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Abstract. Kicking is one of the most central aspects in humanoid robotic
soccer. In this thesis, we will study robotic kicking as motion and behavior
primitive. We start by discussing the kick behavior primitive with reference
to the Berlin United kicking process. To improve the kick distance and
prepare for hot-swappable kick actions, we evaluate the different motion
variables of the kick motion primitive and their influence on the resulting
kick. With the experiment-driven optimizations and introduced techniques,
we are able to increase the mean absolute kicking distance, by 37.98%,
compared to the previous kick configuration. Furthermore, we explore
possibilities to enhance the robot’s predictive action model by evaluating
the robot’s capability to verify it. Also, we propose procedures to improve
its predictive value and introduce a time-based and a probabilistic approach
to decide, when to kick the ball.
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1 Introduction

In humanoid robotic soccer, kicking is one of the most crucial aspects. It is also a very
complex task, as it is strongly dependent on nearly all major abilities of the robot. A
successful kick requires cognitive abilities, such as a robust and accurate localization
of both the ball relative to the robot and its own position in the field, a good path
planning or a fast and certain decision making, as well as motoric abilities like reliable
stabilization and precise movement control. Without being able to localize the ball,
the robot will not be able position itself and kick it properly. Without being able
to localize itself on the field, the robot will not be able to intentionally kick the ball
in a desired direction. A good path planning is needed to bring the robot into an
adequate position; stabilization and movement control are vital for the kick motion to
function. However, these are just the enablers, the foundation on which the kicking
behavior primitive is built. The kick motion primitive involves many motion variables,
each of which can greatly affect the overall outcome of the kick. Oftentimes, the kick
motion primitive or single kick motion variables are studied as isolated events, without
considering the other factors. In this work we will study robotic kicking as motion
primitive, i.e., the kick motion, as well as behavior primitive, i.e., the full kicking
process, including the approach, to gain a more wholistic impression, of what makes a
good kick. Furthermore, we will explore possibilities to improve the robot’s decision
making.

To prepare for the following work, we will first assess kick behavior primitives (Section 2),
with reference to the Berlin United kicking process. The way kicking is currently
implemented in the Berlin United codebase, it is highly reliant many, manually set,
interdependent parameters. This drastically limits the adaptivity and makes the
inclusion of new kick motions or the adjustments to new environments a complex
and time consuming task. To combat this, in Parameterless Kicking (Section 3),
we aim to leave behind the rigid structure of hardcoded parameters in our current
kicking process, to allow for more dynamic and adaptive kicking. We will investigate
the effects of different motion variables, such as velocity or kick height on the kick’s
performance, to gain a deeper understanding of their influence. We will then use this
knowledge to form a KickAction, containing all relevant information, specific to each
kick behavior primitive. With this, we work towards a low-threshold way to include new
kick actions, that allow for a quick and easy changeability in runtime, while integrating
in the existing best action selection. In the second main part, Target Prediction and
Simulation Correction (Section 4), we will analyze whether the robot’s own ball model
can be used to verify and adjust the action prediction model and explore how this
model can be improved in accuracy and features. To decide on a good moment to
execute a kick, we will propose both a time-based and a probabilistic approach.
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Figure 1: The Berlin United robots during a soccer match at the Robotic Hamburg
Open Workshop (RoHOW) 2023. Photo taken by Murat Kirtay.

1.1 Contributions

This is an overview of our contributions, featured in this work.

• Discussion of kick behavior primitives, with reference to the Berlin United kicking
process.

• Introduction of a model, consisting of four consecutive phases to describe the kick
behavior primitive. Each phases decreases the robot’s influence on the resulting
kick.

• Evaluation of the robot’s stability for different kick durations.

• Design and implementation of a function that dynamically assigns each kick a
suitable ZMP kick offset, to assure the robot’s stability.

• Installation of a top down camera as an optical measuring system, to evaluate
the robot’s kicking performance.

• Development of a program that captures images, automatically annotates the
ball and computes its position on the soccer field.

• Empirical evaluation of different motion variables and their impact on the kick.

• Improvement of the robot’s kicking performance through experiment-driven
optimizations and introduced techniques such as an offset to the kick target.

• Discussion of how kicking is integrated in the decision making process, at the
example of the Berlin United action selection.
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• Assessment of the noise in the speed perception of the robot’s ball model.

• Implementation of the ability, for the robot to recognize the end of a kick.

• Evaluation of the robot’s ball model in terms of accuracy in distance measurement.

• Exploration of possible ways to improve the predictive action model.

• Design and development of a model to predict the kick’ outcome based on the
robot’s current position, to probabilistically decide when to execute a kick.

• Comparison of different supervised learning approaches, to make such predictions.

• Design and implementation of a novel, time-based kick moment control, by
progressively increasing the allowed deviation from the robot’s target position.

• Identification and selection of important parameters, to be included in a KickAction
module.

1.2 Related Work

When thinking about motion in humanoid robots, a common approach is to examine
human movement [11, 22, 26]. This is mostly done by using motion capture data,
which can be processed and adapted to the robot’s kinematics. In the context of
humanoid robot soccer, this approach comes with strong advantages, such as high
dynamics and natural movement, but also with limitations, as the development of new
motions is dependent on capturing new data. Due to the differences in kinematics
and dynamics between humans and humanoid robots, human motion data cannot be
directly applied to humanoid robots [26]. Hence, this approach benefits robots with
very human-like kinematics and physiology, such as the PresToe robot [2], used by
Marew et al. in their work [11]. The NAO robot, which is used in this thesis, has a
very different kinematic structure compared to humans, or more human-like humanoid
robots. And while human motion imitation on the NAO has been done and is therefore
technically feasible, the extent of motion that was achieved in previous works is quite
rudimentary [8] and not comparable to the complex and dynamic motions needed for
kicking a ball in a soccer game.

With a few exceptions, such as Müller et al. using hand-crafted piecewise Bézier
curves [4, 20], in the field of competitive robot soccer, there are two main approaches,
for generating the kick motions: predefined keyframes or spline based trajectories [23,24].
Keyframe based motion, i.e., defining fixed sets of joint angles in time and interpolating
between them, is a simple and straightforward approach. Since all relevant motion
points are predefined, it is easier to implement and understand, but also excludes any
dynamic reaction and adaptation to the environmental conditions and developments,
by design [24]. Therefore, the online generation of dynamic kick and step trajectories
has been a popular research topic in humanoid robotics for many years. The concept
of spline based trajectories in humanoid robotics first emerged in the early 2000s.
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In 2004, Zhaoqin Peng et al. [27] presented a method for planning steps by using
splines to generate trajectories online, based on parameters such as step length and
hip motion. In the RoboCup Standard Platform League (SPL), spline based, online
trajectory generation for kicking, was first introduced in 2014, by Wenk and Röfer [24],
to overcome the keyframe reliant approach they have originally used within their team.
In their work they describe how they automatically generate trajectories based on
the ball position, kick velocity, and kick direction [4]. Böckmann and Laue compared
the approaches of Müller et al. [20] and Wenk et al., criticizing the complex and time
consuming task of handcrafting Bézier curves and the missing possibility to influence
the fully automatically generated trajectories by Wenk et al. and therefore presented
a way to both easily handcraft and automatically crate kick motions, as a middle
ground.

In their bachelor thesis [23], Wege assessed the correlation between a kick’s duration
and the resulting distance traveled by the ball, finding that the duration can be used to
control the kicked distance. In their Requirements for a Dynamic Kick, they describe
the capability of robots passing the ball to each other, as vital for a soccer game to
be successful. Ergo, the robots need to be able to scale how far they are kicking the
ball. However, the usability for their approach to control the covered distance with a
precision, that enables passing to other robots during a soccer game, is still limited.
In their experimental evaluation, they have to account for a relatively high empirical
standard deviation for kick distances with a mean distance, higher than 100 cm.

There have been frequent endeavors to let robots learn behavior primitives, such as
kicking [9,10]. However, this is usually done in simulated environments and transferring
these approaches to real robots is rarely successful. Mostly, in these simulations,
factors, such as the uncertainty in perception or the varying friction and unevenness of
undergrounds, is not accurately represented, which widens the reality gap [15]. Even
though, there have been successful attempts in learning motion and behavior primitives
on real robots [6], this was so far only possible in very controlled settings, which limits
the representative value for more dynamic scenarios like robot soccer.

In 2010, Mellmann and Xu explored adaptive, static kick motion primitives, based on
visual feedback [18, 25]. They achieved real time adaptation of the robots foot to a
moving ball, creating a kick motion, that was actively used in robot soccer games from
2009 to 2013 [15]. Their experiments were conducted using an orange ball the robot
was able to accurately see. The RoboCup SPL changed to a more realistic soccer ball in
2016, making such adaptive real time motions much more difficult. As mentioned, they
focused on static kicking, i.e., kicking out of the stand. In contrast, we will examine
kicks executed out of the walk.

