learning
goal-levels and for different learning scenarios. Moreover, we discuss the empirical
investigations that will be conducted in cooperation with psychologists.

8.1 More Elaborate Diagnoses

The duration of reading is one of the data from which diagnoses can be inferred.
However, an individual learner may have an individual average reading speed.
Therefore, the optimal reading time has to be determined for each learner during
the time the student uses ACTIVEMATH in order for the reading evaluations to
become more precise.

We plan to develop the more specific diagnostic features of a proof attempt with
the proof planner Omega and with Computer Algebra systems.
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e More elaborate A-mastery values for all the concepts involved in solving an
exercise might be determined from the user’s detailed proof attempt and
from the difficulty of the exercise. This requires to model the problem solv-
ing process, e.g., by a dynamic Bayesian Net which contains the concepts
and methods involved in the exercise as nodes and its various results as
symptom nodes.

e From such a dynamic Bayesian Net the missing prerequisites may be diag-
nosed more properly.

e The ability-value of using Omega or a particular CAS will be updated (e.g.,
from the number of syntax errors).

e An update of the guess and slip values could be learned.

e If the author provides a tuple (typicalError, teacherDiagnosis, teacherFeed-
back, teacherReaction), then an evaluator can pass the (teacherDiagnosis,
teacherFeedback, teacherReaction) tuple to the diagnosis blackboard in case
the user’s input matches typicalError.

With more effort for authors, a more detailed diagnosis of the user’s solution for
multiple choice questions could be provided in the future. For instance, (1) if the
author of the alternative answers in MCQs follows a particular Boolean schema
with mastery variables for several concepts, then this schema can be used for
an automatic diagnosis that computes a mastery diagnosis for several involved
concepts rather than for one concept only. Such a schema consists of Boolean
combinations of the mastery® of the involved concepts for each answer. (2) If
the author provided the information (teacherDiagnosis, teacherAction) for
each answer of an MCQ), then the proxy can pass this information to the diagnosis
blackboard.

8.2 More Suggestions

Our next investigations will focus on the design of a personalized and gender-
specific verbalization of the feedback and on the design of new validated rules as
well as on other kinds of global feedback including

e exploration tasks with system support (dependencies, more information,
e.g.,historic information)

e meta-reasoning exercises, for instance

— structure a task or solution

— self-explaine

— exercise/example variation

— devise examples supported by the system

— compare solutions supported by the system

6k-,c-,0or a-mastery
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— draw concept map

e feedback for improving motivation.

8.3 Reactions to the Learner’s Motivational State

Few tutor systems take the learner’s motivational state into consideration cur-
rently. For instance, WEST [9] follows the principle Do not tutor on two suc-
ccessive moves, no matter what which tries to avoid demotivation by too much
interference. SOLA [4] structures content according to the learner’s style (holistic
vs. serial and low vs. high confidence). Less confident students receive content
focussed on one magjor topic, whereas highly confident students may focus on sev-
eral topics; a serialist will rather focus on one topic whereas a holist could pursue
several topics at the same time. For motivational reasons, MENO [32] delivers
a particularly positive feedback, when a student eventually succeeds who has
previously failed in order to restore her confidence. This is — as a tendency —
particularly important for female students.

Those and similar principles such as Do not present new material, when the
learner is engaged already, Once a less confident learner does a task well, activities
that are likely to succeed should be presented by the system, and Highly motivated
students deserve praise even if their performance is not optimal [14] have to be
tested empirically and will be formalized in ACTIVEMATH’ suggestion rules.
Several techniques to enhance the learner’s motivation are known. For instance,
curiosity can be stimulated if necessary for increasing the learner’s motivation.
Perceptual curiosity techniques deliver audio and visual efects such as highlight-
ing a detail, i.e., focussing the learner’s attention to the detail. Also bright
colors and animations focus attention. Cognitive curiosity can be stimulated by
puzzling questions, incomplete information, relevant analogies, counter-examples,
unexpected or paradoxical questions, or a topic that requires an explanation. In
order to reduce the learner’s frustration, forthcoming difficulties should be sig-
nalled. An anti-help suggestion button should allow the student to control the
provision of suggestions.

