Berlin United - Nao Team Humboldt Team
Report 2015 - RC2

Heinrich Mellmann
Thomas Krause
Claas-Norman Ritter
Steffen Kaden
Tobias Hiibner
Benjamin Schlotter
Schahin Tofangchi

7th December 2015

Contents

1 Introduction

2 Architecture

2.1 NaoSMAL
2.2 Platform Interface.
2.3 Module framework
2.4 Serialization

3 Debugging and Tools

3.1 Concepts
3.2 RobotControl Dialogs
3.3 NaoSCP

4 Simulation

5 Visual Perception

5.1 HistogramProvider
5.2 SimpleFieldColorClassifier
5.3 ScanLineEdgelDetector
5.4 FieldDetector
5.5 LineGraphProvider
5.6 GoalFeatureDetector
5.7 GoalDetector
5.8 BallDetector
5.9 Green Detection [outlook] 000

6 Modeling

6.1 Probabilistic Compass
6.2 Multi-Hypothesis Goal Model (MHGM)
6.3 Internal Models for Action Selection.

CONTENTS

7 Motion Control
7.1 Walk

8 Behavior
8.1 Strategy
82 RoleChange
8.3 Voronoi Based Strategic Positioning

Chapter 1

Introduction

Our team is part of the multi-league joint research group Berlin United be-
tween the RoboCup research group of the Humboldt-Universitat zu Berlin
and the Freie Universitit Berlin (FUmanoids, KidSize League). The research
group NaoTH was founded at the end of 2007 and consists of students and
researchers at the Humboldt-Universitdat zu Berlin. The team is part of the
research lab for Adaptive Systems at Humboldt-Universitéit which is headed
by Prof. Verena Hafner. The team was established at and evolved from
the AI research lab headed by Prof. Hans-Dieter Burkhard, and is led by
Heinrich Mellmann and Marcus Scheunemann. At the current state the core
team consists of two PhD, four Master/Diploma, and six Bachelor students.
Additionally, we provide courses and seminars where the students solve tasks
related to RoboCup and other problems of Cognitive Robotics and Al.

The team currently consists of Heinrich Mellmann, Marcus Scheunemann,
Thomas Krause, Claas-Norman Ritter, Steffen Kaden, Peter Woltersdorf,
Tobias Hiibner, Benjamin Schlotter, Schahin Tofangchi, Maximilian Biele-
feld, Alexander Berndt, and Carolin Matthie.

We have a long tradition within the RoboCup by working for the Four Legged
League as a part of the GermanTeam in recent years, with which we won
the competition three times. We started working with Naos in May 2008
and achieved the 4th place at the competition in Suzhou in the same year.
In 2010, we simultaneously participated in the SPL and the 3D Simulation
League for the first time with the same code. In the 3D Simulation, we won
the German Open and the AutCup competitions and achieved the 2nd place
at the RoboCup World Championship 2010 in Singapore. In 2011, we won
the Iran Open competition in SPL and started a conjoint team Berlin United
with the FUmanoids from Berlin who participated in the KidSize League. In

CHAPTER 1. INTRODUCTION 4

the world cup 2012 in Mexico, we won the technical challenge with an ex-
tension for the SimSpark Simulator, used in the 3D Simulation League, to
get closer to achieve our long-term goal to narrowing the gap between the
simulation and real robots league.

With our efforts in these three leagues, we hope to foster the cooperation
between them and enhance results in all of those leagues with perspective
change. In cooperation with FUmanoids, we applied for a RoboCup project
to investigate a common communication protocol to hold matches with differ-
ent robot platforms and software in one team. Another RoboCup project of
ours dealt with the topic of an extension for SimSpark for SPL. We informed
about results of this extension during the symposium 2013 in Eindhoven. Our
general research fields include agent-oriented techniques and Machine Learn-
ing with applications in Cognitive Robotics. Currently, we mainly focus on
the following topics:

e Software architecture for autonomous agents (section 2)

e Narrowing the gap between simulated and real robots (section 4)
e Dynamic motion generation (section 7)

e World modeling (section 6)

The release of the NaoTH code base accompanying this report and the
according documentation can be found under the following links:

Documentation: https://github.com/BerlinUnited/NaoTHDoc/wiki

Code: https://github.com/BerlinUnited/NaoTH

https://github.com/BerlinUnited/NaoTHDoc/wiki
https://github.com/BerlinUnited/NaoTH

Chapter 2

Architecture

An appropriate architecture is the base of each successful software project. It
enables a group of developers to work at the same project and to organize the
solutions for their particular research questions. From this point of view, the
artificial intelligence and/or robotics related research projects are usually
more complicated than commercial product development, since the actual
result of the project is often not clear. Since we use this project also in
education, a clear organization of the software is necessary to achieve a fast
familiarization with the software. Our software architecture is organized
with the main focus on modularity, easy usage, transparency and convenient
testing capabilities.

In the following subsections we describe the design and the implemen-
tation of different parts of the architecture. A detailed description of the
principles we used can be also found in [10]

2.1 NaoSMAL

In our architecture we don’t use the NAOqi API directly but use our own so-
called NaoSMAL (Nao Shared Memory Abstraction Layer) NAOgi-module.
This calls the DCM API of NAOqi! and makes it accessible for other processes
via a shared memory interface. Thus we can implement our own code as
a complete separated executable that has no dependencies to the NAOqi
framework. The benefits are a safer operation of the Nao on code crashes
(NaoSMAL will continue to run and ensures the robot will go in a stable
position), faster redeploy of our binary without restarting NAOqi and a faster
compilation since we have lesser dependencies.

http://doc.aldebaran.com/1-14/naoqi/sensors/dcm-api.html

http://doc.aldebaran.com/1-14/naoqi/sensors/dcm-api.html

CHAPTER 2. ARCHITECTURE 6

Core ™ ;

©
Interface § = S
® Motion Request
Platform

Driver |] \ (| \

Figure 2.1: Platform Interface is responsible for data transferring and exe-
cution of the Cognition and Motion processes.

2.2 Platform Interface

In order to integrate different platforms, our project is divided into two parts:
a platform independent one and platform specific one. The platform specific
part contains code which is applied to the particular robot platform. We
support the Nao hardware platform, the SimSpark simulator? and a logfile
based simulator. While the platform specific part is a technical abstraction
layer the platform independent part is responsible for implementing the ac-
tual algorithms. Both parts are connected by the platform interface, which

transfers data between the platform independent and specific part (see Fig.
2.1).

2http://simspark.sourceforge.net/

http://simspark.sourceforge.net/

CHAPTER 2. ARCHITECTURE 7

f Module Manager (Cognition)

J

Blackboard

Image

ImageProcessor

Camera Matrix

BallPercept BallLocator

Platform Interface

BallModell ¥

T :
MotionRequesty:

BehaviorExecutor

e e

Figure 2.2: Overview about the different components of the module frame-
work.

2.3 Module framework

Our module framework is based on a blackboard architecture. The framework
consists of the following basic components:

Representation (objects carrying data and simple manipulation functions),
Blackboard (container storing representations as information units),

Module (executable unit, has access to the blackboard and can read and
write representations),

Module Manager (manage the execution of the modules).

Figure 2.1 describes the interaction between this components. A module
may require a representation, in this case it has a read-only access to it. A
module provides a representation, if it has a writing access. In our design we
consider only sequential execution of the modules, thus there is no handling

CHAPTER 2. ARCHITECTURE 8

for concurrent access to the blackboard necessary. We decide which repre-
sentation is required or provided due compilation time. Different modules
can implement similar functionality and provide the same representations.
You can configure which of the modules should be executed at runtime and
it is also possible to dynamically change this for debugging purposes.

2.3.1 Example module

A module is a C++ class which inherits a base class which is created with
the help of some macros defining the interface of the the module.

#ifndef _MyModule_H
#define _MyModule_H

#include <ModuleFramework/Module.h>
#include <Representations/DataA.h>
#include <Representations/DataB.h>

BEGIN_DECLARE_MODULE (MyModule)
REQUIRE (DataA)

PROVIDE (DataB)
END_DECLARE_MODULE (MyModule)

class MyModule: public MyModuleBase
{
public:

MyModule () ;

“MyModule () ;

virtual void execute();

};

#endif /* _MyModule_H */

Listing 2.1: MyModule.h

The MyModule class inherits the MyModuleBase class which was defined with
the BEGIN_DECLARE MODULE macro. Each representation which is needed by
the module is either declared as provided or required with the correspond-
ing macro. After declaring a representation it is accessible with a getter
function, which has the name of the representation prefixed with “get’, e.g.
getDataA () for the representation DataA. The actual implementation of the
functionality of a module must be in the execute() function.

#include

CHAPTER 2. ARCHITECTURE 9

MyModule :: MyModule ()
{

// initialize some stuff here

}

MyModule ::~MyModule ()
{

// clean some stuff here
}

void MyModule::execute ()
{
// do some stuff here
getDataB() .x = getDataA().y + 1;
}

Listing 2.2: MyModule.cpp

A representation can be any C++ class, it does not need to inherit any
special parent class.

class Datal

{
public:
DataA () {}

int y;
};

class DataB

{
public:
DataB () {}

int x;

};

Listing 2.3: DataA.h/DataB.h

A module must be registered in the cognition process by including it in
the file NaoTHSoccer/Source/Core/Cognition/Cognition. cpp.