Exploring the kinematics of soccer robots, Je Youn Choi et al. found that the foot
being parallel to the ground when colliding with the ball, results in the best impulse,
compared to other angles of the robot’s ankle [5].
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Figure 2: The kick motion primitive in action.

2 Kick Behavior Primitive

In this section, we will assess kick behavior primitives, at the example of the Berlin
United kicking process. For this, we will first give an overview about fundamental con-
cepts, to provide the necessary foundation for understanding the following experiments.
To describe the kick behavior primitive, we will introduce a model consisting of four
consecutive phases, each progressively reducing the robot’s influence on the kick.

2.1 Overview

Our robots make use of what is called in-walk kicking. Broken down, this means: Kicks
are steps, but different. From a human point of view, this might sound unintuitive, as
we might consider steps and kicks as separate actions, but if we look at the very essence,
we notice more similarities than differences. Both kicks and steps describe a movement
of the robot’s foot, which possesses a start and end position, as well as a trajectory to
connect them. The main differences are the differently weighted relevances of certain
variables that define their respective motion primitive. We can view kicks as a special
kind of step. Both consist of the same elements, such as velocity, or how high the foot
is lifted. But with kicks, small changes in these parameters can have a big impact on
the resulting kick and therefore require finer tuning. The execution of a kick can be
seen in Figure 2.
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2.1.1 Architectural Foundation

In our team, the codebase is split into two main parts: cognition and motion. The
responsibility of each module is easily deductible from their names. Cognition is
responsible for the robot’s cognitive abilities, such as sensor evaluation and decision
making, whereas motion takes in orders from cognition and converts them into real
world movements of the robot.

2.1.2 Path Request

Every path related action a robot undertakes, is realized through a path request. Every
path request contains a PathID (i.e. the behavior primitive), as well as other optional
information, relevant for certain path types.

Relevant PathIDs are:

PathID::NONE

Do nothing. If kick is planned, ignore and cancel.

PathID::AVOID

Avoid a certain point (e.g., obstacle). The point to avoid is specified in the path
request.

PathID::MOVE AROUND BALL

As name suggests. For this, additional information, such as the direction or the
radius for moving around the ball, is specified in the path request.

PathID::FORWARDKICK

The kicking behavior primitive, from approaching the ball, to kicking it.

PathID::SIDESTEP

Take a step to the side. The direction is specified in the path request.

PathID::APPROACH DRIBBLE

Approach the ball and dribble it to a strategically advantageous position.

The path request starts in the robot’s behavior planning. Based on the selected PathID,
the PathPlanner module will call its respective path routine function.

2.1.3 Step Buffer

Just like us humans [13], our robots plan their steps in advance to ensure a smooth
and stable walk. For the robots this is done in the step buffer. More precisely, we have
two step buffers, one in cognition and one in motion, but we will only focus on the
cognition step buffer.
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Figure 3: The default forward kick trajectory with references to the deprecated, previ-
ously used upwards spline. The left and middle plot show the forward and
upwards trajectory of the KickType used for the following experiments. The
right plot shows the full 2D trajectory. The y-axis motion of the robot’s
kicking foot is not directly set for this KickType, but computed later.

The step buffer is a queue of planned steps. It is used to calculate the robots stability
and hip motion in advance. Here, the pre-planned steps are saved as step buffer
elements, which contain relevant information about the step or kick. Ideally, we would
want it to contain all information that is influential for the kick.

2.1.4 Kick Types

Originally, the spline, used to generate the trajectory, describing the kick’s motion
primitive, was defined by a set of hard coded points. A change in the trajectory during
runtime was therefore not possible. In a study project [7], prior to this thesis, we
introduced the KickType module, which allows us to define different kick trajectories
and switch between them at runtime. Each KickType gets initialized with a set of
control points and returns splines for up to three dimensions. In said study project,
we designed and evaluated a set of new kick types, one of which is now the default
forward kick in our RoboCup team and also used in the experiments presented in this
thesis. During the RoboCup Eindhoven 2024, the upwards motion trajectory of this
kick was further optimized, to achieve a better overall performance (see Figure 3).

2.2 Four Phases of a Kick

The Berlin United kicking process can be logically divided into four consecutive phases,
each with shrinking control over the resulting kick.

Alignment Phase
The robot approaches the ball with intent to kick it. Here, the robot decides on
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its position, relative to the ball and the foot to kick with. At the start of this
phase, the only set decision is the robot’s orientation. Apart from this, the robot
has full control over the outcome.

Configuration Phase
The robot configures the kick, based on the results of the alignment phase. This
includes setting the KickType and where to and how fast to kick at.

Execution Phase
Based on the results of the previous two, but especially the configuration phase,
the robot executes the kick. This involves computing the trajectory, calculating
the kinematic chain and controlling the robot’s actuators according to prior
configurations.

Ballistic Phase
The kick has been executed and the ball is now in motion. The robot has no
further control over the outcome anymore.

2.2.1 Alignment Phase

The alignment phase begins once the robot’s decision making calls the PathPlanner
with a PathID::FORWARDKICK path request. Within the PathPlanner, there are two rel-
evant functions for executing a kick: nearApproach forwardKick() and forwardKick().
The latter is called as soon as the prior returns true, i.e., the robot is in position to
kick. This phase describes the lifecycle of nearApproach forwardKick().

First, we decide on which foot to kick with. This is done by evaluating the ball’s
position relative to the robot’s center. The kicking foot is chosen based on what side
the ball is on. For the further approach, we define a target position z⃗ which is computed
from the ball’s position b⃗, a set offset o⃗ and the ball’s radius r, such that:

z1 = b1 − o1 − r and z2 = b2 − o2 (1)

Based on a fixed, rule based decision, every frame we evaluate whether the robot is
close enough to the target position z⃗ to execute the kick. This close enough is defined
by an allowed deviation d⃗. The function nearApproach forwardKick() will return
true and with this initialize the execution of the kick as soon as the foot to kick with
is movable and:

z1 < d1 and |z2| < d2 (2)

Elsewise, the robot will keep approaching the ball. For the further approach, we need
to plan the robot’s path towards the target position z⃗. Since z⃗ is oftentimes not directly
reachable with just one step, we need to find an intermediate position i⃗, such that

i1 = min(l, z1 − |z2|) and i2 = min(l, |z2|) · sgn(z2), (3)

8



10 0 10 20 30 40 50 60
Robot Coordinates, x (cm)

20

10

0

10

20

Ro
bo

t C
oo

rd
in

at
es

, y
 (c

m
)

Center of Mass (COM)
COM end position
Kicking foot end position
Approach Target
Planned Path ( i )
Allowed Deviation
Ball

Figure 4: Visualization of nearApproach forwardKick(), showing the path planning
for the robot’s final steps before kicking the ball. We can see the desired
approach target and the actual end position of the robot’s center, within the
allowed deviation.

with l being a selected step length.

This function gets called every frame, until the robot is close enough to the target
position z⃗ and ready to kick. In this case, the function returns true and the robot will
proceed to the configuration phase.

2.2.2 Configuration Phase

In the configuration phase, we still have a fair amount of control over the kick, yet
we can not longer influence the robot’s position relative to the ball. As mentioned
before, the successful termination of nearApproach forwardKick() leads to the call
of forwardKick(). This function describes the configuration phase.

We start this phase by confirming the previously estimated ball position relative to
the robot’s center and finally deciding on the kicking and supporting foot. To further
prepare the kick, we select a kick type [7]. Next, the robot chooses the kick and step
target. Kick target being the desired position of robot’s foot at the kick’s climax
(e.g., the ball) and step target being the position of the robot’s foot at the end of the
kick. Since the kick target is a point in mid air, we need a 3D vector, whereas the
step target represents a point on the ground, so two dimensions are sufficient. This
separation allows for both, kicks with the same start and end position, as well as kicks
that seamlessly transition into the next step. In the context of this work, we will only
use the first option. Originally, the kick target would always be set to a point, straight
in front of the robot. Before the work presented in this thesis, adaptive kicks were
implemented, with the kick target set to the ball position and the kick time dynamically
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computed based on the now varying kick and a newly introduced velocity. The kick
time tkick for a kick target z⃗ and velocity v is

tkick =
|z⃗|
v
. (4)

So rather than having a fixed kick time, we can just focus on the desired velocity.
All of this is then formed into a step buffer element and added to the cognition step
buffer. Following this, the step buffer gets executed, which leads to the creation of a
motion request. This marks the end of both the configuration phase and the cognition
part of the kicking process.

2.2.3 Execution Phase

Note: This phase will not be covered as detailed as the previous two since it is not the
main focus of this thesis. For a more in depth explanation, please refer to the 2019
Berlin United Team Report [17], especially Chapter 6: Motion Control.

