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Abstract

In Saarbrücken we are developing the web-based, user-adaptive, interactive learning
environment ActiveMath. Currently, its major features are user-adapted content, se-
quencing, and presentation, support of active and explorative learning by mathematical
systems, support of teachers by information about their students, and a semantic en-
coding of content that is the basis for reusability.
This article describes how interactive exercises and explorations connected to a math-
ematical system are inserted into the learning environment and how this simple con-
nection can benefit from other modules of the system.

1 Introduction

During the last decades, the mathematics pedagogy community recognized that students
learn mathematics more effectively, if the traditional rote learning of formulas and procedures
is supplemented with the possibility to explore a broad range of problems and problem
situations [14]. In particular, the international comparative study of mathematics teaching,
TIMSS [2], has shown that teaching with an orientation towards active problem solving yields
better learning results in the sense that the acquired knowledge is more readily available
and applicable especially in new contexts.

The ActiveMath
1 learning environment [10] is a web-based system. It presents mathemat-

ical content in a web-browser. This content is encoded semantically, hence is made reusable.
The choice of presented material is adapted to the learner’s knowledge using pedagogical
rules. And, to support explorative learning, ActiveMath integrates interactive exercises,
examples, and explorations connected to mathematical systems.

Among other solutions offering web-delivery of mathematical content, ActiveMath appears
to be the only system providing a solution for authors to write the content abstractly. The
modular architecture loosens the links between the developers and authors. For example, it
facilitates the specification of content that an exercise type accepts as input. Compared to
most of the systems available, we believe ActiveMath offers an interesting answer to the
delicate task of coordinating authors’ and developers’ works.

1A demonstration of ActiveMath is available at http://www.activemath.org/demo.
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Organization of the Paper

This paper is organized in deepening degree of technicality. We start by presenting an
overview of the ActiveMath system together with its user-adaptive capabilities to present
content. The general architecture is then refined to focus on the architecture used for the
exercises. the technologies used as well as the common exercise conventions are presented.
We go on by presenting the two exemplary realizations that have been built to date and
conclude with a presentation of current and future works that are made possible by the
architecture and content encoding.

2 Overview of the learning environment

2.1 Architecture

Figure 1 depicts the architecture of ActiveMath, i.e., its components and the communica-
tions between them (indicated by arrows). It shows the client-server web-architecture with
a browser at the client side. Currently, ActiveMath integrates the following components:
a session manager, the knowledge base, MBase [7], a presentation planner, a user model,
a pedagogical module, and mathematical systems such as the proof planner of Ωmega [11]
and the Computer Algebra System Maple [5] The systems are connected through their
proxies and the MathWeb broker [6].

Requests of the learner and (in the other direction) html-pages are communicated via
a web-server to the session manager. The session manager stores the generated courses
and translates URL requests into actions that are passed to the appropriate component.
The presentation planner generates the instructional graph adapted to the learner’s goals,
preferences, and knowledge by requesting and processing information from MBase, from the
user model, and from the pedagogical module. Information about the learner’s actions, such
as the time intervals of her reading a concept or the success of solved problems, is passed
from the session manager or exercise proxies to the user model. The user model updates
its values upon receiving this information. We shall describe further details of figure 1 in
section 3.

2.2 Knowledge Representation

The knowledge base contains mathematical knowledge represented in the xml-based OMDoc[8]
format. This allows a fine-grained representation of mathematical content by items such as
definition, proof, theorems, motivation, etc. The items may include natural language for-
mulations as well as formal objects. These formal objects (e.g., symbols) relate to actual
mathematical objects, i.e., to semantics. For instance, independent of whether the presen-
tation is “plus” or “+”, both presentations relate to the unique mathematical operation.
This semantics provides an ontology for the content of the course which is indispensable for
a reuse of learning material and for a combination of material from different sources.