#include

In the init method add the line:

REGISTER_MODULE (MyModule) ;

The order of registration defines the order of execution of the modules.

CHAPTER 2. ARCHITECTURE 10

2.4 Serialization

As described in the Section 2.3 the core of the program is structured in mod-
ules which are responsible for different tasks like image processing, world
modeling etc.. The modules communicate with each other through the black-
board by writing their results to representations. The representations are
mainly pieces of data and have no significant functionality. These represen-
tation can be made serializable, which is mainly used in two cases: logging
to a file and sending over the network for debug or monitoring reasons.

The backbone of the serialization framework is formed by the Google
Protocol Buffers® (protobuf) library. For a representation to be serialized
(which is described by a C++ class) an according protobuf message is de-
fined. Please refer to the documentation page of protobuf for more details on
this part. The serialization procedure is then performed in two steps: first
the data is copied from the object which is to be serialized to the according
message object; in the second step th message object is serialized by a proto-
buf serializer to a byte stream. The deserialization process works in reverse
order. The second step is entirely done by the protobuf library. The copy
procedure in the first step, however, has to be defined explicitly. This pro-
cedure is described in the serialize() and decerialize() functions of the
template class Serializer which has to be specified for each representation
to be serialized.

The following listings illustrate the whole code necessary for serialization
of a representation. Listing 2.4 shows the header file MyRepresentation.h
containing the declaration of the representation class DataA and the according
specialization of the serializer Serializer<DataA>. Listing 2.5 contains the
probobuf message for DataA. Listing 2.6 illustrates the implementation of the
serialization functions in the file MyRepresentation.cpp.

#include <Tools/DataStructures/Serializer.h>

class Datal

{

public:
DataA ()

y (0),
time (0.0)
{3

int y;
double time;

3https://developers.google.com/protocol-buffers

https://developers.google.com/protocol-buffers

CHAPTER 2. ARCHITECTURE

};

namespace naoth {
template <>
class Serializer<DatalA>

{
public:
static void serialize(const DataA& representation, std::
ostream& stream) ;
static void deserialize(std::istream& stream, DataA&
representation) ;
};
}

11

Listing 2.4: MyRepresentation.h

package mymessages;

message DataA {
required double time = 1;
required int32 y = 2;

}

Listing 2.5: messages.proto

#include
#include
#include <google/protobuf/io/zero_copy_stream_impl.h>

using namespace naoth;

void Serializer<DataA>::serialize(const DataA& data, std::

ostream& stream)
{
// create a mnew message
messages::DataA msg;

// copy data from the representation to the message
msg.set_y(data.y);
msg.set_time (data.time) ;

// serialize the message to stream
google::protobuf::io::0streamOutputStream buf (&stream);
msg.SerializeToZeroCopyStream (&buf) ;

CHAPTER 2. ARCHITECTURE

void Serializer<DataA>::deserialize(std::istream& stream,
DataA& data)
{
// create a new message
messages::DataA msg;

// decerialize the message from stream
google::protobuf::io::IstreamInputStream buf (&stream);
msg.ParseFromZeroCopyStream (&buf) ;

// copy data from the message to the data
data.y = msg.y(Q);
data.time = msg.time();

12

Listing 2.6: MyRepresentation.cpp

Chapter 3

Debugging and Tools

In order to develop a complex software for a mobile robot, we require means
for high-level debugging and monitoring (e.g., visualization of the robot’s
posture or its position on the field). Since we do not exactly know which
kind of algorithms will be debugged, there are two aspects of high impor-
tance: accessibility at runtime and flexibility. The accessibility of the debug
construct is realized based on our communication framework. Thus, they can
be accessed at runtime by using visualization software like RobotControl, as
shown in Figure 3.1).

3.1 Concepts

Some of the ideas were evolved from the GT-Architecture [12]. The following
list illustrates some of the debug concepts:

debug request (activates/deactivates code parts),

modify allows modification of a value (in particular local variables)
stopwatch measures the execution time

parameter list allows to monitor and modify lists of parameters

drawings allows visualization in 2D/3D; thereby it can be drawn into the
image or on the field (2D/3D)

plot allows visualization of values over time

As already mentioned, these concepts can be placed at any position in the
code and can be accessed at runtime. Similar to the module architecture,

13

CHAPTER 3. DEBUGGING AND TOOLS 14

the debug concepts are hidden by macros to allow simple usage and to be
able to deactivate the debug code at compilation time, if necessary.

In order to use a debug request in the code you have to register it once
with the DEBUG_REQUEST_REGISTER macro:

‘DEBUG_REQUEST_REGISTER(,

, true);
L I}

After that, you can use the DEBUG_REQUEST macro to wrap code that should
be only executed when the debug request is active.

DEBUG_REQUEST (s
std::cout << << std
::endl;
++cC;

)

MODIFY works in a similar way, but does not need any registration. By,
for example, wrapping a variable and defining an identifier, this variable can
be changed later from RobotControl.

double yaw = 0;
MODIFY (yyaw) ;

In addition to these means for individual debugging, there are some more
for general monitoring purposes: the whole content of the blackboard, the
dependencies between the modules and representations, and execution times
of each single module. The Figure 3.1 illustrates visualizations of the debug
concepts. In particular a field view, 3D view, behavior tree, plot and the
table of debug requests are shown.

3.2 RobotControl Dialogs

The various debugging possibilities are organized in different dialogs. The
following list consists of our most used RobotControl Dialogs.

CHAPTER 3. DEBUGGING AND TOOLS

15

#

Main Dialogs Help

RobotControl for Nao

IDViewer

E]@‘

- Field [] Image GetColorTable

Debug Request Center

“alue Plotter

Refresh

Behavior

_ [J only current Clear

- 3Dviewer -
#-[Attentionanalyzer |
#-[|BallLocator =
#-[calibrate

#-[]CameraMatrix
#-[DataPlot

#-[Debugserver
&[] GoalLocator
- [IHeadMotionEngin
m- K
#-IMCsL
&-[Motion
E

* x =I- M PlayersLocator

_ [] only options Send to Robot [| Set £
]

[Jdraw_closest_g
[ldraw_free_regi

Stopwatch Configt
Stopwatch Inversel?

|] Stopwatch Cogniti|-
|| Cognition-Time :
| | stopwatch Sensorn::
"] stopwatch Bodyst|
| | Stopwatch Came

Stopwatch Virtua =
BallLocator ~ hea

Recived KB/s: 44,48

Running Manage...

frame 210 |+ |Behavior

frame 211 [*3/5-sim_play_soccer [78676 ms] - play_soccer [7
= motion.type=motion.type. stand

:--head control_mode=head.control_mode smari
= motion.plan. avoid_obstacle=false
E}--sim_play_game_mode [78676 ms] - stand -
~head.smart_search.rate=0.1
~head.control_mode=head.control_maode.sr

- |wldraw_players_nf

~[draw_seen_pla
#-[]simSparkControlle
#-[ITeamBallLocator |
[]--I:l\ﬂr‘cuaMmonProce[
#-[IXABSL

s
NEE

i

10 (=4[

e

Parameters /

Representation Inspector f Modify;r

Behavior

Connected to localhost/127.0.0.1:5401

Figure 3.1:

The RobotControl program contains different dialogs.

The

3DViewer (top left) is used to visualize the current state of the robot; the
Value Plotter dialog (bottom left) plots some data; the Field Viewer dia-
log (top center) draws the field view; the Behavior dialog (bottom center)
shows the behavior tree; the Debug Request Center dialog (right) is for en-
abling/disabling debug requests.

Behavior Viewer

Main Dialogs Help

@ Behaviorviewer 3 =]
Receive| Receive Log (] only options Send to Robot | spl_soccer D]
102262 & [Behavir (spl_soccen)
102268 || ¥ spLplay_soccer 5806240 ms] - play_soccer (5606240 ms]
¥ basic_play (5806240 ms] - initiaize 5306240 ms]

Lz game.current_mode=0
102268 head control_mode=1
e motion type=1

arm.control_mode=0
102272 ¥ battery [5806240 ms] - low_warn [5806240 ms]
102274 set_lef_ear=0.0
B selright_ear=0.0

set_heade40
102278 setright_eye=2
102280 setleft_eye=0

play_soccer (5806240 ms] - idle (5306240 ms]

102282 v 1 (5806240 ms] - arms_normal (5806240 ms]
102284 5
102286 1 (5806240 ms] - stay_as_forced [5806240 ms]
B head moton_type=0

head camera.d=1
102289 StustionStatusOwnHalf=faise
102291
102293
102295
102297
102299
102301
10203)
102305 [v ——0s —

Running Manager | Received KBls: 20,05 Sent KBis: 032 Frames/s: 30,00 Connected o localnost/127.0.0.1:5401

Shows the behavior tree
for the current behavior.
The compiled XABSL
behavior needs to be
sent to the robot first
and then an agent can be
selected to be executed.
With ‘Add Watch’ you
can track XABSL input
and output symbols.