The execution phase starts with the reception of a motion request. The footStepPlanner
module will then examine whether the requested step is a walkStep, zeroStep or a
kickStep. Walk steps are just what the name suggests, zero steps, steps without any
movement, to keep the robot stable and kick steps are the ones we are interested in.
Further, in the same module, a walk request is created [1, 17]. In the walk request,
we can choose from two interfaces: standard and step control. Step control is an
extension to standard that allows us to further specify a step by selecting a foot to
use and influencing the step’s trajectory by e.g., setting the executions time [17]. The
walk request is then added to the motion step buffer. From here on, the trajectory is
computed, the hip motion planned and the zero moment point calculated [17]. Finally,
the inverse kinematics are computed and the actuators controlled accordingly, which
leads to the robot executing the kick.

2.2.4 Ballistic Phase

The ballistic phase starts once the kick is executed and the ball has left the robot’s
foot. The robot has no further control over the ball’s trajectory and everything that
happens now fully depends on the three previous phases. In this phase, the robot
should keep track of the ball’s position and move to a sensible, strategic position, to
either intercept the ball or prepare for the next kick.

10



3 Parameterless Kicking

Our kicks rely on a set of externally defined parameters. This results in very limited
flexibility and adaptivity, e.g., not allowing us to easily switch the KickType. This
section’s goal is to first evaluate how different parameters modify the resulting kick
and then to either dynamically chose them, pass them through in the step buffer or to
bundle all relevant parameter sets as kick actions, allowing for an easy switch at runtime.
A good example for this is the kick height. It is first introduced in the trajectory
computing part of the kicking process, i.e., execution phase. Since variations in kick
height are interesting for the kick planning, this should be set in the PathPlanner

module, such as the other variables of the configuration phase. As part of a step buffer
element, this could be specified for different situations, much more conveniently and
then simply being passed through to motion.

To explore the impact of different parameters on the robot’s kicking performance, we
conduct a number of testing series, with the goal to determine what parameter sets
yield the best results in terms of kick distance and accuracy. The baseline for this work
is the kick configuration used for the velocity study (Section 3.3), with a velocity of
0.45m s−1.

3.1 Dynamic ZMP-Offset

One of the many parameters we manually have to set, when making changes on the
kick is the Zero Moment Point (ZMP) kick offset. The ZMP kick offset indicates,
how the robot’s ZMP changes on the y-axis, while executing the kick and therefore
compensates for the foot being lifted during the kick motion, to ensure the robot’s
balance. A pilot study revealed, that the ZMP kick offset highly relies on the kick time,
while the influence of kick height or length are negligible. Bearing in mind that we
use dynamically calculated kick times, it is easy to see why a fixed ZMP kick offset
would be suboptimal. In another pilot study, we evaluated the best performing ZMP
kick offset, for different, fixed kick times, ranging from 300 to 900ms, in increments of
50ms. For this we used ZMP kick offsets between −5 and −20mm, in steps of 5mm.

To qualify the kick’s stability, we use the following classifiers:

Stable The robot remains stable throughout the entire kick motion.

Unstable The robot does not fall, but struggles to keep its balance.

Fall The robot falls while executing the kick motion.

For each combination of kick time and ZMP kick offset, we test as follows: If the
robot falls, it is immediately classified as Fall. If the first kick is stable or unstable,
we conduct two more kicks to evaluate the consistency. Based on these results, shown
in Figure 5a, we can now derive a dynamic ZMP kick offset. For this, we expand the
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(b) Implementation of the dynamic ZMP kick
offset, based on experimental data. The
red reference points are defined by us and
the blue line shows, what ZMP kick offset
is assigned for a given kick time.

Figure 5: Results of the ZMP kick offset pilot study showcasing the robot’s stability
for kicks with different kick times. From this, we can derive the reference
points and implement the dynamic ZMP kick offset.

existing KickType module with a set of reference points, i.e., pairs of kick time with
the corresponding, best performing ZMP offset. The dynamic ZMP kick offset with
reference points and the effectively assigned offset value for a given kick time, based
on our experimental data, can be seen in Figure 5b. Furthermore, we implement a
function that chooses the reference point with the smallest difference in kick time and
returns the corresponding ZMP offset. This dynamic ZMP kick offset will be used in
all further experiments.

In the experiments, described in this work, the experimentally determined dynamic
ZMP kick offset, has worked consistently on all used robots, however, this should be
validated in future work. Further research needs to also show how suitable these values
are for other kick types and varying undergrounds.

3.2 Methodology

This section outlines the methodology employed to investigate the robot’s kicking
behavior, detailing the experimental setup and the procedures used for evaluation.
Furthermore, we will introduce important terminology and discuss the limitations of
our work.
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(a) Raw view of the top down camera after a
kick.

(b) Cropped, undistorted and automatically
annotated image.

Figure 6: Process of capturing the kick’s result using a top down camera. The ball
end position gets automatically annotated and converted into real world
coordinates, to calculate the kick distance and angle.

3.2.1 Experiment Setup

The experiments were carried out in our RoboCup lab, on a 4.35m × 6.80m soccer
field. At the start of each test, the robot was placed at the center of one sides penalty
area, facing the opposing goal. The ball was placed on the penalty mark, requiring the
robot to take a couple of steps before kicking it. The robot would then walk straight
towards the ball, and execute a kick, aiming for the opposing goal. To validate the
results, a camera was installed on the ceiling, to work as an optical measuring system.
Furthermore, a program was developed, which would capture a picture of the entire
field, once the ball came to a halt. Using the circle Hough Transform, the program
would automatically determine the ball’s position, convert it to real world coordinates
and then use these to calculate the distance and angle of the kick (as seen in Figure 6).

Most other papers, describing similar experiments, usually aim to eliminate as much
uncertainty as possible, by letting the robot kick out of the stand, with the ball being
placed at a fixed position, directly in front of it [18, 23,25]. The choice of including a
short approach to the ball, might therefore seem unorthodox and counterintuitive. This
is why we, when first evaluating the kick performance in the preceded study project [7],
went with the more conventional approach of letting the robot kick the ball out of
the stand. However, we found that the results were not very representative of a real
game situation, where the robot would almost always approach the ball before kicking
it. The uncertainty of the robot’s exact kicking position, as well as the momentum
the robot builds up while approaching the ball, both have a significant impact on
the resulting kick. Since our aim is to optimize the kick for real, dynamic and also
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uncertain game situations, not an artificial lab setting, we will include this uncertainty
in our experiments.

3.2.2 Terminology

In order to better understand experiment’s results and execution, we will introduce
some important terminology. For this, we will differentiate between input and output
variables.

Input Variables

Kick Target A point in the robot’s local coordinate system, for which the kick is
aimed at.

Ball Distance The distance between the robot and where the robot perceives the
center of the ball, in mm.

Kick Time The time it takes to execute the kick, in ms. Either a fixed time, or
dynamically calculated based on the kick target and velocity.

Kick Velocity The velocity at which the ball is kicked, in m s−1. This is used to
dynamically calculate the kick time.

Kick Length The one-way travel distance of the robot’s kicking foot, in mm.

Kick Height The maximum height of the kick, in mm.

Adaptive Kick For an adaptive kick, the ball position is set as kick target. Otherwise,
the kick target is set to a fixed point in the robot’s local coordinate system.

Output Variables

Kick Distance The travel distance of the ball, in cm.

Kick Angle The angle of the ball’s travel direction.

3.2.3 Evaluation of the Results

As part of an experiment’s evaluation and analysis, we will frequently encounter tables,
such as Table 3. These are to be understood as follows:

The tables aim to rate kick distance, angle and consistency in range. They feature
a number of statistical measures, such as mean, standard deviation, minimum and
maximum value of the absolute kick distance, as well as the mean absolute angle. To
compare the different test sets, we compute a score. For this, we perform a min-max
normalization on every column, assigning the best sample in this column a score of 1
and the worst a score of 0. Depending on the feature, a higher or lower value is better,
e.g. a higher mean kick distance is better, while a lower standard deviation is more
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Figure 7: The difference in kick distance for different velocities, used to dynamically
compute the kick time.

desirable. The samples in between are assigned a score in the range of 0 to 1, based on
their distance to the best and worst value. Finally, we compute the average score for
each sample, to get an overall rating. This is then multiplied by 100, for more intuitive
understanding.

3.2.4 Limitations and Scientific Value

It was taken care to ensure the highest possible objectivity and comparability in the
experiments. However, there are some factors one cannot control. While moving,
the robot’s joints will warm up. For kick motions this is especially important for
the robot’s knees. The joints temperature was closely monitored and cool down
breaks included in the experiments, to ensure the robot’s joints were always within
a reasonable temperature range. Despite this, small variations in temperature could
still have an effect on the kick’s performance we were not able to control or measure.
Since the experiments for this thesis were conducted during the summer months, the
room temperature was also higher than usual, which might impact the robot’s motion
performance. Moreover, due to robots being absent for competitions or simply broken,
unfortunately it was not possible to conduct all experiments with the same robot.