Diagnosis of Motivational State In order to be able to react to the learner’s
motivational state it has to be diagnosed in the first place. A reliable indica-
tion for the student’s intrinsic motivation is the student’s effort rather than her
performance [26]. A motivation diagnosis can also be obtained by self-evaluation
questions combined with inferences. For instance, low confidence is inferred, if
the student repeatedly asks for help and high confidence is inferred in case of
total absence of help requests. The absence of help requests may indicate that
problem is too easy. Motivated students may use hints or not even request help.
Students who ask for help without exploring the hints provided by the system
are likely to be demotivated.
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8.4 Different Pedagogical Strategies

The computation, rating, and eventual choice of a suggestion depends on the
pedagogical strategy whose choice, in turn, may depend on the user’s ability,
goals, scenario, and motivation. For instance, a good learner will more likely
succeed with a few hints and active learning and benefit from it, whereas a weak
learner has to be corrected immediately and strongly guided.

A strategy (represented as a set of rules) determines, e.g., when, how often,
and which types of exercises and examples to present, how many exercises and
examples to suggest, the difficulty of exercises, in which sequence items will be
shown, which feedback will be given.

There are the classical pedagogical strategies Didactic, Socratic, Inquiry, and
Discovery learning [17]. Another dimension for devising strategies is its learning
goal-level (K/C/A/T). For instance, [25] suggests different reactions according to
different targeted mastery levels.

In the tutoring literature, mostly strategies for local feedback are described. And
even if these strategies are relatively general, the realization of a strategy is
pretty specific for a particular learning area so far. For instance, the tutor sys-
tem Miss Lindquist [16] has four strategies for teaching problem solving: concrete-
articulation, decompose-into-subgoals, translate-representation from text into com-
putation and abstract formula and vice versa, and present model solutions, The
concrete-articulation strategy for solving algebra word problems consists of the
rules:

e if wrong answer, then present simpler exercise about a sub-formula which
requires a number as the answer

then ask to provide the computation steps

then present variablized steps
e then present full formula.

In AcTivEMATH, the first strategies will be related to the four learning goal-
levels: knowledge, comprehension, application, and transfer. The strategy formed
by the rules suggested in §5.1 is a strategy for A-level learning with a relatively
strong guidance.

8.5 Empirical Questions

Most importantly, the diagnosis and suggestion mechanisms have to be evaluated
empirically with actual users. Then, the mechanisms will be improved according
to the test results.

For some of the specifications there exist no empirical basis yet. For instance,
the following questions could be investigated empirically:

e what is the individual optimal reading time for instructional items?

e how can motivational features diagnosed reliably?
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e when to provide immediate and when delayed feedback?

e when to repeat a typical example?

e when to try an exercise again?

e when to present a counter example?

e when to ask for reasons for a step (stimulate meta reasoning)?
e how should the global suggestion rules be rated?

e should the correct solution be shown in the global feedback?

e when to show seen and when show unseen examples and exercises

Design The design of the multi-modal suggestions has to be investigated. Among
others, design questions comprise the following: how to personalize a suggestion,
which number and position of feedback and suggestion windows is appropriate
for learning? Should the content be presented in a separate window? Should an
example solution or a correct exercise solution be shown next to a faulty solution
of a failed exercise? Moreover, we need to experiment with the buttons in order
to find out about their usability.

Diagnoses for Reading Speed Apart from recognizing the optimal individ-
ual average reading speed there will be more subtle differences between reading
different types of instructional elements. For instance, reading time for examples
should include time for self-explanation for a better comprehension. Note also
that the reading speed for formulas may individually differ from the reading time
for normal text.

ACTIVEMATH can serve as a tool for controled experiments determining depen-
dencies of user characteristics and for benefits of many other instructional deci-
sions.

9 Conclusion

The web-based learning environment ACTIVEMATH presents content, worked-out
examples and exercises to the student rather than exercises only or examples only.
This presentation may include incomplete examples, elaborations and examples
with built-in questions, etc. An on-line demo of ACTIVEMATH is available at
http://www.activemath.org.

This article mainly describes our research on global feedback in ACTIVEMATH
and beyond. It also includes the distinction between local and global feedback
as well as the separation of diagnosis and global suggestion mechanisms by an
architecture with two blackboards. The suggestion mechanism is implemented in
Java.
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