CHAPTER 3. DEBUGGING AND TOOLS

Debug Requests

Main_Dialogs Help

B o) (0 SR X)
Receive TeamComm Clean [SPL2013 |v] [-:] - (&)) Antiaiazing(] Collect(] Trage=—eOr| | Update Reload

> [3DViewer

» [ArtificialHorizonCalculator
» [AttentionAnalyzer

» [BogyContourProvider

» [ColorClassificationtodel
» (] DummyActiveGoalLocator
» [_J HeadMotionEngine

ibrator
» [J KalmanFilterBallLocator
» [J Linesymbols
> (4 LogProvider
» J mesL
» [Motion
» [J OdometrySymbols
» (] PerceptionsVisualization
» [Plot
» [PotentialFieldProvider
» (] TeamBallLocator
» [J TeamCommReceiver
» [J UitraSoundObstacleL ocator
» (m] vision
> (8 WholeGoalLocator
Y > [xaBsL

L’X : Hu-nug E

Field Viewer

Main_Dialogs Help

eldVie [2)=]
Receive TeamComm Clean SPL2013 |v) 2] p & [Antiaiazing(_J Collect[_] Trage=—e O

Running Manager | Received KB/s: 0,00

Image Viewer

640x480 14,7 fps

16

(De-)activates the debug
request code. Usually
a debug request draws
something on the field
viewer or on the cam-
era images. For further
information about indi-
vidual debug requests,
have a look at the source
code.

There are views for dif-
ferent field sizes and a
local view. Certain de-
bug requests draw on
these views. For exam-
ple, you could draw the
robots’ positions on the
field by activating the
corresponding debug re-
quest.

Can show the top and
bottom images. There
are debug requests that
draw on the camera im-
ages, if they are active.

CHAPTER 3. DEBUGGING AND TOOLS

Logtfile Recorder

Main Dialogs Help

ognitionLog

‘Temporary logfile path:

Ampicognition.log

Record (use CTRL-Click to select more than one):

]

ActionModel
ArtificialHorizon
ArtificialHorizonTop
AftentionModel
BaliModel
BallPercept
BallPerceptTop
BattenyData
BehaviorLEDRequest
BehaviorStateComplete
BehaviorStateSparse
BodyContour
BodyContourTop
BodyState

ButtonData
AuttonState

AccelerometerData
CameraMatrix
CameraMatrixTop
FSRData
Framelnfo
GyrometerData
Image

ImageTop
InetialModel
InettialSensorData
SensorJointData

G

Selecton Scheme:

- 9600.25

Frames/s: 30,00 ‘Connected to localhost/127.0.0.1:5401
Main Dialogs Help
ER E
Refresh
[Moty | Name | value |
O v (@ CollisionDetector
[allowedRobotDistance 03
¥ (& InertiaSensorCalibrator
inertialBiasMeasurementNoise x 0,01
inertialBiasMeasurementNoise.y 0,01
" inertialBiasProcessNoise x 005
inertialBiasProcessNoise.y 0,05
" imeFrame 1500

v (& InertiaSensorFiter

v (@ KalmanFilterBallLocator

OoO0000000000

v (& StrategySymbols
[groundLineDistance

aw

 validatePerceptWithhlodel 0
farUpdate 02
nearUpdate 05

)

500

Running Manager — | Received KB/s: 6,42 SentKBls: 0,22

Frames/s: 30,00

Connected to localhost127.0.0.1:5401

Module Configuration Viewer

Main Dialogs Help

@ ModuleConfigurationViewer 53

l LocalGoalModel J

EHo
Refresh Export [@l (Cognition |¥) ActveGoalLocator [#) Acceterometernata 2]
> @ cognit
BallModel v @ cognit
v @ mo
CompassDirection |
v @ moeli
> rer
Fieldinfo > @) goallocat
— () BodyStateProvider
Framelnfo » @ balllocat
NOE
> @ obstaclelocat

(J FieldCompass

RawAltackDirection (] PlayersLocator
MotionStatus
L PotentiatactionSimul|
(@) AttentionAnalyzer
Playerinfo ¥ soccerstrategyProviq
. (] PathPlanner
PlayersModel o coliisionDetector
> @ percept
» @ behaviorcontro
RobotPose >l e ent
SelfLocGoalModel
< al
Running Manager —| Recelved KBls: 960025 SentKBls: 029 Frames/s: 31,00 Connected o localhos/127.0.0.1:5401

17

Records a logfile with se-
lected data.

The Modify macro
allows changing values
of wvariables declared
within this macro at
runtime.

Shows which
ules are currently
(de-)activated. Also
indicates, which other
modules are required
(left) and provided
(right) by each module.

mod-

CHAPTER 3. DEBUGGING AND TOOLS

Parameter Panel

Main Dialogs Help

Modul

onfigurationViewer X

list | MaimumRedBaliDetectorParameters Get Set

ParameterPan

[2)=]

checkBallForGreen=0.9
gradientThreshold=20
maxBlueValue=60
maxRadiusinimage=60
maxRansacTries=100
maxRedValue=150
maxScanlineSteps=50
maxSizelnimage=130
maxU=128
meanThreshold=255

minRadiusinimage=3
minSizelnimage:
percentOfRadius=0.8
ransacPercentValid=0.1
stepSize=4.
ttMaxBlue=150
tMaxGreen=100
tiMinRed=100
ttUseBallColorPara=1

minPercentOfPointsUsed=0.6

Running Manager

Received KB/s: 9000,23

SentKBls: 0,27 Frames’s: 31,00

Plot 2D

Main Dialogs Help

Connected to localhost/127.0.0.1:5401

(] DebugRequests X (=}

Receive Datal Clear Clear Data (V)

x-axis if on static data regions Fitto Data [_] Show Grid

Update Reload

() Motion MotorJointData'k
) Motion:MotorJointData:

< J TV

| /,f\\ N

1070,08 1070,5621071,1041071,6161072.1281072,64 1073,1621073,6641074,1761074.088

Motion Motion: Headvaw K

» U GyrometerData

» [InettialsensorData

» [KinematicChain

v (W) MotorJointData
() HeadPitch

(J LankiePitch
O wankieRoll

[J LEIbowRoll
[LEbowYaw
(U HipPiteh

(O HipRoll

([LHipYawPitch
(J LKneePitch
() LShoulderPitch
(U LshoulderRoll
() RAnkiePitch
(J RankieRoll

U RElbowRoll
(U RElbowYaw
() RHipPitch

(J RHipRoll

(J RHipYawPitch
(J RKneePitch
(J RshoulderPitch

(J RshoulderRoll v

Running Manager - | Received KBls: 7802,09

SentKBls: 0,41 Frames/s: 30,00

Representation Inspector

Main Dialogs Help

@ Representationinspector 53

Refresh Binary | Cognition | ¥.

Connected to localhost/127.0.0.1:5401

B o

CalibrationData [4] (Camera selection: 1

Cameralnfo [| Opening Angle (calculated): 1.06259 rad, 0.83026 rad
(Optical Center (calculated): 320 Pixel, 240 Pixel

CameralnfoParameter Focal Length (calculated): 544 534 Pixel

CameralnfoTop Pixel Size: 0.0036 mm

CameraMatrix Focal Length: 1.37 mm

CameraMatrixBuffer Error to Center: 0 mm, 0 mm
Radial Symmetric Error: 0 mm, 0 mm, 0 mm

CamerallairiBuffer2 Radial Asymmetric and Tangential Eror. 0 mm, 0 mm

CameraMatrixOfiset Affinity and Shearing Error: 0 mm, 0 mm

CameraMatrixTop

CameraSettingsRequest

CameraSettingsRequestTop

CollisionModel

ColorChannelHistograms

ColorChannelHistogramsTop

ColorClassificationModel

ColorTabless

CompassDirection

CurrentCameraSettings

CurrentCameraSettingsTop

DebugMessagein

DebugMessageOut

FSRData

FieldColorPercept s

Running Manager | Received KBs: 900568 SentKBis: 097 Frames/s: 30,00

Connected to localhost/127.0.0.1:5401

18

Shows parameters de-
fined in our configura-
tion files. It is possible
to change the values at
runtime. The variables
must be registered as pa-
rameters in the code.

Shows plots activated by
plot debug requests.

Shows the data that is
written to the black-
board by each represen-
tation.