Figure 2 shows an OMDoc representation of an exercise invitation. In the figure, the CMP
(commented mathematical property) element contains the natural language formulation of
the definition. The text includes OpenMath[4] representations for the objects, e.g., Rn,
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Figure 1: Architecture of ActiveMath
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norm, leq, etc. The OpenMath content is based on symbols. These are defined to refer to
one unique semantic entity. OMDoc enables the creation of such symbols in theories. This
allows an author to enrich the ontology of his presented course while maintaining consistent
semantic throughout the content. Every symbol has its own presentation information which
generates xsl stylesheet templates to enable its the rendering. For example, the OMDoc from
which the example was extracted declares the “boundary of a manifold” symbol, provides
presentation (with the ∂) and gives a definition of it.

In addition to the actual mathematical content, our knowledge representation contains meta-
data for structures, dependencies, and pedagogical information which can be used for the
dynamic generation of interactive documents. The figure displays the for attribute of the
exercise element that declares which item this exercise is training. This relation is employed
by the presentation planner, as we shall see later.

2.3 Presentation Planning

The central component of the ActiveMath content adaptivity is the presentation planner.
It generates a personalized course using the meta-data information of the OMDoc items and
applies pedagogical rules to choose and order the content. The graph of dependencies of the
items is used to present items that the learner does not know. The meta-data of exercises,
remarks and examples (such as the difficulty and abstractness) is then used by the rules
to choose the appropriate items for the introduction of a given concept. The result of
presentation planning is presented as a book (called the static book) that the learner may
freely browse. For more details of the presentation planner, see [9].

2.4 User Modeling

The user model is a component to store, read, and update data about the learner’s knowl-
edge. It contains a history of the actions (e.g., the reading of a concept at a certain time),
a list of preferences of the learner (e.g., ability to use a certain mathematical system, the
choice of a certain stylesheet, or the preferred language), and a list of competence assess-
ments. For each of the concepts in the database, these are represented by values for a subset
of the competence features in Bloom’s taxonomy [3], namely Knowledge, Comprehension,
and Application.

The learner’s record of the user model is initialized when first registered. At this time
the learner can assert the knowledge for each of the concepts. The user model is, however,
updated automatically when the pages are browsed and, most importantly, when an exercise
is finished.

3 Exercise Architecture

For a comfortable use of mathematical systems within a Web-based environment Active-

Math realizes a one-click invocation to obtain a user-interface and a back-end system that
are loaded and ready to be used. According to traditional web-accessible applications, noth-
ing should be required to be installed on the learner’s machine (as we will see, this is not
always possible). Also, when designing such systems the breadth of the spectrum of possible

4



<exercise id=’ball_boundary’ for=’bordHn’>
<metadata>

<Title>Exercise with the n-dimensional ball</Title>
<extradata><difficulty level=’hard’/></extradata>

</metadata>
<CMP>

Let us call
<OMOBJ><OMS cd=’topDiff_intro’ name=’ball’/></OMOBJ>
the set of of points of

<OMOBJ><OMS cd=’topDiff_prerequisites’ name=’Rn’/></OMOBJ>
that are at distance maximum

<OMOBJ><OMI>1</OMI></OMOBJ>
from the origin:

<OMOBJ>
<OMA>

<OMS cd=’relation1’ name=’eq’/>
<OMS cd=’topDiff_intro’ name=’ball’/>
<OMA>

<OMS cd=’set1’ name=’set’/>
<OMBIND>

<OMS cd=’set1’ name=’suchthat’/>
<OMBVAR><OMV name=’x’/></OMBVAR>
<OMA>

<OMS cd=’logic1’ name=’and’/>
<OMA>

<OMS cd=’set1’ name=’in’/>
<OMV name=’x’/><OMS cd=’topDiff_prerequisites’ name=’Rn’/></OMA>

<OMA>
<OMS cd=’relation1’ name=’leq’/>
<OMA><OMS cd=’topDiff_prerequisites’ name=’norm’/><OMV name=’x’/></OMA>
<OMI>1</OMI>

</OMA>
</OMA>

</OMBIND></OMA></OMA></OMOBJ>

Prove that <OMOBJ><OMS cd=’topDiff_intro’ name=’ball’/></OMOBJ>
is a manifold and that its boundary

