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Chapter 1

Introduction

Our team is part of the multi-league joint research group Berlin United be-
tween the RoboCup research group of the Humboldt-Universität zu Berlin
and the Freie Universität Berlin (FUmanoids, KidSize League). The research
group NaoTH was founded at the end of 2007 and consists of students and
researchers at the Humboldt-Universität zu Berlin. The team is part of the
research lab for Adaptive Systems at Humboldt-Universität which is headed
by Prof. Verena Hafner. The team was established at and evolved from
the AI research lab headed by Prof. Hans-Dieter Burkhard, and is led by
Heinrich Mellmann and Marcus Scheunemann. At the current state the core
team consists of two PhD, four Master/Diploma, and six Bachelor students.
Additionally, we provide courses and seminars where the students solve tasks
related to RoboCup and other problems of Cognitive Robotics and AI.

The team currently consists of Heinrich Mellmann, Marcus Scheunemann,
Thomas Krause, Claas-Norman Ritter, Steffen Kaden, Peter Woltersdorf,
Tobias Hübner, Benjamin Schlotter, Schahin Tofangchi, Maximilian Biele-
feld, Alexander Berndt, and Carolin Matthie.

We have a long tradition within the RoboCup by working for the Four Legged
League as a part of the GermanTeam in recent years, with which we won
the competition three times. We started working with Naos in May 2008
and achieved the 4th place at the competition in Suzhou in the same year.
In 2010, we simultaneously participated in the SPL and the 3D Simulation
League for the first time with the same code. In the 3D Simulation, we won
the German Open and the AutCup competitions and achieved the 2nd place
at the RoboCup World Championship 2010 in Singapore. In 2011, we won
the Iran Open competition in SPL and started a conjoint team Berlin United
with the FUmanoids from Berlin who participated in the KidSize League. In
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CHAPTER 1. INTRODUCTION 4

the world cup 2012 in Mexico, we won the technical challenge with an ex-
tension for the SimSpark Simulator, used in the 3D Simulation League, to
get closer to achieve our long-term goal to narrowing the gap between the
simulation and real robots league.
With our efforts in these three leagues, we hope to foster the cooperation
between them and enhance results in all of those leagues with perspective
change. In cooperation with FUmanoids, we applied for a RoboCup project
to investigate a common communication protocol to hold matches with differ-
ent robot platforms and software in one team. Another RoboCup project of
ours dealt with the topic of an extension for SimSpark for SPL. We informed
about results of this extension during the symposium 2013 in Eindhoven. Our
general research fields include agent-oriented techniques and Machine Learn-
ing with applications in Cognitive Robotics. Currently, we mainly focus on
the following topics:

� Narrowing the gap between simulated and real robots (section 4)

� Software architecture for autonomous agents (section 2)

� Dynamic motion generation (section 7)

� World modeling (section 6)

The release of the NaoTH code base accompanying this report and the
according documentation can be found under the following links:

Documentation: https://github.com/BerlinUnited/NaoTHDoc/wiki

Code: https://github.com/BerlinUnited/NaoTH

https://github.com/BerlinUnited/NaoTHDoc/wiki
https://github.com/BerlinUnited/NaoTH
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Architecture

An appropriate architecture is the base of each successful software project. It
enables a group of developers to work at the same project and to organize the
solutions for their particular research questions. From this point of view, the
artificial intelligence and/or robotics related research projects are usually
more complicated than commercial product development, since the actual
result of the project is often not clear. Since we use this project also in
education, a clear organization of the software is necessary to achieve a fast
familiarization with the software. Our software architecture is organized with
the main focus on modularity, easy usage, transparency and easy testing.

In the following subsections we describe the design and the implementa-
tion of the different parts of the architecture. A detailed description of the
principles we used can be also found in [13]

2.1 NaoSMAL

In our architecture we don’t use the NAOqi API directly but use our own so-
called NaoSMAL (Nao Shared Memory Abstraction Layer) NAOqi-module.
This calls the DCM API of NAOqi1 and makes it accessible for other processes
via a shared memory interface. Thus we can implement our own code as
a complete seperated executable that has no dependencies to the NAOqi
framework. The benefits are a safer operation of the Nao on code crashes
(NaoSMAL will continue to run and ensures the robot will go in a stable
position), faster redeploy of our binary without restarting NAOqi and a faster
compilation since we have lesser dependencies.