CHAPTER 3. DEBUGGING AND TOOLS 19

Stopwatch Viewer

T Shows the execution
(] StopwatchViewer X _ =) .
Show stopwatches’ Reset Soitby (Name v] (] modules only t]me fOr ea,ch mOdule

FieldCompass: 0,00 ms (avg: 0,00 max 0,00 min: 0,00)
PotentialFieldProvider: 0,04 ms (avg: 0,04 max 0,04 min: 0,04)
SeanLineEdgelDetector: 3,13 s (avg: 4,91 max 12,69 min: 1,94)
SuperBallDetector: 0,00 ms (avg: 0,00 max 0,00 min: 0,00)

LEDSetter: 0,01 ms (avg: 0,01 max 0,02 min: 0,00)
OpenCVGrayScalelmageProvider: 0,00 ms (avg: 0,00 max 0,00 min: 0,00)
FieldSymbols: 0,00 ms (avg: 0,00 max 0,00 min: 0,00)
SimpleFieldColorClassifier.Cr_filtering: 0,01 ms (avg: 0,01 max 0,02 min: 0,01)
Siifip|eFieldColorClassifier GridWalk: 1,22 ms (avg: 1,36 max 2.83 min: 1,17)
CognitionExecute: 29,48 ms (avg: 29,14 max 46,63 min: 20,78)

Debug: 0,00 ms (avg: 0,00 max 0,01 min: 0,00)

lActuator: 0,02 ms (avg: 0,02 max 0,05 min: 0,01)

GameSymbols: 0,00 ms (avg: 0,00 max 0,00 min: 0,00)

StrategySymbols: 0,01 ms (avg: 0,01 max 0,03 min: 0,00)
LineClusterProvider: 0,00 ms (avg: 0,00 max 0,00 min: 0,00)
[TeamCommSender: 0,00 ms (avg: 0,01 max 0,05 min: 0,00)
NeoLineDetector: 0,00 ms (avg: 0,00 max 0,00 min: 0,00)

Séndimage: 0,79 ms (avg: 0,79 max 0,79 min: 0.79)

MathSymbols: 0,00 ms (avg: 0,00 max 0,00 min: 0,00)

HeadMotionEngine: 0,00 ms (avg: 0,00 max 0,01 min: 0,00)

Initiallotion: 0,00 ms (avg: 0,00 max 0,00 min: 0,00)]

XABSLBehaviorControlfilBehaviorStatusSparse: 0,34 ms (avg: 0,37 max: 0,73 min: 0,31)
ActiveGoalLocator: 0,00 ms (avg: 0,00 max 0,00 min: 0,00)

GPS_SelfLocator: 0,00 ms (avg: 0,00 max: 0,00 min: 0,00)

SiipleFieldColorClassifier: 2,72 ms (avg: 3,02 max 6,30 min: 2,64)

KeyFrameMotion: 0,00 ms (avg: 0,00 max 0,00 min: 0.00) L]
wam: 30| ms sum: 54,16 ms
Running Manager - | Received KBIs: 844554 SentKBls: 0,45 Frames/s: 30,00 Connected o localhost/127.0.0.1:5401

3.3 NaoSCP

NaoSCP is a setup and deployment tool. It has primarily three tasks: (1)
initialize a new robot, e.g., copy libraries and scripts, (2) set the network
configuration and (3) deploy naoth binary and configurations to the robot.
All these tasks can be easily done on a command line as well, the main aim
for designing NaoSCP were simplification of the deployment process, ensured
backup of deployed binaries and reduction of the chance of mistakes during
setup in critical situations, e.g., before a game at the world championship.

3.3.1 Deployment Procedure

The deployment procedure is divided in two phases: in the first phase a
deployment directory is assembled containing all files and configurations to
be deployed as well as a deployment shell script; in the second phase this
package is copied to the robot and the deployment script is executed. Using
the Write to Stick button the deployment directory can be written to a target
path, e.g., a USB stick, or sent directly to the robot via scp using the Send to
Robot button. When a USB stick with a deployment directory is connected
to the robot, it is mounted automatically and the setup script is executed.
The begin and end of the deployment procedure are indicated by according
sounds. This way is preferred when deploying software on several robots,
e.g., setting up a team before a game.

CHAPTER 3. DEBUGGING AND TOOLS

[CUPY walerasecLimgs.cog o [4]
copy CameraSettingsTop.cfg o
copy GoalFeatureParameters.cfg

copy NewGoalDetectorParameters.cfg

copy SimpleFieldColorClassifierParameters.cfg
copy TeamSymbols.cfg

copy BallDetectorParameters.cfg

copy CameraSettings.cig

Network
LAN: WLAN
SubMet |192155 13| | SubNet 10.0.4
Metmask 255.255.255.0 Netmask 255.255.255.0
Broadcast 192.168.13.255 Broadcast | 10.0.4.255
copy FieldInfo.cfg
SSID NAOMET () WEP (®) WPAPSK
WLAN Key a1b0a1b0al
NaoTH

D:\RoboCup'repo\naoth15.gitNaoTHSoccer

Scheme: Lma

=
— — [— Refresh
| ¥ | TeamMr. 4 TeamComm: 10004

Caolor: red

(/] copyNaoTH(exe) (] copyConfig || copylibNaoSMAL

copy CameraSettingsTop.cfg

copy GoalDetectorVZParameters.cfg
copy GoalFeatureVZParameters.cfg
copy IKParameters.cfg

copy PotentialBActionParameters.cfg
copy ScanlineParameters.cig

copy SimpleFieldColorClassifierParameters.cfg
copy BallDetectorParameters.cfg
copy CameraSettings.cfg

copy CemeraSettingsTop.cfg

copy FieldInfo.cfg

copy GoalDetectorV2Parameters.cfg
copy GoalFeatureV2Parameters.cfig
copy IKParameters.cfg

copy PotentialActionParameters.cfg

copy ScanLineParameters.cfg

Nao5862: 5 MaoB022: 2 Nao6026: 3 copy SimpleFieldColorClassifierParameters.cig i
. . . copy scheme.cfg
copy scheme.cfg
Nao6029: 6 Nao6035: 4 Nao6043: 1 copy startBrainwashing.sh

DONE
A

| Wiite toStick || Set Network || _Initialize Robot || [

82 l Send toRobot J testgame

Figure 3.2: NaoSCP user interface. The log panel on the right display status
of the deployment process. The left side contains the panels for the config-
uration of the deployment / setup process: Network configures the network
setup; NaoTH is used to adjust the configuration relevant for the deployed
binary, e.g., player numbers. The buttons in the left bottom tool bar trigger
particular deployment and setup actions like writing the network configura-
tion the the robot or copying a new binary to a deployment USB stick.

3.3.2 Usage Remarks

The following describes the particular components of the NaoSCP user in-
terface as illustrated in the Figure 3.2.

Log Window (right) gives prints information regarding the progress of the
deployment process, e.g., copied files, connection errors and such.

Network configuration (top left) is used to setup the LAN and WLAN;

NaoTH dialog (left) configures the deployment of the game binary and
contains such things like the path to the source where the binaries can
be found, used configuration scheme scheme and player numbers for
each robot based on their serial number;

Action toolbar (bottom left) contains the buttons for the four different
deployment / setup actions: Send to Robot deploy the complied code

CHAPTER 3. DEBUGGING AND TOOLS 21

and configuration to a particular robot via network. The text field
left of the button defines the last byte of the ip address of the target
robot. The network configuration from the dialog Network is used to
determine the complete address. In this particular example the LAN
target address would be 192.168.13.82. Thereby LAN is tried first and
in case of failure WLAN is tried; Write to stick writes the deployment
directory to a USB stick. If the stick already contains a deployment
directory, a backup version of it is created. The text field left to the
button hold an optional tag, which is used to organize the backups
on th stick; Set Network configures the robots network according the
the settings in the dialog Network; Initialize Robot will initialize a new
robot, e.g., after a factory reset. This action will copy additional libs,
configure the NaoQi modules, necessary starting scripts for binaries
and for automatic mounting and running of USB sticks. Additionally
the network is configured and the binary is deployed like previously
described;

Chapter 4

Simulation

As a common experience, there are big gaps between simulation and reality
in robotics, especially with regards to basic physics with consequences for low
level skills in motion and perception. There are some researchers who have
already tried to narrow this gap, but there are only few successful results so
far. We investigate the relationships and possibilities for methods and code
transferring. Consequences can lead to better simulation tools, especially in
the 3D Simulation League. At the moment, we use the SimSpark simulator
from the 3D Simulation League with the common core of our program, see
Figure 4.1. As already stated, therewith, we want to foster the cooperation
between the two leagues and to improve both of them.

When compared to real Nao robots, some devices are missing in the
SimSpark, as LEDs and sound speakers. On one hand, we extended the
standard version of SimSpark by adding missing devices like camera, ac-
celerometer, to simulate the real robot. On the other hand, we can use a
virtual vision sensor which is used in 3D simulation league instead of our

‘(]st half) PlayOn t=1.60
— —

Figure 4.1: NAO robots run in Standard Platform League(left) and 3D Sim-
ulation League(right).

22

CHAPTER 4. SIMULATION 23

image processing module. This allows us to perform isolated experiments on
low level (e.g., image processing) and also on high level (e.g., team behav-
ior). Also we developed a common architecture [10], and published a simple
framework allowing for an easy start in the Simulation 3D league.

Our plan is to analyze data from sensors/actuators in simulation and from
real robots at first and then to apply machine learning methods to improve
the available model or build a good implicit model from the data of real
robot. Particularly, we plan to:

e improve the simulated model of the robot in SimSpark,

e publish the architecture and a version of SimSpark which can be used
for simulation in SPL,

e transfer results from simulation to the real robot (e.g., team behavior,
navigation with potential field).

So far, we have developed walking gaits through evolutionary techniques
in a simulated environment [6, 5]. Reinforcement Learning was used for the
development of dribbling skills in the 2D simulation [14], while Case Based
Reasoning was used for strategic behavior [4, 2]. BDI-techniques have been
investigated for behavior control, e.g., in [1, 3].

Chapter 5

Visual Perception

In order to realize a complex and successful cooperative behavior it is neces-
sary to have a appropriate model of the surrounding world. Thus, one of the
main focuses of our current research is the improvement of the perceptional
abilities of the robot and its capabilities to build a world model.