<OMOBJ>
<OMA>

<OMS cd=’relation1’ name=’eq’/>
<OMA>

<OMS cd=’topDiff_intro’ name=’boundary’/>
<OMS cd=’topDiff_intro’ name=’ball’/>

</OMA>
<OMA>

<OMS cd=’set1’ name=’set’/>
<OMBIND>

<OMS cd=’set1’ name=’suchthat’/>
<OMBVAR><OMV name=’x’/></OMBVAR>
<OMA>

<OMS cd=’logic1’ name=’and’/>
<OMA>

<OMS cd=’set1’ name=’in’/>
<OMV name=’x’/>
<OMS cd=’topDiff_prerequisites’ name=’Rn’/>

</OMA>
<OMA>

<OMS cd=’relation1’ name=’eq’/>
<OMA><OMS cd=’topDiff_prerequisites’ name=’norm’/><OMV name=’x’/></OMA>
<OMI>1</OMI>

</OMA>
</OMA>

</OMBIND>
</OMA>

</OMA>
</OMOBJ>
Do it with <omlet type="loui" function="topDiff_intro_code1"/>.

</CMP>
</exercise>

Figure 2: An OMDoc representation of an exercise in differential geometry which may be
presented as: Let us define Bn as the set of points of <n that are at distance maximum 1
from the origin, Bn = {x|x ∈ <n ∧ ||x|| ≤ 1}. Prove that Bn is a manfifold and that its
boundary, ∂Bn = {x|x ∈ <n ∧ ||x|| = 1}. Do it with Ωmega.
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exercises an author can develop without programming is an important feature. Apart from
being familiar with the mathematical system and its language, the author’s task consists in
writing data only.

We have developed a uniform architecture for the invocation, performance, and closing of
exercise sessions. This enables our group or interested external parties to integrate quickly
other mathematical systems and develop an appropriate graphical user-interface within the
web-browser. We present the details of this generic architecture before presenting the two
types of integration that already exist.

The typical flow of messages exchanged during the exercise performance is as follows: In
an html page of the static book, an exercise is anchored as a url. It is displayed as an
invitation to perform the exercise. A click on its underlying anchor triggers a request to
the ProxyServlet (a part of the session-manager) which creates the proxy for the given
type of exercise. The latter returns the code necessary for the browser to display the user-
interface, starts the mathematical system if needed, loads the data of the exercise from the
database, and initializes the mathematical system according to this data. The proxy lives
till the learner finishes the exercise. At the end, it notifies the user model of the results of
the exercise performance. This notification can be used to update the representation of the
learner’s knowledge and capabilities.

The generic architecture includes proxies and proxy factories. We present shortly the spec-
ifications of their classes. These specification allow external developers to create quickly
other exercise types. Several such implementations are on their way.

The ProxyFactory objects are registered at startup of the system, one instance of such
exists per exercise type. They are responsible for:
• return the necessary html code to be included into the book for the invitation to

perform the exercise

• creating proxies for the type given

• registering and un-registering proxies in the session-manager

One instance of a Proxy object exists per exercise performance. It accomplishes the following
tasks:
• initializing and connecting to the mathematical system

• provide code to the browser so that it can invoke the user-interface

• possibly transmit messages from the user-interface to the system

• collect results of the exercises and transmit them to the user model

These specifications are general enough to allow the connection of any user-interface. For
example, other approaches will certainly also involve running the complete mathematical
system on the client, for example interactive systems for elementary geometry.

Moreover, the proxy can be employed for a teacher’s connection. For example, a teacher
console displaying a clone of the learner’s console has been realized for the CAS console
applet, see figure 3. This is made possible by the central and accessible position of the
proxy.
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Figure 3: A teacher’s clone console in ActiveMath observing a learner’s activity and sending her
suggestions

3.1 Communication Between Components

The xml-rpc protocol has been chosen for the communication between components of the
system. xml-rpc requests are structured http post requests. The content of the request
and of the responses are xml encoded messages. . Thus, addresses of servers are simple http

urls which can easily be exchanged as simple strings, for example in applet parameters.