3.3 Velocity

The first series of tests aimed to determine the best performing kick velocity, as well as
to evaluate how the kick distance and angle are affected by different velocities. We
conduct six sets of tests, starting with a kick velocity of 0.6m s−1, going down to
0.35m s−1, with a step size of 0.05m s−1. For each set, we collect 10 samples.
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Velocity Absolute Distance (cm) Angle (°) Score
Mean σ Min Max Mean

0.6m s−1 179.06 51.0 120.76 311.75 7.32 12.86
0.55m s−1 208.5 33.55 160.13 268.81 6.0 32.46
0.5m s−1 262.76 50.18 192.89 344.37 15.02 67.5
0.45m s−1 260.02 36.61 216.63 316.25 13.06 75.66
0.4m s−1 281.04 33.28 233.36 355.06 15.1 100.0
0.35m s−1 229.58 43.29 159.27 290.23 14.19 48.42

Table 1: Kick performance comparison by velocity.
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Figure 8: The impact of how high the robot lifts its foot while kicking, on the kick
distance.

In Figure 7 and Table 1, we can see a clear performance peak between 0.5m s−1 and
0.4m s−1. For its highest mean and maximum kick distance, as well as the low variance
in range, we select 0.4m s−1 as kick velocity for the further experiments.

3.4 Kick Height

Since a good velocity was found, we continue the experiments by examining the kick
height. We conduct nine sets of tests, starting with a kick height of 15mm, going all
the way up to 55mm, in increments of 5mm. For each set, we collect 10 samples.

In Figure 8, we can observe two interesting results. First, we can see a performance
peak between 35 and 45mm. The collected kick distances with a kick height of 35
and 40mm have a very similar distribution but quite different medians. Since the
distances achieved with a kick height of 35mm have the highest mean, we select it as
the kick height for the further experiments. But now for the second interesting result:
The kick distance, achieved with a kick height of just 15mm has are relatively low
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Height Absolute Distance (cm) Angle (°) Score
Mean σ Min Max Mean

15mm 198.24 24.35 162.61 248.86 12.49 42.23
20mm 265.13 82.97 141.79 381.48 14.53 50.48
25mm 270.16 60.61 191.84 376.36 13.45 61.55
30mm 299.91 52.29 201.0 374.81 11.03 63.06
35mm 343.2 43.47 263.66 409.78 13.8 91.35
40mm 332.94 42.62 254.52 411.51 13.97 89.76
45mm 328.71 61.89 222.46 397.74 6.91 58.4
50mm 294.96 50.26 202.41 376.55 9.98 60.7
55mm 197.28 75.86 102.53 339.97 7.96 16.38

Table 2: Kick performance comparison by used kick height.

distance, with a mean of just under two meters, but also a remarkably low deviation,
compared to the other tests. This makes the kick height of 15mm a good candidate
for a short, but very stable kick.

3.5 Kick Length and Adaptivity

Having found a good kick velocity and height, these parameters were evaluated in a
test game. In this less controlled environment, we noticed that sometimes the robot
would kick with a larger distance to the ball than set by the approach offset. This
is, amongst other things, caused by the dynamic and uncertain nature of the soccer
game. A ball that is still slightly moving while approaching, or after having reached
the target, can result in these longer than planned kicks. During these situations, the
robot would oftentimes struggle to keep its balance and sometimes fall, even with the
dynamic ZMP kick offset. Moreover, these long and slow kicks, did not result in a good
kick distance if the robot managed to reach and move the ball at all. To eliminate this
issue, we make some adjustments to the kick length. As mentioned in Section 2, our
robots usually kick adaptively, which means that the kick target is set to the ball’s
position. This allows the robot to adapt to the ball on both the x and y-axis, rather
than just kicking straight forward, or to the ever-same point. To combat the balance
issue, we try a mixed approach. The robot adaptively kicks towards the ball, but with
a normalized kick vector scaled to a fixed length of 200mm. This way, while kicking,
the robot could keep some of its adaptability without engaging in too long kicks. Also,
we assessed non-adaptive kicks to see whether adaptive kicking is really beneficial. So,
we conduct two sets of pilot tests, one with adaptive kicks and one with non-adaptive
kicks, both using a set kick length of 200mm. For each set, we collect 10 samples.

The results of these pilot tests in Figure 9a, show that adaptive kicks in our sample set
have a slightly lower median but also a much lower variance in kick distance, which
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(a) Results for a sample set of n = 10 each.
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(b) Results for a sample set of n = 40 each.

Figure 9: Kick Distance for adaptive and non-adaptive kicks with a fixed length. Adap-
tive kicking refers to kicking towards the ball, while non adaptive kicks, kick
straight forward. In both cases a fixed kick length of 200mm is used.

seems to make adaptive kicking the much better choice. Evaluating adaptive kicks with
a fixed kick length in a test game, we observed that both falling and low performing
kicks, caused by a too high ball distance were no longer an issue. To verify the results
of our pilot test, we increase the sample size by 30.

Reviewing this larger data set, shown in Figure 9b, we can see a now similar performance
in terms of kick distance for both adaptive and non-adaptive kicks. However, the
adaptive kicks have a slightly higher median (341.78 cm, compared to 327.69 cm) and
a lower, empirical standard deviation (σ = 75.12 cm, compared to σ = 87.93 cm).
Therefore, we will not continue with the non-adaptive kick for further experiments.

Since all future experiments will use adaptive kicks, we will not mention the kick’s
adaptivity anymore. All further kicks not explicitly labeled as non-adaptive, can be
assumed to be adaptive.

3.6 Kick Target Selection

Deeper analysis of the collected data revealed something interesting. Kicks, for which
the ball position exceeded the 200mm of the normalized kick length, had a significantly
higher kick distance than kicks with the ball within the 200mm. By just focusing on
the difference d between the ball position and the kick length (d = |⃗b| − 200 (mm)) and
comparing this to the kick position, we can see a strong trend: In Figure 10a, the red
squares represent kicks, for which the ball was within the 200mm of the kick length
(i.e., with a difference of d ≤ 0mm), while the blue dots represent kicks, for which the
ball position exceeded the kick length (i.e., with a difference of d > 0mm). Drawing
a line at a kick distance of 310 cm emphasizes the difference. This line separates the
samples into two groups, with 88% of the blue samples above and 80% of the red
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(a) Kick distance vs. difference between the
kick target and ball distance. Red squares
showing kicks with a negative, blue circles,
kicks with a positive difference.
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(b) Visualization of a positive difference be-
tween kick target and ball position.

Figure 10: Visualization of the difference between the kick target and ball distance
and its effect on the kick distance. A negative difference implies that the
robot’s foot surpassed the ball center during the kick. Analogous, a positive
difference, as visualized in Figure 10b, indicates the foot not reaching the
ball center.

samples below it. This leads to a key takeaway: The kick target should not exceed
the ball’s position. A fixed kick length is beneficial for the robot’s stability, but not in
terms of kick distance.

To overcome this issue, we try a hybrid approach. We keep the adaptive kick, but
cap the kick length to a maximum of 200mm. This means, if the ball is closer than
200mm in the ball’s direction.

Examining the results, especially the lower performing kicks for which the ball was
within 200mm, we can see that going from exceeding, to matching the ball position,
was not enough to produce desirable results. Figure 11a even suggests a slightly worse
performance for the capped length kicks although this could be due to the relatively
small sample size. Figure 11b underlines the similarities. This calls for a different
approach and a further going analysis of our so far collected data. Revisiting our fixed
length experiments in Figure 10a, we can identify three interesting points on the x-axis,
at 10, 20 and 30mm, visualized in Figure 12. At these points, the kick distance seems
to change its behavior:

10mm At a ball distance, exceeding the kick target by 10mm, a noticeable shift in kick
distance occurs, accompanied by a substantial reduction in variance. Samples
between 10mm and 20mm behind the kick target have a standard deviation of
just 13.51 cm with a mean of 345.8 cm, whereas samples between 0 and 10mm
have a standard deviation of 51.06 cm with a mean of 322.42 cm.
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Figure 11: Comparison of fixed (blue circles) and capped (red squares) kick lengths.
Both kicks have a maximum length of 200mm, with the capped kicks,
reaching to the ball center for smaller distances.
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Figure 12: Interesting points in kick distance. The vertical lines indicate trend changes
in absolute kick distance, with percentages showing what portion of good
performing kicks is on the line’s right hand side.

20mm At a ball distance, exceeding the kick target by 20mm, we can see a clear trend
towards the 400 cm mark. Also, right around this point of 20mm, we can see a
shift in the kick distance. The standard deviation in the section between 20 and
30mm is similarly low, with 11.47 cm with a mean of 401.8 cm, showing a clear
leap in kick distance.

30mm At a ball distance, exceeding the kick target by 30mm, we can see a stagnation
in the kick distance. Kicks with a difference of 30mm or more have a standard
deviation of just 6.4 cm with a mean of 405.59 cm.