Actually we do not use fixed color class based methods and color tables
anymore. The main tasks of our vision system is detecting the field (including
field borders), the field lines, the ball and the goal. Others, like a visual robots
detection are not implemented yet. We detect the objects in a specific order,
which makes some computations easier for each following object detector.
First, we compute some statistical informations for each color channel and
use this to classify the fields color. This approach is based on ideas from [11].
After that, we use this to validate, that the goal posts are grounded in the
field, that lines are within the field, that a ball must be within the field and
to calculate the field borders.

24

CHAPTER 5. VISUAL PERCEPTION 25

5.1 HistogramProvider

This module scans the top and bottom image, to calculate the statistics for
each color channel. Since we use the YUV color space, this module calculates
three histograms for the top and three for the bottom image. To calculate
the histograms only every 6th pixel is used. In other words, the histogram is
taken from an subsampled image, which is six times smaller. This does not
change much for the distribution information of colors of the original image.
The statistics are similar except for a small error.

5.2 SimpleFieldColorClassifier

In this module we estimate the field color as a cubic area in the YUV color
space. For this we use statistical information of the distribution of gray level
values, of each color channel. The basic assumption is, that in a robot soccer
environment both (bottom and top) images are mostly covered by the field.
In [11] this is the main assumption too.

Figure 5.1: The color of the field, which is covering most of the image pixels
(left), is estimated by using statistics (right).

Since this algorithm of [11] has some problems, we modified it to cover our
needs. Our approach is slightly different. We do not correct vignetting. We
use statistical information of more than one succeeding frame. As first step
we constrain the brightness. And we use only every 6th pixel to calculate
the color channel statistics. One disadvantage is, that we sometimes have to
tune the parameters to get good results, but the classification algorithm is
still able to adapt to changing conditions.

CHAPTER 5. VISUAL PERCEPTION 26

5.3 ScanLineEdgelDetector

Figure 5.2: With top to down scanlines [green lines| the edges of possible
field lines [black lines| including their orientation are detected (left) and the
last field colored points are assumed as endpoints of the field [green circles]
(right).

With this module we detect field line border points and estimate some points
of the field border. To do this, we use scanlines, but only vertical ones. Along
every scanline jumps are detected in the Y channel, using a 1D-Prewitt-Filter.
A point of the field lines border is located at the maximum of the response of
that filter. We estimate with two 3x3-Sobel-Filters (horizontal and vertical)
the orientation of the line. With the result of the field color classification we
detect along every scanline a point, which marks the border of the field.

CHAPTER 5. VISUAL PERCEPTION 27

5.4 FieldDetector

With the field border points, estimated with the ScanLineEdgelDetector, we
calculate for each image a polygon, which is representing the border of the
field in the image.

Figure 5.3: The endpoints provided by the ScanLineFEdgelDetector (left) are
used to calculate the field border (right).

5.5 LineGraphProvider

This module clusters neighbouring line border points, detected by ScanLi-
neEdgelDetector.

CHAPTER 5. VISUAL PERCEPTION 28

5.6 GoalFeatureDetector

This module is the fist step of the goal post detection procedure. To detect
the goal posts we scan along the horizontal scan lines parallel to the artificial
horizon estimated in ArtificialHorizonProvider. Similar to the detection of
the field line described in Section 5.3 we detect edgels characterized by the
jumps in the pixel brightness. These edgels are combined pairwise to goal
features, which are essentially horizontal line segments with rising and falling
brightness at the end points. Figure 5.4 illustrates the scan lines as well as
detected edgels (left) and resulting goal post features (right).

Figure 5.4: The scan lines [grey lines| above and below the estimated horizon
are used to detect the goal post border points and the orientation of the
corresponding edges [colored and black segments| (left). The results are
features of possible goal posts [blue line segments with red dots] (right).

CHAPTER 5. VISUAL PERCEPTION 29

5.7 GoalDetector

The GoalDetector clusters the features found by the GoalFeatureDetector.
The main idea here is, that features, which represent a goal post, must be
located underneath of each other. We begin with the scan line with the lowest
y coordinate and go through all detected features. Than the features of the
next scan lines (next higher y coordinate) are checked against these features.
Features of all scan lines, which are located underneath of each other, are
collected into one cluster. Fach of this clusters represents a possible goal
post.

1-_ l—-'l

u |L'

=

Figure 5.5: Goal features detected as described in 5.6 are clustered to form
candidates for the goal posts (left). These candidates are evaluated regarding
expected dimensions as well as their relation to the field. The candidates
fulfilling all necessary criteria are selected as goal post percepts (right green
boxes).

From the features of a cluster, the orientation of the possible goal post
is estimated and used to scan up and down along the estimated goal post.
This is done to find the foot and the top point of that goal post. A goal post
is seen as valid, if its foot point is inside of the field polygon as described
in the Section 5.4. Using the kinematic chain the foot point is projected
into the relative coordinates of the robot. Based on this estimated position
the expected dimensions of the post are projected back into the image. To
be accepted as a goal post percept a candidate cluster has to satisfy those
dimensions, i.e., the deviation should not exceed certain thresholds. The
Figure 5.5 illustrates the clustering step and the evaluation of the candidate
clusters. Although there seem to be a considerable amount of false features,
both posts of the goal are detected correctly.

CHAPTER 5. VISUAL PERCEPTION 30

5.8 BallDetector

This module scans all pixels in the image, which are covered by the field.

Figure 5.6: Scan lines are starting from the most red point found by the
BallDetector (left) and the ball shape is estimated using the border pixels
(right) found at the scan lines.

The pixel with the most red appearance is taken as a possible central
point inside the ball. This pixel must be more red than any field colored
pixel. Fight scan lines, beginning in this pixel and directing in eight different
directions, are used the find border pixels of the assumed ball. The eight scan
directions cover equally distributed 360 degrees. The resulting border pixels
are used to estimate a circle, which represents the estimated ball shape in
the image. This estimated ball shape in the image is projected to the ground
and checked for its size.

5.9 Green Detection [outlook]

This section describes a new approach to classify the field color which has
not been used at the RoboCup 2015.! This constitutes the fist step in the
attempt for a automatic field color detection. Thereby we analyze the struc-
ture of the color space perceived by the robot NAO and propose a simple yet
powerful model for separation of the color regions, whereby green color is of
a particular interest.

To illustrate our findings we utilize a sequence of images from recorded
by a robot during the Iran Open 2015. Figure 5.7 (left) shows a represen-
tative image from this sequence. To analyze the coverage of the color space

'For the first time this approach has been presented in November 2015 at the RoOHOW
workshop in Hamburg.

CHAPTER 5. VISUAL PERCEPTION 31

we calculate two color histograms over the whole image sequence. In the
Figure 5.8 (left) you can see the uv-histogram, which is basically a projec-
tion of the yuv space onto the uv plane. The light green points indicate the
frequency of a particular uv-value (the brighter the more). One can clearly
recognize three different clusters: white and gray colors in the center; green
cluster oriented towards the origin; and a smaller cluster of blue pixels in the
direction of the u-axis which originate from the boundaries around the field.
For the second histogram we choose a projection plane along the y-axis and
orthogonal to the uv-plane which is illustrated in the Figure 5.8 (left) by the
red line. This plane is chosen in a way to illuminate the relation between
the gray cluster in the center and the green cluster. Figure 5.8 (middle) il-
lustrates the resulting histogram. Here we clearly see the gray and the green
cluster.

Figure 5.7: (left) Example image from the Iran Open 2015. (right) Pixels
classified as green are marked green; pixels with too low chroma marked red;

From these two histograms we can make following observations: all colors
seem to be concentrically organized around the central brightness axis , i.e.,
gray axis (128,128, y), which corresponds to the general definition of the yuv
space; the colors seem to be pressed closer to the gray axis the darker they
are. In particular all colors below a certain y-threshold seem to be collapsed
to the gray axis. So we can safely claim that for a pixel (y, u,v) always holds
y = 0= u,v=128. On the contrary the spectrum of colors gets wider with
the rising brightness. Speculatively one could think that the actual space
of available colors is a hsi-cone fitted into the yuv-cube. The collapse of
the colors towards the gray axis might be explained by an underlying noise
reduction procedure of the camera.

Based on these observations we can divide the classification in two steps:
(1) separate the pixels which do not carry enough color information, i.e., these

CHAPTER 5. VISUAL PERCEPTION 32

which are too close to the gray axis. Figure 5.8 (middle) illustrates a simple
segmentation of the gray pixels with a cone around the center axis illustrated
by the red lines; (2) classify the color in the projection onto the uv-plane.
Figure 5.8 (right) shows the uv-histogram without the gray pixels. Red lines
illustrate the separated uv-segment which is classified as green. This way we
ensure independence from brightness. The equation 5.3 illustrates the three
conditions necessary for a pixel (y,u,v) to be classified as green. The five
parameter are b, € [0,255] the back cut off threshold, b,,, by € [0, 128] with
by, < by the minimal and the maximal radius of the gray cone, and finally
U, apr € [—m, 7| defining the green segment in the uv-plane.