The choice of xml-rpc proved to be particularly appropriate for exercise proxies. Being an
extension of http, their access from Java applets is trouble-free. Using these urls allow the
requests to be tunneled through a single http server and enables secure connections and
traversing firewalls, two features that are planned for ActiveMath.

xml-rpc is a cross platform standard which is implemented on more than 20 platforms and
languages. Its greatest advantage is its simplicity of implementation. For the ActiveMath

needs, xml-rpc was implemented for Allegro Common Lisp (for the connection to and from
Ωmega) and on the Mozart-Oz environment (for MathWeb).

3.2 Connecting to Mathematical Systems

The communication with mathematical systems is typically realized by simple process standard-
in and standard-out. Managing the availability and network distributions of such systems
is a more delicate task and can be very platform- and installation-specific. For this reason,
systems have been conceived to abstract the functionalities of such connections and offer
remote access to them through a broker architecture, for instance, MathWeb [6] and, in a
more general setting, Corba [13].

The MathWeb broker was originally created as a service-broker to offer computational
services to proof-systems. It is implemented in Mozart-Oz [16] which provides complete
network transparency. Hence, MathWeb supports the delegation of the request for a non-
existing service to some other machines where the service is offered.

Mathematical systems’ connection methods are not new and there are several such initia-
tives, see for example [1] and the references therein. However, one important quality is
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rarely found: stateful sessions. Most of the connection methods close the mathematical
system and its connection after one computation is finished. This practice is acceptable
for the execution of single computations which store the results in another application. It
is, however, not suitable for applications that perform several computation steps and for
which the intermediate results are required. MathWeb offers stateful session services for
the Maple and Gap Computer Algebra Systems as well as for the constraint solver CoSie

[12] which are used in ActiveMath.

Thanks to MathWeb, the connection to a mathematical system is made in few lines of
code. This is true for most other connection methods as well and ActiveMath will also
take advantage of other connection methods. For example the MuPAD Computer Algebra
System will be connected through a dedicated java-library for this system.

4 Example Scenarios

We now describe the exercise and exploration mechanisms that have been realized in Ac-

tiveMath already. These examples prove that a complete integration into a web-environment
can be performed. These examples implement principles of web-integration. They should
give a taste of the scenarios that can be deployed for ActiveMath.

Mathematical exercises usually can contain computation and deduction problems. The
mathematical systems that support computations are Computer Algebra Systems; deduction
problems can be supported by theorem provers and proof planners.

4.1 The Computer Algebra Console

The current user-interface for CAS-exercises is the Computer Algebra console implemented
by an applet. The input is in the syntax of the underlying CAS. The philosophy behind this
decision is that, in a given course, a learner is interested to learn the syntax of a Computer
Algebra System just as she learned operating her desktop calculator a few years ago.

The CAS console applet displays a standard console similar to the Computer Algebra Sys-
tem used in terminal mode. After displaying the necessary instructions to the learner, the
console allows input of lines which are executed in the remote CAS. The result of the CAS
computation is displayed as well as an evaluation report (see figure 4).

4.1.1 CAS Console Authoring Content

A CAS-exercise is parametrized by a code element stored in the database. This code element
consists of three parts in the CAS language: (1) the initialization part which is sent to the
CAS on startup and outputs the welcome message to the learner. Typically, it contains
load instructions of libraries and definitions of variables. (2) the evaluation part which is
executed after each learner input. It checks weather the required definitions have been made
by the learner and if so, checks their validity and possibly responds a feedback. Finally, (3)
the shutdown part which is executed at the end of the exercise, before the CAS is stopped.

8



Figure 4: A Maple console displaying a simple exercise.

Figure 5 presents an example of a simple code for an exercise in which the learner is requested
to compute the inverse of permutations given by cycles. The concrete goal of the exercise is
to define, in Maple, the variables Q1 and Q2 as the inverse of given permutations. The eval-
code checks whether these variables are defined and checks if they are the wanted inverses.