In Figure 12, these three points are marked and feature a percentage value, indicating
how many of the good performing kicks (i.e., kicks with a kick distance of more than
310 cm) are on the right hand side of the respective point. In other words, how many
of the good performing kicks have a ball distance exceeding the kick target by at least
n mm, with n being 10, 20 or 30mm. This leads to the assumption that kicks where
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the kick target is offset in such a way, that the ball distance exceeds the kick target
by 10 to 30mm, could solve our problem. In Figure 12, kicks executed with a ball
distance, exceeding the kick target by at least 10mm had the highest share of good
performing kicks. Therefore, it is likely to find a descending trend in range, with an
increasing offset. To test our assumption, we implement a Kick Target Offset (KTO),
that allows us to offset the kick target by a set value, while still keeping the original
direction towards the ball. We retain the cap on the kick length at 200mm, as this
has been shown to improve both the robot’s stability and the achieved kick distance.
Therefore, the kick target is computed as follows:

1. The kick target k⃗ for a relative ball position b⃗ is computed as

k⃗ =
b⃗

|⃗b|
· (|⃗b|+ n), (5)

with n being the selected KTO.

2. If |⃗k| > 200mm, we set

k⃗ =
b⃗

|⃗b|
· 200 (mm), (6)

to cap the kick length at 200mm.

We conduct a series of tests with KTO values of −10mm, −20mm, −30mm and
−50mm.

Length Type Absolute Distance ( cm) Angle (°) Score
Mean σ Min Max Mean

Fixed 323.95 75.13 145.29 417.19 14.51 61.34
Capped 310.76 83.34 144.86 423.91 11.6 50.3
KTO, -50 mm 257.3 92.27 94.88 362.29 6.82 2.3
KTO, -30 mm 300.28 99.4 112.89 435.59 10.88 40.98
KTO, -20 mm 339.95 69.39 175.5 412.13 11.05 59.17
KTO, -10 mm 358.13 37.33 284.49 403.14 7.91 73.98

Table 3: Kick performance comparison by length type.

In Figure 13 and Table 3, we can see the results of these tests, compared to the previous
fixed and capped length (i.e., 0mm KTO) kicks. It shows that our assumption was
correct. Kicks with a KTO of −10mm perform best, while the performance decreases
with a larger offset.

Comparing the best performing −10mm KTO kicks to our previously examined fixed
length kicks in Figure 14, reveals what we have been aiming for. The −10mm KTO
kicks outperform the fixed length kicks in the low ball distance range. To put a number
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Figure 13: Comparison of different kick length types. With the fixed and capped length
kicks as reference. The capped length configuration is equivalent to kicks
with a KTO of 0mm.
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Figure 14: Comparison of fixed length and −10mm KTO. We can see that the −10mm
KTO configuration yielded better results for kicks with smaller ball distance
while keeping the good performance for balls further away.

on it, 83.33% of the −10mm KTO kicks ended up above the previously used threshold
of 310 cm, while only 62.5% of the fixed length kicks did so.

3.7 Ball Distance

In the previous experiments, we have focused on the configuration phase. In this phase,
we have to deal with whatever the alignment phase has set us up with. We cannot
impact the robot’s position, relative to the ball, or its orientation in the field anymore.
This calls for an adaptive kicking ability, inclusive to a range of ball distances, as we
have discussed. While exploring this, we have seen that the kick distance is directly
related to the ball distance, but we are yet to evaluate the impact of different ball
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Kick Distance Comparison by Ball Approach Distance

Figure 15: The impact of the robot’s approach distance (see Equation (1)) on the
resulting kick.

distances on the overall performance of the kick. To dive deeper into this, we first need
to understand how the target distance is determined, while approaching the ball.

As defined before (see Section 2), we have a 2D vector b⃗ representing the ball’s position

in the robot’s local coordinate system, the approach offset o⃗, the allowed deviation d⃗
and the target position z⃗. Our default values, which were used in the experiments so
far, are o⃗ = (120, 0), d⃗ = (50, 30) and z1 = b1 − r − o1, for a ball with radius r and
z2 = b2 − o2. As soon as z1 < d1 and |z2| < d2, the robot will execute the kick. In
simpler terms, offset o⃗ is how we influence the robot’s distance to the ball, while the
deviation d⃗ is the precision with which the robot has to approach a target position z⃗.

To gain a better understanding of how different ball distances a ffect the kick performance
we conduct a series of tests, with o1 ∈ {100, 110, ..., 170}, and an allowed deviation of

d⃗ = (10, 30). This results in an allowed ball distance of 160 to 230mm on the x-axis.
The results of this test series are portrayed in Figure 15 and Table 4.

Approach Distance Absolute Distance (cm) Angle (°) Score
Mean σ Min Max Mean

100mm 217.41 39.84 120.57 272.93 6.51 14.51
110mm 208.1 40.88 161.57 318.54 7.31 27.3
120mm 257.6 57.38 175.15 356.42 6.74 35.28
130mm 303.8 48.99 204.96 377.81 9.6 62.8
140mm 304.87 61.46 160.38 387.94 13.1 56.22
150mm 287.41 27.1 245.74 340.66 12.7 77.89
160mm 302.94 58.41 165.65 396.06 12.28 58.37
170mm 263.15 56.65 190.99 364.03 18.3 60.23

Table 4: Kick performance comparison by approach distance.
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3.8 Kick Actions

As a great finale to this and prelude to the next chapter, we will now bring all of our
previous insights together and implement them as kick actions. This time, we will
focus purely on the configuration and execution phase, but we will revisit and amend
information, necessary for the alignment phase and the predictive action model, i.e.,
the whole influenceable kicking process. We first need to decide, what to feature in our
preliminary kick action and what not. Since it did not prove to be beneficial, we will
not include an option for non-adaptive kicks. Experimental options that we did not
find to be an improvement, such as fixed kick lengths, will not be included either.

Preliminary KickAction module:

Mandatory:

• Kick Type

• Kick Velocity

• Kick Height

Optional: (if not specified, the default values will be used)

• Max Kick Length

• Kick Target Offset

• Ideal Ball Distance

3.9 Summary

With the improvement oriented studies presented in this section, we were able to
increase the robot’s kicking performance by 37.98%, or 98.76 cm in absolute kick
distance, compared to the baseline configuration. The best results were achieved with
a KTO of −10mm. Despite the advance in performance, the standard deviation in
distance remained almost the same (σold = 36.61 cm, σnew = 37.33 cm). The difference
between these two kick configurations, as well as their distribution and mean value on
the field, can be seen in Figure 16.
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Figure 16: Comparison of the best performing kick configuration in this thesis (blue
circles), with the one used before (orange squares). The mean kick is
indicated by a black marker of the respective shape.
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4 Target Prediction and Simulation Correction

The first thing we do when we are at a competition, is to calibrate the robots camera,
so it can see well in the new lighting condition and orient itself on the field. Our
forward simulation based kick action selection, however, relies on values that were
once determined experimentally, not taking into account changes in the kick motion or
variations in the field’s carpet. This can lead to the robot having no idea how far the
ball will travel, causing too short or too long kicks, sending the ball out of bounds or
missing the goal. This section is built around three main questions:

1. How can the robot autonomously adjust its action prediction model (APM)?

2. How can the APM be improved in accuracy?

3. How can we decide when to end the approach and execute a kick?

To commence with the experiments in this section, we first need to collect a data set to
work with. For this, we can reuse our existing test setup, as described in Section 3.2.1,
with the addition of the robot measuring the kick distance itself. In order to get a
good coverage of the approach positions, we will randomly select the approach offset
using Mersenne-Twister [12]. At the start of each test, the robot therefore randomly
select an approach offset to the ball in the range of [100mm, 180mm] on the x and
[−10mm, 10mm] on the y-axis. In addition to the generally collected data, such as
kick time and target, we will also log the robot’s perceived ball position, as well as the
robot’s position and orientation on the field. With this setup, we will conduct a total
of 100 kicks to collect data for our further experiments.

For the robot to autonomously adjust its APM, we will examine the reliability of the
robots ball model to be able to verify whether an executed kick belongs to the APM’s
distribution. As a way to improve the APM’s accuracy, we will investigate the influence
of different ball positions on the resulting kick, to evaluate whether this should be
included in the APM. In order to decide when to kick, we will introduce a time-based
and a probabilistic approach.

4.1 Integration of Kicking in Decision Making

In the first sections of this thesis, we have taken the robot’s decision to kick the ball
for granted. To change this and prepare for this section, we will now assess, how the
kick behavior primitive is integrated in the robot’s decision making process.

If a robot perceives itself as striker, it will walk towards the ball, oriented according to
the attack direction [16,21]. The attack direction works as a guideline and provides a
strategically valuable kick direction for every possible ball position on the field. This is
implemented as a vector field, visualized in Figure 17a. While approaching the ball,
the robot constantly runs a forward simulation, predicting a set of 30 possible ball
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(a) The attack direction vector field. (b) Action simulation with the best action.