—-b
(w— 128)2 + (v — 128)? > max (b b + (bas — bin) - ;f%—_b) (5.1)

atan2(u — 128,v — 128) > a,, (5.2)
atan2(u — 128,v — 128) < ay (5.3)

’I

U chroma u

Figure 5.8: (left) UV-histogram for a log file taken at the Iran Open 2015.
Red line illustrates the projection plane along the green region for the Y-
Chroma histogram (middle); (middle) Y-Chroma-histogram along the pro-
jection plane illustrated in (left) figure. Red lines illustrate the gray-cone,
i.e., area with not enough color information to be classified as a particular
color; (right) UV-Histogram without pixel falling into the gray-cone as illus-
trated in the (middle) figure. Red lines illustrate the segment to be classified
as green.

The classification itself doesn’t require an explicit calculation of his-
tograms. At the current state it’s a static classification depending on five
parameters to define the separation regions for the gray and green colors.
These parameters can be easily adjusted by inspecting the histograms as

CHAPTER 5. VISUAL PERCEPTION 33

shown in the Figure 5.8 and have proven to be quite robust to local light
variation.

The structure of the color space depends of course largely on the adjust-
ments of the white balance. We suspect a deviation from a perfect white
balance adjustment results a tilt of the gray cluster towards blue region if
it’s to cool and towards red if it’s to warm. The tilt towards blue can be
seen in the Figure 5.8 (middle). This might be a queue for an automatic
white balance procedure which would ensure an optimal separation between
colored and gray pixels. The green region shifts around the center depending
on the general lighting conditions, color temperature of the carpet and of
course white balance. In the current example the green tends rather towards
the blue region. Tracking these shifts might be the way for a fully automatic
green color classifier which would be able to cover the variety of the shades
to enable a robot to play outside.

Chapter 6
Modeling

In order to realize a complex and successful cooperative behavior it is neces-
sary to have a appropriate model of the surrounding world. In our approach
we focus on local models of particular aspects of the environment. In this
section we present two local models: a compass and a goal model.

6.1 Probabilistic Compass

We estimate the orientation of the robot on the field based on the detected
line edgels utilizing the fact, that all field lines are either orthogonal or par-
allel to the field. Based on the orientations of the particular projected edgels
it is possible to estimate the rotation of the robot up to the 7 symmetry. We
calculate the kernel histogram over the orientations of the particular pro-
jected edgels, i.e., edgels in the local coordinates of the robot. To utilize the
symmetry of the lines we use sin as distance measure. Let (z;)" ; be the set
of edgel orientations. We calculate the likelihood S(x) for the robot rotation
x € [—m,m) as shown in the equation 6.1.

S(z) = gexp {—Sin?(z . (f) } (6.1)

o

This compass is calculated in each frame where enough edgels have been
detected. It has shown to be robust regarding outliers, e. g., when some edgels
are detected in a robot. It can be directly used to update the likelihood of
particles in the self locator. Figure 6.1 shows a set of edgels detected in a
particular frame on the left side. On the right side the according histogram
is plotted.

34

CHAPTER 6. MODELING 35

Figure 6.1: Left figure visualizes the edgel graph in local coordinates of the
robot in a particular frame. Right illustrates the kernel histogram over the
orientations of edgels shown left, calculated with formula 6.1.

6.2 Multi-Hypothesis Goal Model (MHGM)

In this section we describe a multi-hypothesis approach for modeling a soccer
goal within the RoboCup context. The whole goal is rarely observed and we
assume the image processing to detect separate goal posts. So we represent
the goal by its corresponding posts. To reduce complexity of the shape of
uncertainty we model the separate goal posts in local robot coordinates. The
ambiguous goal posts are tracked by a multi-hypothesis particle filter. The
actual goal model is extracted from the set of post hypotheses.

The joint uncertainty can be subdivided in noise, false detections and
ambiguity. Each of this components is treated separately in our approach.
The multi-hypothesis filter has to take care of noise and false detections, but
it does not resolve the ambiguity of the goal posts. Instead, all occurring
goal posts are represented by corresponding hypotheses and the ambiguity is
solved on the next level when the goal model is extracted. Particle filters are
great in filtering noise and are shown to be very effective for object tracking.
To deal with sparse false positives we introduce a delayed initialization proce-
dure. We assume a false positive to result in an inconsistency, i.e., it cannot
be confirmed by any existing goal post hypothesis. In this case the percept
is stored in a short time buffer for later consideration. This buffer is checked
for clusters, in case a significant cluster of goal post percepts accumulated
during a short period of time, a new hypothesis is initialized based on this
cluster. The dense false detections result in post hypotheses, which is later
ignored while extracting the goal.

CHAPTER 6. MODELING 36

More detailed description of the algorithm as well as the experimental
results can be found in [13].

f.o
£

Figure 6.2: The left figure illustrates the experiment setup. The robot faces
the goal and an additional goal post is placed to its right side. From the
object recognition perspective, this post is identically to the real goal posts.
The figure in the center visualizes all percepts collected during the course of
the experiment. The full circles illustrate perceived goal posts, whereby their
color indicates the classification by the MHGM: red - left post, blue - right
post, gray - unknown post, black - none (percept buffer). The circles with
holes stand for artificially generated sparse false positive perceptions. The
right figure illustrates a snapshot of the state modeled by the MHGM at the
end of the experiment. Drawn are the particle filter representing the goal
posts with corresponding deviations as well as the extracted goal model.
Similar to the figure in the center, the colors of the particles indicate the
classification of the hypotheses.

6.3 Internal Models for Action Selection

The robot is capable of different kicks and should given a particular situation,
e.g., the robot’s position, the position of the ball and obstacles, determine
which kick is the optimal kick to perform in this situation. A naive geomet-
ric solution which selects a kick based on the robot’s direction towards the
opponent goal does not account for uncertainty of the actual execution of the
kick. Furthermore the distance of the kick is not considered in this approach.
An improved kick selection algorithm was developed which is based on a for-
ward simulation of the actions. Thereby each possible kick is simulated and
the best kick is chosen based on the outcome, i.e., the position of the ball
after the kick. Uncertainty and additional constraints can be integrated in a
straight forward way.

CHAPTER 6. MODELING 37

O

Figure 6.3: Distance d as defined by the velocity and friction parameters.
Angle o from walking direction. Standard deviations for velocity and angle.
This example shows a sidekick.

6.3.1 Definition of an Action

An Action is a set of parameters which describe a probability distribution
of the possible ball location after the execution of a kick. Currently there
are 4 kicks, two forward kicks and two sidekicks as well as the special case
turn around the ball. The probability distribution is modelled as a gaussian
distribution. The parameters which describe the distribution for one action
are velocity, angle and their standard deviations.

6.3.2 Determine the parameters

To calculate the initial velocity of a kick the distance the ball rolled after a
kick was measured in an experiment. By using the stopping distance formula
the initial velocity of one kick can be calculated by

vg =+/d-2¢cr-g (6.2)

where v is the initial velocity of the ball. cgr the rolling resistance coeffi-
cient and ¢ the gravitational constant. The mean of vy of multiple repeti-
tions defines the initial velocity of this action. The standart deviation of the
repetitions defines the standart deviation for the velocity of the kick. The
parameter for angle is predefined for every action, e.g., it’s zero for forward
kicks and 90 degrees for left sidekick. The standart deviation for the angle is
the standart deviation of the angle measurements from the previous exper-
iment. The coefficient of friction is calibrated to a real surface from rolled

CHAPTER 6. MODELING 38

distances of the ball rolling on this surface with a known initial velocity. For
this, we performed multiple experiments with an inclined plane starting at
different heights. From these heights we could determine the initial potential
energy of the ball, which was converted to kinetic energy by rolling down
the inclined plane. At the end of the inclined plane (not taking into account
the friction of the inclined plane), the initial velocity of the ball could thus
be determined. We then measured the distance in multiple experiments. By
transposing the rolling distance formula the rolling resistance coefficient can
be calculated.

1 v
=3 o
where vy is the starting velocity, g the gravitational constant, and d the total
distance the ball traveled. The mean of the calculated coefficients is used as
the rolling resistence coefficient for the other calculations. In the algorithm
the position of the ball after the execution of an action is needed. To calculate
this, the formula is transposed to calculate the distance the ball rolls after
the execution of an action:

Ch (6.3)

2
&)

2R g
where v is the initial velocity of the ball. cg the rolling resistance coefficient
and g the gravitational constant. Figure 6.3 shows a resulting end position
cloud of a hypothetical kick. The end points are calculated by drawing a
sample from both the angle and kick speed distribution and plugging these
values in equation 6.4. For detail, refer to section 6.3.3.

d (6.4)

6.3.3 The algorithm

The whole simulation is divided into three steps: simulate the consequences,
evaluate the consequences and decide the best action.

Simulating the consequences

Each action is simulated a fixed number of times. The resulting ball position
of one simulation for an action is referred to as particle. The position of
the particles are calculated according to the parameters of the action with
applied standard deviations as shown in figure 6.3. The algorithm checks
for possible collisions with the goal box and in case there are any the kick
distance gets shortened appropriately. Collisions with the obstacle model are
handled the same way.

CHAPTER 6. MODELING 39

Figure 6.4: Left: All Actions with 30 particles each are simulated from a
kickoff position. Right: The dark green particles result in a goal. The bright
green particles are outside the field. In both cases the algorithm calculated
that the long forward kick is the best action.