<code id="mapleExercises_Code1">
<data>

<startup><command>evalSilent</command><param>
with(group);
P1:=[[1,3,4,2]];
P2:=[[1,4,6,2,3,5]];

</param></startup>
<startup><command>eval</command><param>

printf("Compute the inverse of the following two permutations:");
</param></startup>

<startup><command>eval</command><param>
printf("1: %a 2: %a\n",P1,P2);

</param></startup>
<startup><command>eval</command><param>

printf("Please use the variables Q1 and Q2 for the respective inverses!");
</param></startup>

<eval><command>eval</command><param>
if assigned(Q1) and assigned(Q2)

and evalb(mulperm(P1,Q1)=[])
and evalb(mulperm(P2,Q2)=[]) then

1
elif assigned(Q1) and assigned(Q2) and evalb(Q1=I1) then

printf("Answer Q1 is correct but not Q2, since\n
%a * %a = %a", P2, Q2, mulperms(P2,Q2))

<.....>
fi;

</param></eval>
</data>
</code>

Figure 5: An example code element in the database
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4.1.2 Messages Exchanged

The request that creates this CAS console applet is triggered by an anchor on a page of
the course that the learner is reading. The request is directed to the ProxyServlet which
invokes the factory class to create the appropriate proxy. The latter sends an instruction to
execute the applet in a new window. Once a CAS-exercise is requested, the Proxy requests a
Maple “service” from the MathWeb broker and initializes it. In the meantime, the applet
is executed on the client-side. This applet is parametrized with the xml-rpc url that has
been given.

Each time the learner sends a command, it is sent to the proxy and executed by the CAS.
The response is passed to the applet which can display it. Right after the execution, the
proxy also sends Maple the evaluation code. When the console window is closed, the proxy
can shut down the mathematical system and reports the results to the user model.

4.1.3 Advantages and Drawbacks

The usage of such an applet is quite efficient. A major advantage is that the CAS mathe-
matical capabilities are available to the content writer to have a faithful evaluation of the
learner’s input. Also, the learner has the complete freedom to use the CAS as an explorative
tool as the complete syntax of the CAS is accessible.

The accessibility of the complete syntax for the learner, can, however, raise requirements.
For instance, it appears necessary to disable the use a given functionality that makes the
exercise too easy to solve. Security issues can also arise as these systems have not been
planned for such usages and often offer commands that may be dangerous. To prevent
abuses, the learner’s input has to be filtered. The console-applet proxy already has built-
in such a filtering mechanism. This mechanism will, however, never be complete as the
recognition of such commands require a complete understanding of the system’s language2.
To be able to solve this problem entirely, it appears unavoidable to request the support of
the CAS, e.g., the Maple and MuPAD function redefinition.

4.1.4 Other Usages

The CAS console can also be used in another kind applet which offers the visualization
of a phenomenon whose state variables are reflected in CAS variables. We have built an
exploratory applet to illustrate the inscribed triangle theorem which you can see in figure
6. For each drags of the vertex A, variables ax, ay, etc, are defined in Maple with the
coordinates of the points and the angle at A is recomputed. The CAS console applet then
allows the learner to invoke computations of her choice using the coordinates of the points
that she is viewing. This presents a good illustration of “explorations”: such an interactive
applet does not require the learner to reach a precise goal (like in an exercise) or to follow
a precise track (like in an example).

2For example, Maple syntax allows the evaluation of an expression created as the concatenation strings.
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Figure 6: A more graphical interactive usage of the console-applet.

4.2 The Ωmega-LΩUI Applet

For deduction problems, that is to say, the construction of proofs, there exist basically two
sorts of computer systems: Automated theorem provers, and interactive systems that are
used interactively to construct a proof.

The Ωmega systems covers both aspects, the automated search for proofs, with automated
proof planning [11] and the support of interactive proof plan construction via an agent-based
command suggestion mechanism. Ωmega’s graphical user-interface, LΩUI [15], includes
a proof tree presentation, a sequence of formal proof lines as well as a natural language
verbalization of the proof.

The current LΩUI is a implemented in Mozart-Oz. It requires installation of the freely
available Mozart-Oz-engine. This is not a big problem currently, as the community of users
of LΩUI is still very close to automated theorem proving. A re-implementation of LΩUI as
an applet, however, is planned.

The learner communicates with LΩUI via a dialog console, where she can select the next
subgoal, apply a proof step (methods), instantiate a variable with a term, or undo proof
steps. The list of suggested methods is generated by a command suggestion mechanism.
This mechanism allows a specification of when a method should appear in the dialog box.
This specification may depend on the user model as well as previous (maybe failed) proof
attempts. As a result, the system can react to the learner’s choice of an inappropriate
method.