1http://doc.aldebaran.com/1-14/naoqi/sensors/dcm-api.html
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Figure 2.1: Platform Interface is responsible for data transferring and exe-
cution of the Cognition and Motion processes.

2.2 Platform Interface

In order to integrate different platforms, our project is divided into two parts:
a platform independent one and platform specific one. The platform specific
part contains code which is applied to the particular robot platform. We
support the Nao hardware platform, the SimSpark simulator2 and a logfile
based simulator. While the platform specific part is a technical abstraction
layer the platform independent part is responsible for implementing the ac-
tual algorithms. Both parts are connected by the platform interface, which
transfers data between the platform independent and specific part (see Fig.
2.1).

2http://simspark.sourceforge.net/

http://simspark.sourceforge.net/
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Figure 2.2: Overview about the different components of the module frame-
work.

2.3 Module framework

Our module framework is based on a blackboard architecture. The framework
consists of the following basic components:

Representation objects carrying data and simple manipulation functions

Blackboard container storing representations as information units

Module executable unit, has access to the blackboard (can read and write
representations)

Module Manager manage the execution of the modules

Fig. 2.1 describes the interaction between this components. A module may
require a representation, in this case it has a read-only access to it. A mod-
ule provides a representation, if it has a writing access. In our design we
consider only sequential execution of the modules, thus there is no handling
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for concurrent access to the blackboard necessary. We decide which repre-
sentation is required or provided due compilation time. Different modules
can implement similiar functionality and provide the same representations.
You can configure which of the modules should be executed at runtime and
it is also possible to dynamically change this for debugging purposes.

2.3.1 Example module

A module is a C++ class which inherits a base class which is created with
the help of some macros defining the interface of the the module.

#ifndef _MyModule_H

#define _MyModule_H

#include <ModuleFramework/Module.h>

#include <Representations/DataA.h>

#include <Representations/DataB.h>

BEGIN_DECLARE_MODULE(MyModule)

REQUIRE(DataA)

PROVIDE(DataB)

END_DECLARE_MODULE(MyModule)

class MyModule: public MyModuleBase

{

public:

MyModule ();

~MyModule ();

virtual void execute ();

};

#endif /* _MyModule_H */

Listing 2.1: MyModule.h

The MyModule class inherits the MyModuleBase class which was defined with
the BEGIN DECLARE MODULE macro. Each representation which is needed by
the module is either declared as provided or required with the correspond-
ing macro. After declaring a representation it is accessible with a getter
function, which has the name of the representation prefixed with ”get”, e.g.
getDataA() for the representation DataA. The actual implementation of the
functionality of a module must be in the execute() function.

#include "MyModule.h"

MyModule :: MyModule ()
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{

// initialize some stuff here

}

MyModule ::~ MyModule ()

{

// clean some stuff here

}

void MyModule :: execute ()

{

// do some stuff here

getDataB ().x = getDataA ().y + 1;

}

Listing 2.2: MyModule.cpp

A representation can be any C++ class, it does not need to inherit any
special parent class.

class DataA

{

public:

DataA(){}

int y;

};

class DataB

{

public:

DataB(){}

int x;

};

Listing 2.3: DataA.h/DataB.h

A module must be registered in the cognition process by including it in
the file NaoTHSoccer/Source/Core/Cognition/Cognition.cpp.

#include "Modules/Experiment/MyModule/MyModule.h"

In the init method add the line:

REGISTER_MODULE(MyModule);

The order of the registration defines the order of the execution of the mod-
ules.



Chapter 3

Debugging and Tools

In order to develop a complex software for a mobile robot, we require means
for high-level debugging and monitoring (e.g., visualization of the robot’s
posture or its position on the field). Since we don’t exactly know which kind
of algorithms will be debugged, there are two aspects of high importance:
accessibility at runtime and flexibility. The accessibility of the debug con-
struct is realized based on our communication framework. Thus, they can
be accessed at runtime by using visualization software like RobotControl, as
shown in Fig. 3.1).

3.1 Concepts

Some of the ideas were evolved from the GT-Architecture [16]. The following
list illustrates some of the debug concepts:

debug request activates/deactivates code parts

modify allows modification of a value (in particular local variables)

stopwatch measures the execution time

parameter list allows to monitor and modify lists of parameters

drawings allows visualization in 2D/3D; thereby it can be drawn into the
image or on the field (2D/3D)

plot allows visualization of values over time

As already mentioned, these concepts can be placed at any position in the
code and can be accessed at runtime. Similar to the module architecture,
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CHAPTER 3. DEBUGGING AND TOOLS 11

the debug concepts are hidden by macros to allow simple usage and to be
able to deactivate the debug code at compilation time, if necessary.