Figure 17: Process of finding the best action. The vector field in Figure 17a, provides
a strategically valuable orientation fo every possible ball position on the
field. The forward simulation in Figure 17b, predicts 30 different outcomes
for a kick action (shown as blue, red and pink dots), evaluating the possible
yield of the current orientation.

positions after being kicked from this direction for all, available kick actions, as seen
in Figure 17b. The simulation relies on a friction model and predicts the ball’s end
position, based on the experimentally determined average ball speed and angle, and
their respective standard deviation, for each kick action. For a set of experimentally
determined kick distances d = {d1, ..., dn} (in mm), friction coefficients c and gravity
g (in mms−2), we can calculate the average ball speed vball (in mms−1) after being
kicked as follows:

vball =

√︂
2 · c · g · d̄, where d̄ =

1

n
·

n∑︂
k=1

dk is the sample mean. (7)

Prior to this thesis, kick actions were rather a concept than an actual object; a set of
four different kicks with semi hardcoded simulation parameters for each action. Out of
the four available, we only use forwardKick.short. This is i.a., due to the missing
implementation of side kicks. Therefore, currently our decision making will only decide
whether to kick or not, rather than which kick action to use.

Having this particle cloud of possible ball positions, the robot can now evaluate the
situation and make a decision when to start the approach. In Figure 17b, we can see in
the visualization that the simulated balls can have one of three different characteristics,
displayed as colors: red being an illegal or bad ball position such as a ball leaving
the field or an own goal, blue being a legal infield position and pink being in the
opponent’s goal. Based on this information, the robot can now decide whether the
current orientation is good and what kick action to use. To achieve this, the Berlin
United codebase [1] contains a function called decide smart(), that works as follows:
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1. If one or more simulated balls are in the own goal, this action will be ignored.

2. The robot will then calculate a probability score s to evaluate the situation:

s = P(ball infield) + P(ball in opp. goal) (8)

3. If s ≥ 0.85, this action is considered acceptable and will be pushed back for further
evaluation.

4. If only one acceptable action is found, the robot will return this as the best action.
If none is found, the robot will continue turning around the ball.

5. If multiple acceptable actions are found, we will look for goal actions. A goal
action is every action with P(ball in opp. goal) ≥ 0.3, i.e., more than 30% of the
simulated balls in the opponent’s goal.

6. If a goal action with a higher probability to score is found, the previously selected
action will be overwritten. Hence, at every point we will only have one goal
action at most.

7. If only one goal action is found, this will be returned as the best action. If none is
found, we will select one of the acceptable actions, based on their strategic value.

4.2 Autonomous Simulation Adjustment

Adjusting the APM autonomously requires a few preparations. First, the robot needs
to be able to qualify its own kicks. In Section 3, we have established distance, angle
and deviation as the main quality metrics of a kick. The deviation is highly dependent
on the sample size, but measuring the distance and angle of just a few kicks can already
give a good indication about the accuracy of the APM’s distribution. To realize this,
we need an online kick distance measurement, that allows the robot to measure the
distance and angle of its own kicks without the need for external hardware. The results
of this measurement can then be used verify or disprove and in that case adjust the
distribution, the APM is based on.

4.2.1 Online Kick Distance Measurement

Luckily for us, the robot already possesses a ball model that estimates the ball’s position
relative to itself based on the perceived size of the ball [14]. To utilize this model for
measuring the distance of a kick, we need to determine a kick’s start and end. Deciding
on the ball’s start position is trivial since we already do this for every kick when setting
the kick target (see Section 3.5). The easiest way for getting the ball’s end position
and therefore deciding when it has come to a rest, would be to manually send a signal
to the robot, once we notice that the ball has stopped moving. Having the robot do
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Figure 18: Noise in the ball model’s velocity estimation on the robot’s x-axis, at a
distance of 1m, with the ball at rest.

this autonomously, however, would be more elegant and less prone to human error.
Letting the robot wait for a fixed amount of time after the kick, before assessing the
ball’s position, would be a simple solution, but also not be very robust, since this
could either cause premature measurements, for longer or unnecessary waiting time
for shorter kicks. Hence, we will combine this with a velocity check. Thankfully, the
ball model already estimates the ball’s speed as well. Since most kicks will mainly
travel on the robot’s x-axis, we only check the ball’s velocity in this direction. The
perceived ball model has a certain amount of noise, which causes a standard deviation
of 31.51mms−1 in the velocity estimation on the x-axis, when the ball is at rest (see
Figure 18). Therefore, we will use a threshold of 100mms−1 to determine whether the
ball is still moving or has come to a halt. To avoid premature measurements and allow
for uncertainty, caused to the robot’s movement during the kick, we will only start
checking the ball’s velocity after 100 frames (≈3.3 s), following the kick’s execution.

Having collected the start and end position of the ball, we can easily compute the
kicked distance and angle. This way, we can take three different types of kick distance
measurements:

Local Kick Distance: As described above, we only use the ball position in the
robot’s local coordinate system, prior and after the kick, to determine the kick
distance. This does not take the robot’s movement during the kick into account.

Global Kick Distance: To get this, we also have to log the robot’s perceived position
on the field, prior and after the kick. Having this, we can transform the local ball
positions into global coordinates and then determine the kick distance. This way,
we can take both movement and orientation changes of the robot into account.
However, flaws in the self-localization can lead to errors in measurement.
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Figure 19: Error comparison of the different online measurement methods, compared
to the external camera measurement.

Orientation-Corrected Kick Distance: This is a compromise between the two
previous methods. Here, we only take the robot’s orientation change into account,
but not its movement. This way, we can at least correct for the robot turning
during the kick, which could otherwise lead to a wrongly perceived kick angle.
While kicking, the robot’s orientation changes more than its position, so we can
account for the biggest error source, without being affected by self-localization
errors.

4.2.2 Reliability of the Online Measurement

To evaluate the reliability of the online kick distance measurement, we can compare it
our external camera measurement, which we consider to be the ground truth. Com-
paring all three methods to the external measurement (see Figure 19), we find that
the local measurement has the lowest error, with an mean absolute error (MAE)
of 39.15mm (compared to 47.22mm for global and 39.26mm for local, orientation
corrected measurement).

Up until now, the robot’s ball model was only used for navigating towards a ball further
away, or approaching closer ones with the intent to kick them. Both of these use cases
did not need a precise distance estimation for balls outside the robot’s near space. This
was also evident, in our experiments. When matching the online measured values to
their respective external counterparts, we observe a bias towards overestimating the
kick distance for balls being further away (see Figure 20). The mean online measured
distance exceeds the actual mean distance by 28.59 cm or 9.41%. Taking a closer look
at Figure 20a, we can see that up until a distance of just below 300 cm (marked by
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Figure 20: Local vs. external kick distance measurement. Sorted ascending by external
measurement. As we can see, the robot’s ball model provides accurate
measurements, for ball distances up to ∼2.7m, but tends to overestimate
the distance of balls further away.

a black, vertical line), the value set on the line’s left hand side has an MAE of just
9.11 cm, whereas the ones on the right has an MAE of 53.48 cm.

4.3 Refined Action Prediction

Currently, the APM predicts the outcome of a kick action, only from the mean ball
speed and angle, and their respective standard deviations (see Section 4.1). To decide
whether this is sufficient to reliably predict kick actions, we will assess the impact of how
the ball is positioned, relative to the kicking foot, on the performed kick. In Section 3.7,
we have already shown that anterior distance to the ball matters. Now, for determining
the effects on both axes, we will analyze the results of our most recent sample set, both
at its own and supplemented with the results from Section 3.7. Analyzing Figure 21,
we can see that the x-axis offset has the bigger impact on the kick distance, at least
for the recorded y-axis range. We also notice that, as expected, the ball travels further,
the greater the initial distance was, up until the robot can hardly or not at all reach
the ball.

The impact of the ball’s position on the robot’s y-axis, was assessed by Wege [23],
finding it to influence the mean kick distance substantially. However, the evaluated ball
positions, shown in their work (60-200mm, on the y-axis, relative to the supporting
foot), are much higher than what we have recorded during our experiments, with a
maximum distance of 32.09mm for regular approach settings and 41.00mm while using
randomized approach targets. This limits the meaningfulness of Wege’s finding for our
usual kick behavior primitive.
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Figure 21: Heatmaps showing the kick distances for different ball positions, right before
kicking the ball.

Nonetheless, we come to the conclusion that taking the ball position into consideration
for predicting kick actions, could increase the APM’s accuracy.

4.4 Prediction Based Kick Decision

As probabilistic way to decide on the best moment to kick, we will develop a new
predictive model, to constantly assess the current approach position. For this, we will
evaluate, how precise we can predict a kick from what the robot is aware of while
approaching the ball, using different machine learning methods. We aim to end the
approach and execute the kick, once the model has predicted the kick to be of strategic
value. This could be both, a threshold of minimum distance being surpassed or, the
ball being predicted to end up in a beneficial area, such as the opponent’s goal.