Evaluation

Each particle is sorted in different categories based on where on the field it is,
e.g., inside the field, inside the own Goal, outside the field. If a particle lands
outside the field it is sorted in the category according where it went out,
e.g., left sideline or opponent ground line. This is repeated for every particle
of every Action that is defined. The algorithm then counts the number of
particles of each action that is either inside the field or inside the opponent
goal.

Decision

If an action has less than the defined threshold of particles either inside the
field or inside the opponent goal the action is discarded. For the remaining
actions the one with the most particles inside the opponent goal is calculated.
If there are two actions with the most particles inside the goal the best action
is determined by evaluating the particles of each actions with the potential
field. The action with the smaller sum is selected. If at least one particle of
an action is inside the own goal the action will not be chosen. If no action
has a particle inside the opponent goal the potential field is used to rank
the actions. In this case all particles from one action are evaluated by the
potential field and the mean of these values is calculated. The action with
the highest mean is selected and executed. If no actions has enough good
particles. The best action is to turn towards the opponent goal.

CHAPTER 6. MODELING 40

6.3.4 Potential field

Legal ball positions are evaluated using an potential field to assign scores to
be used to decide on which kick to perform. The potential field

P (1’, y) = Pslope (CB7 y) + Pown goal (ZL‘, y) + POPP goal (1’, y) (65)

consists of three parts Piope; Pown goal; ad Popp goal, Which are modeled as

X
Pslope ([L’, y) = -) (66)
Lopp
(iL‘ - mown)Q y2

POWH goal (37, y) - Exp (_ (2092570‘%/11 + QUg,own ’ (67)

2 2

T — To Yy
FPown goal (%9) = —FEuap <_ <(252 pp) + 202)) (68)

UCC,Opp O—yaopp

with parameters Zopp, 0gowns Tyowns Lopp, Ozopps ad 0y opp Tespectively. An
example configuration of these parameters is

Zopp = 3000,
Oz .own = 2250,
Ty.own = 800,

Zopp = —3000,
Oz.0pp = 1500,
Ty.opp = S00.

The potential field described by these parameters is depicted in figure 6.5.

CHAPTER 6. MODELING

2000
1500
1000

500

y [mm]
(=]

—500

-1000

—1500

—-2000
—3000 —2000 —1000 0 1000 2000 3000

X [mm]

Figure 6.5: Potential field used to evaluate ball positions.

41

Chapter 7

Motion Control

The performance of a soccer robot is highly dependent on its motion ability.
Together with the ability to walk, the kicking motion is one of the most
important motions in a soccer game. However, at the current state the
most common approaches of implementing the kick are based on key frame
technique. Such solutions are inflexible and costs a lot of time to adjust
robot’s position. Moreover, they are hard to integrate into the general motion
flow, e.g., for the change between walk and kick the robot has usually to
change to a special stand position.

Fixed motions such as keyframe nets perform well in a very restricted way
and determinate environments. More flexible motions must be able to adapt
to different conditions. There are at least two specifications: Adaption to
control demands, e.g., required changes of speed and direction, omnidirec-
tional walk, and adaptation to the environment, e.g., different floors. The
adaptation of the kick according to the ball state and fluent change between
walk and kick are another example.

At the current state we have a stable version of an omnidirectional walk
control and a dynamic kick, both used in our gameplay. Along with further
improvements of the dynamic walk and kick motions our current research fo-
cuses in particular on integration of the motions, e. g., fluent change between
walk and kick.

Adaptation to changing conditions requires feedback from sensors. We
experiment with the different sensors of the NAO. Especially, adaptation to
the visual data, e.g., seen ball or optical flow, is investigated. Problems
arise from sensor noise and delays within the feedback loop. Within a cor-
related project we also investigate the paradigm of local control loops, e. g.,
we extended the Nao with additional sensors.

42

CHAPTER 7. MOTION CONTROL 43

7.1 Walk

The algorithm we use to accomplish a walking motion can be subdivided into
the three components: the step planer, the preview controller and stabiliza-
tion.

At first the step planer determines the target position for the next step
considering the walk request and various stability criteria. After that a se-
quence of desired ZMPs (zero moment points) is planned for each execution
cycle of that step. This sequence of ZMPs is used by the preview controller
to compute the trajectory of the COM (center of mass) during the execution
of the step assuming a linear inverted pendulum model. While the step is
executed the foot’s 3-d trajectory is calculated on demand and combined
with the corresponding COM pose to finally determine the target joint con-
figuration using inverse kinematics.

7.1.1 Step Planner

The step planer calculates the next 2D positions for the feet based on the
motion request.

The Motion Request contains the Walk Request as an optional part. A
walk request contains information about the destination of the walk and is
defined by a target pose (z,y,) and the frame of reference of the destination
(the left, the right foot or the hip). Therefore the Walk Request is trans-
formed into a virtual origin of the supporting foot-to-be. Virtual means that
no physical counterpart exists. In this coordinate system the Walk Request
is applied resulting in the virtual target origin for the moving foot. From
this virtual target origin the target pose for the step is determined.

Our walk supports two different types of steps which can be requested.
The normal walk step is interpolated lineary between start and target foot
position. The Step-Control step can be used to realize more complicated
trajectories, like arcs.

The requested steps are restricted due to anatomic constraints and in-
creasing the walk’s stability. A step is resticted elliptically in x-y-plane in
general. The normal step’s final dimensions are scaled by the cosinus of
the requested rotation. So if a huge rotation is requested the translation
will be small. In addition, the change in the step size is also restricted for
normal steps to increase stability. Therefore the robot won’t begin to walk
with the maximal possible step size using normal steps. After applying these
restrictions the step is finally added to the step buffer.

Independent of the requested steps the step planner might insert Zero-
Steps for increasing the stability of the walk. A Zero-Step is a step in which

CHAPTER 7. MOTION CONTROL 44

no foot is moved.

7.1.2 Preview Control

The Preview Controller calculates the trajectory for the COM based on
planed ZMPs. For estimating a stable trajectory for the COM we assume
a linear inverted pendulum model with constant height. In each planning
cycle of a step a target ZMP is added to the ZMP-buffer. The ZMP-buffer is
used by the preview controller to calculate the target position, velocity and
acceleration of the COM during a step. The following equation is used to
determine the control vector [15]:

ref

Di1y

k pref

ref k+2

U= — Kmxk _KI E (pk_pk) _[flaf%"'afN} . (71)
N~~~ —0 - / :

state feedback = , preview gain ref

accumulatedZ M Perror Pr+nN

futureZM P

Where z; is a vector describing the location, velocity and acceleration of
the COM at time k. pg is the ZMP and p};ef the target ZMP at time k.
K., K; and fy,---, fy are the parameters of the preview controller and are
precalculated. The next target COM 1z, can be calculated using a linear
motion model:

Tpy1 = Axg + ub (7.2)

7.1.3 Stabilization

The simplified model can easily affected by disturbances in the environment.
Therefore a close loop stabilization is required.

Different control techniques are used during step creation and execution
to accomplish a stable walk.

During step creation the target step is adapted by a P-D-Controller mech-
anism to compensate small errors in the COM’s position. Another mecha-
nism uses the average COM-Error. If the average COM-Error exceeds a
threshold a emergency stop is performed. This emergency stop is realized by
zero steps. As long as the COM-Error doesn’t drop below a threshold the
robot won’t execute a step which is requested by a Walk-Request.

During the execution of a step three stabilization mechanisms are used.
At first the height of the hip and its rotation around the x axis are adapted to
compensate the moments appearing while a foot is lifted. A second stabilizer
tries to keep the upper body in a upright position the whole time. And a

CHAPTER 7. MOTION CONTROL 45

third controller adapts the ankles according to the current orientation of the
robot’s body and its change in orientation.

Chapter 8

Behavior

The Extensible Agent Behavior Specification Language — XABSL cf. [9] is
a behavior description language for autonomous agents based on hierarchi-
cal finite state machines. XABSL is originally developed since 2002 by the
German Team cf. [8]. Since then it turned out to be very successful and is
used by many teams within the RoboCup community. We use XABSL to
model the behavior of single robots and of the whole team in the Simulation
League 3D and also in the SPL.

=TT

s Send to Robot |spl_soccer

Opton | Comler ms] - play_soccer [3240 ms]

1- playing (5240 ms)

19240 ms) - paying (7560 ms)

L + o
g utabs / . soan_ - ™
he aosoute value of a number . Siusien
awar_ 2 - =
suation [
220 <m ot = AL SHTB628508987 (decial

Figure 8.1: (left) XabslEditor: On the left side, you see the source code
of a behavior option. On the right side the state machine of this option is
visualized as a graph (right). In the main frame the execution path is shown
as a tree; at the bottom, some monitored symbols can be seen, the developer
can decide which symbols should be monitored; On the left side, there is a
list of buffered frames, which is very useful to see how the decisions changed
in the past.

In order to be platform independent, we develop our tools in Java. In
particular we are working on a Java based development environment for

46

CHAPTER 8. BEHAVIOR 47

XABSL, named XabslEditor. This tool consists of a full featured editor
with syntax highlighting, a graph viewer for visualization of behavior state
machines and an integrated compiler. Figure 8.1 (left) illustrates the XABSL
Editor with an open behavior file.