When the learner is stuck in a proof situation, she can invoke the automatic proof planner
that will insert the next steps. Figure 7 shows LΩUI with a graphical representation of the
proof tree, the dialog console, and a verbalization of the current proof.

Just as for the Computer Algebra console-applet, a proxy has been implemented for the
Ωmega-LΩUI applet to perform the exercises: The button to invoke the exercise is displayed

11



Figure 7: An Ωmega-LΩUI session

within the course pages. When invoked, it launches a request to the ProxyServlet which
delegates the call to the produced Proxy. The Proxy requests an Oz engine (currently
the MathWeb broker) to prepare an Oz-applet which contains all the parameters of the
exercise, including the information to connect to the proxy and to the MathWeb broker.
The request is redirected to this engine and the Oz-applet is sent. MIME-type configurations
installed on the browser by the Oz installation launches the Oz virtual machine to open the
Oz-applet3.

The Oz-applet can then start on the client. It requests an Ωmega “service” from the
MathWeb broker and tells this service to connect to the proxy. The proxy sends the
exercise and the start up-code to Ωmega. This content is also encoded in the OMDocs and
is extracted from MBase. Later, when the the learner quits LΩUI, a report is made to the
user model and the Ωmega server is closed.

5 Enhancing the Integration into ActiveMath

The last section of our article describes future work that is possible thanks to the proxy-
based architecture of interactive exercises and thanks to the OMDoc encoding of content. The
work is pursuing two directions: (1) the integration of the knowledge representation where
the flexibility and “polymorphism” of the semantic encoding is used and (2) the enhanced
user-adaptivity.

3The need for the re-encoding of this applet is that a document delivered with MIME-type cannot have
parameters.
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5.1 Use of Knowledge Representation

As ActiveMath is based on a database of mathematical objects, all of its components can
use identifiers referring to these objects. One typical application of this representation is
realized in ActiveMath, a dictionary-like to browse the elements. Moreover, an exercise
user-interface could refer to a definition using its common name and offer the learner the
possibility to browse its text.

Other advantages stem from the OMDoc encoding of the content. OMDoc mathematical ex-
pressions are expressed in the OpenMath syntax. This syntax is “polymorphic” in the sense
that it can be translated to many target languages and, in particular, to the different lan-
guages of Computer Algebra Systems. Actually, it has been one of the OpenMath major goals
to exchange messages between mathematical systems; the conversion between the various
syntax is performed by the so-called phrasebooks which are emerging currently.4

Remember that the exercise data is loaded by the proxy from the database as part of the
initialization process. This initialization is inherently system specific. It needs to contain
instructions such as a library to be loaded or internal state modifications such as a func-
tion disablement. Mathematical objects, however, e.g., functions, polynomials, groups, or
matrices can be encoded in OpenMath and converted on the fly. This facility is useful for
content authors as it allows them to reuse an OpenMath object from the content or to pre-
pare exercises to run with multiple mathematical systems (where only the system-specific
parts have to be written for each of them). This OpenMath parametrization of exercises is
currently being implemented.

The same conversion can be used to support the learner performing an exercise. We are
planning to implement the drag-and-drop gesture for mathematical symbols from the html

content pages, in html, to the CAS console.

5.2 User-Adaptivity Integration

The initialization process of an exercise can take advantage of the connection to the user
model connection. Suppose, an exercise is initialized and this initialization involves the
definition of a particular method, operation, or function. The exercise author might decide
that the method is only loaded if the learner has sufficient knowledge of it. If the method
is loaded, the learner can use it freely. If it is not, however, the only way for the learner to
apply the method is to perform the steps of this method manually.

Similarly to the teacher-monitor which can offer external support in the performance of
an exercise, a reasonning engine can observe the learner’s steps and can perform a more
appropriate update of the user model. This usage of the witnessing role of the proxy can be
enhanced. For example, such an observing reasoning agent could provide feedback to the
learner within the exercise performance.