4.4.1 Kick Prediction

Features and Labels:
To predict the kick, we can make use of the following features:

• Ball Position

• Kick Target

• Kick Time

For the ball start position, we can use either local or global coordinates, both in
the coordination system of the robot’s hip (i.e., center) or its non kicking foot. All
coordinate features can be represented as vector v⃗ or scalar values v1, v2 or |v⃗|.
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As labels, we will use the kick distance and angle as measured by the external camera.
Due to its previously discussed bias and general lack of reliability, online measurement
has shown to underperform the external system for predicting the kick’s outcome, as
assessed in a pilot study. Since we cannot utilize the robot’s ball model to verify the
prediction in the highly uncertain environment of a soccer game, using the external
data is sufficient. To predict kicks, we will probe both, single features, as well as feature
sets. A pilot study, aiming to identify the most promising feature sets, revealed, that
pairing the positional features with the kick time, resulted in the highest prediction
accuracy.

Model Training and Evaluation:
To train and evaluate our prediction models, we will use a 4-fold cross validation, with
random shuffling of the previously mentioned 100 samples. Given our limited computa-
tional resources, the models need to be kept as lightweight as possible. Therefore, we
employ the following supervised learning approaches:

• Linear Regression

• k-nearest neighbor (k-NN)

• Multilayer perceptron (MLP)

We will evaluate the models with their MAE.

For k-NN we set k = 7 and use uniform weights, as this has worked best, in initial
tests. For the MLP, we use two layers with 16 and 5 neurons and ReLU as activation
function.

Preprocessing:
Due to their nature, some of the models are more sensitive to feature scaling than
others. Therefore, in addition to the raw features, we will also evaluate the models on
standardized and normalized features.

For this we will use the following methods:

Standard Scaling: For each feature xj , with values xij , mean µj and standard deviation
σj, we compute the standardized value zij as:

zij =
xij − µj

σj

(9)

With standard scaling applied, all features will have a mean of 0 and a variance
of 1.

Min-Max Normalization: For each feature xj, with values xij, minimum minj and
maximum maxj, we compute the normalized value nij as:

nij =
xij −minj

maxj −minj

(10)
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With min-max normalization applied, all features will be in the range of [0, 1].

Max-Abs Normalization: For each feature xj , with values xij and maximum absolute
value maxabsj = max(|maxj |, |minj |), we compute the normalized value aij as:

aij =
xij

maxabsj

(11)

With max-abs normalization applied, all features will be in the range of [-1, 1].

4.4.2 Evaluation

Best single features for predicting distance.

ML-approach Feature Normalization MAE

Linear Regression Kick Target Irrelevant 60.56 cm
k-NN Ball Position (Foot) None 57.56 cm
MLP Ball Position Max-Abs 56.28 cm

Best feature sets for predicting distance.

ML-approach Feature Set Normalization MAE

Linear Regression (Ball Position, Kick Time) Irrelevant 46.46 cm
k-NN (Ball Position, Kick Time) None 52.99 cm
MLP (Ball Position, Kick Time) Min-Max 47.17 cm

Best single features for predicting angle.

ML-approach Feature Normalization MAE

Linear Regression Kick Target Irrelevant 0.1388 (7.95◦)
k-NN Ball Position, y-axis Irrelevant 0.1412 (8.09◦)
MLP Ball Position, y-axis None 0.1396 (8.00◦)

Best feature sets for predicting angle.

ML-approach Feature Set Normalization MAE

Linear Regression (Ball Position, Kick Time) Irrelevant 0.1385 (7.94◦)
k-NN (Ball Position (Foot), Kick Time) Max 0.1443 (8.27◦)
MLP (Kick Target, Kick Time) Max 0.1421 (8.14◦)

Table 5: Overview of the best features and feature sets with respective learning methods,
labels and applied normalization.

In Table 5, we can see that from the three methods we tested, linear regression has the
lowest MAE, in predicting both distance and angle. Comparing the predicted kick
distances to the actual measurements and examining the error of the single predictions,
as visualized in Figure 22, we can see frequent, substantial deviation from the actual
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Figure 22: Measured kick distances vs. predictions using linear regression with the best
performing feature set from Table 5. Sorted ascending by measurement.
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high angle and will likely miss the goal.
The robot will continue with the approach
and not yet execute a kick.
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Figure 23: Predicted kicks, based on different ball positions and their potential of
scoring a goal.
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measurements, with 21.88% of the prediction errors being greater than the MAE.
Future experimentation, aimed to increase the sample size needs to reveal whether
a more accurate predictions can be achieved, or if the randomness and uncertainty
produced by the friction and unevenness of the underground has a too high impact on
the kick’s outcome.

Even though, our predicted values are not as precise, as we would wish them to be, we
can still use them to simulate the functionality of the prediction based kick decision
and perspectively implement it on the robot. In Figure 23, we can see two examples,
In which the current distance to the ball is used to predict how far the it would travel,
if the approach was ended and the kick executed from this very position.

4.5 Time-Based Kick Decision

As time-based option to decide, when to execute a kick, we will introduce a novel
approach, which we will refer to as Progressive Deviation Control (PDC).

4.5.1 Motivation

As mentioned before, for every kick approach, we set an allowed deviation d⃗ from the
target position z⃗. To demonstrate this, we let the robot approach and kick the ball
with the current default deviation of d⃗ = (50, 30) and then with a lower deviation of

just d⃗ = (10, 10). A lower deviation in the approach results in a lower deviation in kick
distance. Therefore, it seems reasonable to decrease the allowed deviation, to improve
the robot’s kicking. Here, we encounter a new metric to evaluate our kick performance:
time.

Figure 24, displays the results of these two approaches, both for the x and y axis.

The reader might notice that there is only a moment of kick for the high deviation
approach. This is neither neglect, nor a sign of no kick being executed, but rather
indicates the ridiculously long time it took to complete the kicking process. While
the low deviation approach took just 147 frames, or ∼4.9 seconds, the high deviation
approach took a staggering 1668 frames, or ∼55.8 seconds to complete. Yet, we can
observe something interesting with the low deviation approach: starting shortly after
frame 150 in Figure 24a, the robot has already reached the target position and spends
the remaining ∼50 seconds just treading in place, waiting for both dimensions to be
within the allowed deviation and also to be physically able to kick the ball.

So, due to the lower deviation, the robot has reached a much better position in just
around 5 more frames and therefore could have kicked the ball with a much higher
precision at almost the same time, but instead waited for its position to get even better.
This shows the limitations of the static threshold, the current approach is based on.
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Figure 24: Comparison of two approaches with a low and high allowed deviation.

To overcome this, we introduce PDC. The core idea of PDC is to start the kicking
approach with a very low allowed deviation, such as 10 mm, and then to progressively
increase the allowed deviation, as the robot approaches the ball. This way, the robot
aims for a low deviation to the target position and while doing so, the allowed deviation
is increased, so that the robot can kick the ball at a much earlier point in time, while
still being able to kick it with a high enough precision. In other words, we can decide
on how long the robot should take to approach the ball and with PDC it will achieve
the highest precision possible within this time frame.

For the lion’s share of a soccer game, time is one of the most crucial resources. Being
quick with kicking the ball is sometimes even more important than achieving great
distances or accuracy, because a too slow kicking process can result in not being able
to kick the ball at all. However, there are situations, where time is not an issue, such
as the kick off, free kicks or penalty kicks [3]. In these situations, the ball cannot be
kicked by the opponent, within a certain time frame at least, so the robot could take
its time to approach the ball and kick it with higher precision.

4.5.2 Functionality

For a PDC approach, we need a start and an end deviation D⃗start and D⃗end, as well as a
approach duration, specified by T⃗ start and T⃗ end. Furthermore, we need a function fk(t)
that interpolates the allowed deviation over time between our start and end values.
For the interpolation, we borrow the concept of easing functions [19] from computer
graphics. In computer graphics, easing functions are used to describe the character of
how an animation progresses over time. They are functions, defined on the interval
[0, 1], which take a value t ∈ [0, 1] and return a value fk(t) on the same interval. This
characteristic makes easing functions very suitable for our use case. We can utilize
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Figure 25: Overview of the used easing functions.

them to interpolate between D⃗start and D⃗end over the time span [T⃗ start, T⃗ end]. In the
following, we will take a closer look at six different easing functions.

Ease in Linear:
f(t)1 = t (12)

Ease In Exponential:

f(t)2 =

{︄
0 t = 0

210(t−1) 0 < t ≤ 1
(13)

Ease Out Exponential:

f(t)3 =

{︄
0 t = 0

2−10(t−1) 0 < t ≤ 1
(14)

Ease In Circular:
f(t)4 = 1−

√
1− t2 (15)

Ease Out Circular:
f(t)5 =

√︁
1− (t− 1)2 (16)

Ease In/Out Circular:

f(t)6 =

{︄
1−

√
1−t2

2
0 ≤ t < 0.5√

1−(−2x+2)2+1

2
0.5 ≤ t ≤ 1

(17)
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4.5.3 Implementation

To be able to use PDC in our kicking process, we first implement an approachCounter

τ that counts the frames, while the current path routine is FORWARDKICK. However, a
small movement of the ball, posterior to the approach start, an insufficiently planned
approach path or simply vision imparity can lead to the robot not ending up in the
desired position, relative to the ball, after the approach. In these cases, a new approach
would be initiated, which would reset τ and therefore restart the PDC process, causing
an unnecessarily long approach duration. To overcome this, we implement an allowed
time gap between two approaches, that does not cause τ to be reset but rather keeps
on counting during these gaps. For this, a small number of frames, such as 10, is
sufficient. In every frame of the kicking process, the current frame number is therefore
remembered, to identify a possible time gap to the next approach.