Another useful tool we are working on is the visualizer for the XABSL
execution tree, which allows monitoring the decisions made by the robot at
runtime. At the current state, this visualizer is part of our debugging and
monitoring tool RobotControl. Figure 8.1 (right) illustrates the execution
tree of the behavior shown within the visualizer.

8.1 Strategy

We’ve only implemented a rather simple strategy so far. Our strategy is
based on kickoff positions, passive positions and the use of only one striker.
Every robot has a unique kickoff position. We distinguish the cases “oppo-
nent kickoff” and “own kickoft”. The kickoff position depends on the player
number. In our strategy, only one robot is allowed to go to the ball. This

O NEET

|

Figure 8.2: (left)The initial and kickoff positions when the opponent team
will kickoff
(right) The initial and kickoff positions when our team will kickoff

robot has the striker role. All other robots are in passive mode. Passive
means that the robot will look for the ball and, if it doesn’t find the ball, it
will go to the passive position according to its player number. While going to
the passive position, the robot continues to look for the ball. When the robot
finds the ball, it will look at it and turn toward the ball. When the robot is
at its passive position, it will do the same. If the ball is moved, the passive
robots will adjust. If all the robots calculated that a specific robot should

CHAPTER 8. BEHAVIOR 48
o 20 @
° /./ \.
@
: °
// .

Figure 8.3: The Passive Positions

be the striker, this robot becomes striker and is therefore not in passive play
anymore. The Goalie becomes striker if the ball is near the own goal or all
the other robots are not in play anymore.

8.2 Role Change

Each robot communicates it’s estimated distance to the ball. The robot with
the shortest distance becomes striker. This is implemented in a way that
oscillations of the role change are prevented.

8.3 Voronoi Based Strategic Positioning

Strategic positioning is a decisive part of the team play within a soccer game.
In most solutions the positioning techniques are treated as a constituent of
a complete team play strategy.

In our approach, based on the conditions of a specific strategy, the field is
subdivided in regions by a Voronoi tessellation and each region is assigned a
weight. Those weights influence the calculation of the optimal robot position
as well as the path. A team play strategy can be expressed by the choice of
the tessellation as well as the choice of the weights. This provides a powerful
abstraction layer simplifying the design of the actual play strategy.

The Voronoi tessellation is used to separate the field in regions and is
defined by a set of points, called Voronoi sites, distributed over the field.
The area around the robot is divided in higher-resolved regions. With this
we can easily construct very complex tessellations based on the conditions
given by our strategy. Apart from a set of regions, we also get a graph, called

CHAPTER 8. BEHAVIOR 49

Delaunay graph, which is defined by the cells as nodes and the neighborhood
as edges. This graph gives us a possibility for efficient search within the
tessellation.

Scalar fields are used to formulate strategies and to express it in terms
of weights of the VBSM. Thereby, the target position is modeled as the
global minimum of a scalar field. The striker, goal posts as well as the line
between ball and opponent goal should be avoided and therefore are modeled
as maxima of the scalar field. In a different way from the target position, the
objects should have a limited range of influence. For each Voronoi cell we
define the weight as a sum of the scalar fields at the Voronoi site p defining
the cell.

The whole situation map is defined by this Voronoi tessellation and pos-
itive weights assigned to each cell. Thus, the map consist of the spatial
separation of the field in regions and a graph structure over the defining
nodes. Basically, we can consider this map as a weighted undirected graph
where the weights of the nodes are given directly by the definition and the
weights for the edges are determined as a combination of the metric distance
between the defining points and the weights of the nodes.

To solve the positioning task the A* algorithm is employed to find the
shortest path. Thereby the start node is the region containing the position
of the robot and the target node defined by the minimal weight.

Note that the geometry of the tessellation changes over time depending
on the position of the player. The path calculated in one frame gives only a
rough direction for the movement. The resulting path which emerges through
the robot following the given directions will be much smoother as the higher
resolution around the robot moves with it. The Figure 8.4 (right) illustrates
the resulting tessellation. [7]

CHAPTER 8. BEHAVIOR 20

Figure 8.4: An example situation: (left) initial positions of the supporter
(center) and the attacker (closer to the ball); the center (black diamond) of
the red dashed rectangle illustrates the target position for the supporter; the
scalar field encoding the strategy is depicted by the intensity of the yellow
glow (the global minimum is at the diamond); (right) the Voronoi tessellation
with the weights of the regions depicted by the intensity of the yellow color;
path calculated by the A*.

Bibliography

1]

Ralf Berger. Die Doppelpass-Architektur. Verhaltenssteuerung au-
tonomer Agenten in dynamischen Umgebungen (in German). Diploma
thesis, Humboldt-Universitédt zu Berlin, Institut fiir Informatik, 2006.

Ralf Berger and Gregor Lammel. Exploiting Past Experience. Case-
Based Decision Support for Soccer Agents. In Proceedings of the 30th
Annual German Conference on Artificial Intelligence (KI'07). Springer,
2007.

Hans Dieter Burkhard. Programming Bounded Rationality. In Proceed-
ings of the International Workshop on Monitoring, Security, and Res-
cue Techniques in Multiagent Systems (MSRAS 2004), pages 347-362.
Springer, 2005.

Hans-Dieter Burkhard and Ralf Berger. Cases in robotic soccer. In
Michael M. Richter Rosina O. Weber, editor, Case-Based Reasoning
Research and Development, Proc. Tth International Conference on Case-
Based Reasoning, ICCBR 2007, Lecture Notes in Artificial Intelligence,
pages 1-15. Springer, 2007.

Daniel Hein. Simloid — evolution of biped walking using physical sim-
ulation. Diploma thesis, Humboldt-Universitat zu Berlin, Institut fiir
Informatik, 2007.

Daniel Hein, Manfred Hild, and Ralf Berger. Evolution of biped walking
using neural oscillators and physical simulation. In RoboClup 2007: Robot

Soccer World Cup XI, Lecture Notes in Artificial Intelligence. Springer,
2007.

Steffen Kaden, Heinrich Mellmann, Marcus Scheunemann, and Hans-
Dieter Burkhard. Voronoi based strategic positioning for robot soccer.
In Marcin S. Szczuka, Ludwik Czaja, and Magdalena Kacprzak, editors,

o1

BIBLIOGRAPHY 52

8]

[9]

[10]

[11]

[13]

[14]

[15]

Proceedings of the 22nd International Workshop on Concurrency, Spec-
ification and Programming (CS€P), volume 1032 of CEUR Workshop
Proceedings, pages 271-282, Warsaw, Poland, 2013. CEUR-WS.org.

M. Lotzsch, M. Risler, and M. Jiingel. Xabsl - a pragmatic approach to
behavior engineering. In Proceedings of IEEE/RSJ International Con-
ference of Intelligent Robots and Systems (IROS), pages 5124-5129, Bei-
jing, China, October 9-15 2006.

Martin Lotzsch, Matthias Jiingel, Max Risler, and Thomas Krause.
XABSL web site. 2006. http://www.ki.informatik.hu-berlin.de/XABSL.

Heinrich Mellmann, Yuan Xu, Thomas Krause, and Florian Holzhauer.
Naoth software architecture for an autonomous agent. In International
Workshop on Standards and Common Platforms for Robotics (SCPR
2010), Darmstadt, November 2010.

Thomas Reinhardt. Die Kalibrierungsfreie Bildverarbeitungsalgorith-
men zur echtzeitfdhigen Objekterkennung im Roboterfussball (in Ger-
man). Master thesis, Hochschule fiir Technik, Wirtschaft und Kultur
Leipzig, Fakultat fiir Informatik, Mathematik und Naturwissenschaften,
2011.

T. Rofer, J. Brose, D. Gohring, M. Jiingel, T. Laue, and M. Risler.
GermanTeam 2007 - The German national RoboCup team. In RoboCup
2007: Robot Soccer World Cup XI Preproceedings. RoboCup Federation,
2007.

Marcus M Scheunemann and Heinrich Mellmann. Multi-hypothesis goal
modeling for a humanoid soccer robot. In Proceedings of the 9th Work-
shop on Humanoid Soccer Robots, 1/th IEEE-RAS International Con-
ference on Humanoid Robots (Humanoids), Madrid, Spain., 2014.

Victor Uc-Cetina. Reinforcement Learning in Continuous State and Ac-
tion Spaces. PhD thesis, Humboldt-Universitdt zu Berlin, 2009.

Yuan Xu. From simulation to reality — migration of humanoid robot
control. PhD thesis, Humboldt-Universitéit zu Berlin, 2014.

	Introduction
	Architecture
	NaoSMAL
	Platform Interface
	Module framework
	Serialization

	Debugging and Tools
	Concepts
	RobotControl Dialogs
	NaoSCP

	Simulation
	Visual Perception
	HistogramProvider
	SimpleFieldColorClassifier
	ScanLineEdgelDetector
	FieldDetector
	LineGraphProvider
	GoalFeatureDetector
	GoalDetector
	BallDetector
	Green Detection [outlook]

	Modeling
	Probabilistic Compass
	Multi-Hypothesis Goal Model (MHGM)
	Internal Models for Action Selection

	Motion Control
	Walk

	Behavior
	Strategy
	Role Change
	Voronoi Based Strategic Positioning