4 See, for example the PolyMath Maple phrasebook: http://pdg.cecm.sfu.ca/openmath/, the
PearlServers implementations for MuPAD and Maple: http://www.webpearls.com/products/ps.asp, or
the RIACA phrasebooks: http://crystal.win.tue.nl/projects/index.html
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6 Comparable Solutions

We did not find software that could really be compared to ActiveMath as an integrated
platform to learn mathematics. Most of the mathematics published on the Web is encoded
as simple LATEX, DVI, postscript, PDF, or html pages (for an overview of these, see for
example, the math forum5, some web-sites seem to use interactive content – mostly dedicated
applets – almost none are connected to mathematical systems, very few are adaptive. None
seems to encompass a general content encoding that provides re-usability.

A veteran in the field of mathematics on the Web is the Connected Curriculum Project CCP6

which presents on the Web an introduction to many mathematical subjects together with
manipulations on a system and offers the download of a worksheet and detailed instructions
for each steps to be performed in the system. CCP is a mature math-publishing project
and displays already a lot of content, freely available to interested learners. The comparison
to ActiveMath is striking: CCP modules are written in plain html. The instructions
for the usage of the mathematical system are given step-by-step in a very detailed way,
as no communication to it is possible (almost each key is described). Finally no content is
dynamically generated and most of the formulas are created as images. As a consequence, the
content presented is an immutable collection of books with instructions for the manipulation
of a CAS.

Two packages do, however, provide a flexible connectivity to one or more mathematical
systems through web-interfaces with simple authoring facilities: WWW Interactive Math-
ematics Server (WIMS7) and Alice In Mathematics (AIM8). Both of these tools are freely
downloadable and ready to run. Both offer a server solution that connects to a mathemat-
ical system. Through an html-form-based interface, AIM offers access to automatically
corrected exercises or assignments. The system is based on the Maple Computer Algebra
System whose language is used to generate exercise parameters on the fly (e.g., bounded
random numbers), to evaluate the learner’s response, and to compute and record a grade.
WIMS has similar interface. This server offers interesting connectivity to many mathemati-
cal systems. It also provides a (proprietary) script language that an author can embed into
html content and is executed on delivery time. This language even contains a syntax for
elementary mathematical concepts that it can translate to the systems’ syntax.

As opposed to ActiveMath, both, AIM and WIMS, do not provide a more general ar-
chitecture. For example, none of them supports rendering of mathematical formulas or
user-adaptivity (aside of the interactivity of the exercises, of course).

Because of the modularity of the ActiveMath system, developers can integrate mew mod-
ules which use the other modules’ functionalities rather than having to write these function-
alities specialized to the exercise subsystem, as was made in WIMS and AIM. For example
multiple-choice-questions are rendered using the same xsl templates as the one used for the
rendering of the definitions or exercises.

5http://forum.swarthmore.edu
6http://www.math.duke.edu/education/ccp/
7http://wims.unice.fr
8http://allserv.rug.ac.be/~nvdbergh/aim/docs/

14

http://forum.swarthmore.edu
http://www.math.duke.edu/education/ccp/
http://wims.unice.fr
http://allserv.rug.ac.be/~nvdbergh/aim/docs/
http://forum.swarthmore.edu
http://www.math.duke.edu/education/ccp/
http://wims.unice.fr
http://allserv.rug.ac.be/~nvdbergh/aim/docs/


7 Conclusion

The architecture that we have built provides a simple and open framework for integrating
mathematical systems and for for authoring integrated interactive exercises. Statistical
software is planned to be connected, as well as the MuPAD Computer Algebra System [17].

The ActiveMath system provides a solution for building re-usable mathematical content
to be displayed on the Web with full-fledged interactivity. Far away from anything resem-
bling the management of huge collections of single html or other media files, the OMDoc
format provides an interesting content encoding that abstracts the semantical meaning of
mathematical content and gets rid of anything presentational.

This separation of representation and presentation allows the quality management of what
is being displayed in the clients to be performed much more effectively.

This approach allows the tight collaboration between authors, multimedia authors and de-
velopers to be loosened and their respective specifications to be facilitated. For example, it
leaves the browser dependencies to the xsl writers and applet developers, the connectivity
to the server-side developers. and only the content to authors.
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