Next, we implement a function, to control the easing. This function takes in τ , the
selected easing style k, as well as Dstart

i ,Dend
i and T start

i , T end
i .

If τ is less than T start
i , or greater than T end

i , the function returns the start or end
deviation, respectively. Otherwise, it calculates t, by normalizing τ to the interval [0, 1]
with respect to T start

i and T end
i :

t =
τ − T start

i

T end
i − T start

i

(18)

Our newly computed t is then passed to the selected easing function fk(t) which returns

a value in the interval [0, 1]. This is then back scaled to [D⃗start
i , D⃗end

i ] by:

fk(t) · (D⃗end
i − D⃗start

i ) + D⃗start
i (19)

PDC can be used either on both the x and y-axis, or just on one of them (most likely
the x-axis). To achieve this or even fully disable PDC, we can set the start and
end deviations to the same value, for one or both axes. Single axis PDC is a good
compromise between precision and speed, since the highest deviation from the target
position is usually on the x-axis.

4.5.4 Evaluation

We conduct a small pilot study to evaluate the performance of PDC with different
easing functions on the x-axis. Due to the nature of our StepBuffer (see Section 2.1.3),
the already buffered steps can cause a too long approach, even though the requirements
to kick, as defined in Section 2.2.1, are fulfilled. Therefore, we will consider the earliest
possible kick moment i.e., the moment, when all requirements are met, as qualifying
metric for comparing the different PDC easing functions. We can observe, that functions
with a slower growth seem to cause higher precision in approach than faster growing
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Figure 26: Comparison of PDC with different easing functions on the robot’s x-axis.

ones, such as exponential and circular ease out functions. The function, with the
highest precision and lowest needed time is ease in/out circular. Further research needs
to be conducted to verify the consistency and determine the best working values for
the different PDC easing functions.

4.6 Kick Action Extension

Based on the preparatory work in Section 3.8, we are now ready to bring together
the full kick action. For the integration in the action selection, we have two options:
we can keep the best action selection algorithm as is, or add the mean time it takes
to execute the respective kick action as final decider. This means, if more than one
possible goal action (see Section 4.1) exist, the robot would choose and execute the
fastest one.

41



Preliminary KickAction module, as introduced in Section 3.8:

Mandatory:

• Kick Type

• Kick Velocity

• Kick Height

Optional: (if not specified, the default values will be used)

• Max Kick Length

• Kick Target Offset

• Ideal Ball Distance

Additions to the KickAction module, resulting from this section:

Mandatory:

• Mean ball speed

• Standard deviation in speed

• Mean ball angle

• Standard deviation in angle

Optional: (if PDC should be used)

• PDC function

• Start and end deviation

• Start and end time

Optional: (if time is considered)

• Mean kick execution time
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5 Discussion and Outlook

The main focus of this thesis lied on studying robotic kicking, both as motion and
behavior primitive. To achieve this, we have given our selves two main objectives:
First, evaluating the different motion variables and their influence on the resulting kick,
optimizing the kick distance and preparing for hot-swappable kick actions. Second, to
explore possibilities to increase the accuracy of the predictive action model by evaluating
the robot’s ability to autonomously verify and adjust it, assessing the inclusion of the
spacial context and investigating ways to decide, when to end the approach and execute
a kick.

With the experiment-driven optimizations, described in Section 3 and introduced
techniques, such as the kick target offset, we were able to increase the mean absolute
kicking distance, by 37.98%, or 98.76 cm, compared to the baseline, i.e., the con-
figuration used prior to this work, while keeping the standard deviation nearly the
same (σold = 36.61 cm, σnew = 37.33 cm). A comparison of the baseline and the best
performing configuration, with their respective means can be seen in Figure 16.

We also found that, while a kick height of 35mm produced the highest absolute kick
distance, balls kicked at a hight of just 15mm, had a short travel distance, with a mean
of just under two meters and a remarkably low standard deviation (σ = 24.35 cm),
making this a good choice for short and precise kicks.

When evaluating our kicking performance against the results, featured in Wege’s
bachelor thesis [23], we find that their highest performing kick configuration, yielded a
similar mean distance to our baseline configuration, but had a higher standard deviation
(σ ≈ 46 cm). Comparing our short and precise configuration with the most similar
one of theirs, in terms of kick distance, we can see a clear difference in the standard
deviation. While our kick comes with a standard deviation of σ = 24.35 cm, theirs is
noticeable higher with σ ≈ 42 cm.

In order to find possible ways to increase the accuracy of the predictive action model,
we started by evaluating the robot’s ability to autonomously verify and adjust it. For
this, we used the already existing ball model to implement the ability of recognizing
a completed kick, i.e., noticing that the ball has stopped rolling. This was done by
analyzing the noise in the perceived ball velocity and defining a threshold. We then
compared the robot’s measurements to a reliable external measuring system, assessing
the error in the robot’s perception. In our experiments, we found the ball model to be
accurate for distances up to ∼2.7m, but tended to overestimate the distance of balls
further away.

Evaluating the ball’s position in the robot’s coordinate system before a kick, we found
the x distance of the ball to have a high impact on the kick. The range y distances
resulting from the robot’s approach, showed to be too small to have a substantial
impact. Therefore, we concluded, that including the ball position into the predictive
action model, will most likely be beneficial for the model’s accuracy.
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To decide, when to end the approach and execute a kick, we proposed a probabilistic
and a time-based method. For the probabilistic method, we developed a new model to
predict a kick’s distance and angle from the robot’s current approach position. We
compared three supervised learning techniques, finding linear regression with a feature
set, consisting of the ball position and the dynamically computed kick time, to work
best for predicting both distance and angle. With our data set, we were able to predict
the kick distance with a mean absolute error of 46.46 cm. However, when assessing
the single predictions, we noticed errors beyond acceptable limits, with 21.88% of the
prediction errors being greater than the MAE.

As time-based method, we introduce a novel technique, that uses easing functions to
progressively increase the initially low, allowed deviation from the approach target,
with the goal to realize fast and precise approaches. For this, we compared six different
easing functions in a pilot study to asses their usability for this cause.

5.1 Future Work

The first step for improving the prediction based kick decision, would be increasing
the sample size and experimenting with deeper neural networks. Doing so, enables for
evaluation whether more accurate predictions are possible, or if the uncertainty, caused
by both the robot and the environment is too high. If a precise prediction of kick
distance and direction is not possible, it might be a good compromise to predict, if a
kick will surpass a chosen distance n. In a small pilot study, this classification approach
was attempted on our dataset, but did not yield any reliable results. If however, the
increase of the sample size leads to better predictions, it would be very interesting
to explore whether this can be reversed, to accurately predict the robots approach
target based on a desired end position of the ball. Achieving this, would enable the
implementation and utilization of a backwards simulation, allowing for very precise
kicks on the field. This was also attempted in a small pilot study, but again did not
produce good results. Another, very interesting, future task would be to refine the
algorithm, described by Equation (3), by using the kick prediction to choose the next
step target, based on its potential.

Also, the impact of the robot’s initial momentum, gained through the approach, on
the resulting kick needs to studied. Possible test scenarios for this could include, the
robot kicking the ball out of the stand, after approaching from different distances or
directions, as well as including short pauses or a turning motion, right before the kick.
While experimenting on the robot’s kick, the joint temperatures, especially those of
the knees were found to impact the kick performance, when getting too high. This
needs to be studied in depth in the future. Both, the joint temperatures and the
robot’s acceleration before kicking, could potentially be included as features for the
kick prediction. However, this would likely require, collecting a relatively large sample
set.
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Appendix

The NAO Robot

Dimensions

Hight × Depth × Width 573mm × 311mm × 275mm
Weight 5.4 kg

CPU

Model Intel Atom Z530
Architecture Silverthorne, x86
Clock Speed 1.6 GHz, 533 MHz FSB
Cores 1
Cache 512 kB

Memory

RAM 1 GB
External 2 GB (Flash), 8 GB (SDHC)

Actuators

Degrees of Freedom
(Joints)

25

LEDs
Sound 2 Speaker (Stereo), located on the sides of the head.

Sensors

Joint Position Sensors Hall effect sensors in each joint (25)
Cameras 2, 640 × 480, vertical arrangement with minimal

overlap
Microphones 4 microphones in trapezoid arrangement
Ultrasound
Inertia Sensors 3D Accelerometer, 3D Gyrometer

v
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