In order to use a debug request in the code you have to register it once
with the DEBUG REQUEST REGISTER macro:

DEBUG_REQUEST_REGISTER("My:Debug:Request", "Description of

the debug request", true);

After that, you can use the DEBUG REQUEST macro to wrap code that should
be only executed when the debug request is active.

DEBUG_REQUEST("My:Debug:Request",

std::cout << "This code is not executed normally" <<

std::endl;

++c;

);

MODIFY works in a similar way, but does not need any registration. By,
e.g., wrapping a variable and defining an identifier, this variable can be
changed later from RobotControl.

double yaw = 0;

MODIFY("BasicTestBehavior:head:headYaw_deg",yaw);

In addition to these means for individual debugging, there are some more
for general monitoring purposes: the whole content of the blackboard, the
dependencies between the modules and representations, and execution times
of each single module. The Fig. 3.1 illustrates some of the visualizations of
the debug concepts. In particular a field view, 3D view, behavior tree, plot
and the table of debug requests are shown.

3.2 RobotControl Dialogs

The various debugging possibilities are organized in different dialogs.
The following list consists of our most used Robotcontrol Dialogs.
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Figure 3.1: The RobotControl program contains different dialogs. The
3DViewer (top left) is used to visualize the current state of the robot; the
Value Plotter dialog (bottom left) plots some data; the Field Viewer dia-
log (top center) draws the field view; the Behavior dialog (bottom center)
shows the behavior tree; the Debug Request Center dialog (right) is for en-
abling/disabling debug requests.

3.2.1 Behavior Viewer
Shows the Behavior
tree for the current
behavior. The com-
piled XABSL behavior
needs to be sent to the
robot first and then an
agent can be selected
to be executed. With
’Add Watch’ you can
track XABSL input
and output symbols.
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Debug Requests

(De-)activates the
debug request code.
Usually a debug re-
quest draws something
on the field viewer or
on the camera images.
For further informa-
tion about individual
debug requests, have
a look at the source
code.

Field Viewer

There are views for
different field sizes and
a local view. Certain
debug requests draw
on these views. For ex-
ample, you could draw
the robots’ positions
on the field by activat-
ing the corresponding
debug request.

Image Viewer

Can show the top and
bottom images. There
are debug requests
that draw on the
camera images, if they
are active.
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Logfile Recorder

Records a Logfile with
selected data.

Modify

The Modify macro al-
lows changing values
of variables declared
within this macro at
runtime.
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Module Configuration Viewer

Shows which mod-
ules are currently
(de-)activated. Also
shows, which other
modules are required
(left) and provided
(right) by each mod-
ule.

Parameter Panel
Shows parameters de-
fined in our configura-
tion files. It is possible
to change the values at
runtime. The variables
must be registered as
parameters in the code
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Plot 2D

Shows plots activated
by plot debug requests.

Representation Inspector

Shows the data that
written to the black-
board by each repre-
sentation.

Stopwatch Viewer

Shows the execution
time for each module.



Chapter 4

Simulation

As a common experience, there are big gaps between simulation and reality
in robotics, especially with regards to basic physics with consequences for low
level skills in motion and perception. There are some researchers who have
already tried to narrow this gap, but there are only few successful results so
far. We investigate the relationships and possibilities for methods and code
transferring. Consequences can lead to better simulation tools, especially in
the 3D Simulation League. At the moment, we use the SimSpark simulator
from the 3D Simulation League with the common core of our program, see
Fig. 4.1. As already stated, therewith, we want to foster the cooperation
between the two leagues and to improve both of them.

When compared to real Nao robots, some devices are missing in the
SimSpark, as LEDs and sound speakers. On one hand, we extended the
standard version of SimSpark by adding missing devices like camera, ac-
celerometer, to simulate the real robot. On the other hand, we can use a
virtual vision sensor which is used in 3D simulation league instead of our

Figure 4.1: NAO robots run in Standard Platform League(left) and 3D Sim-
ulation League(right).
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CHAPTER 4. SIMULATION 18

image processing module. This allows us to perform isolated experiments on
low level (e.g., image processing) and also on high level (e.g., team behav-
ior). Also we developed a common architecture [13], and published a simple
framework allowing for an easy start in the Simulation 3D league.

Our plan is to analyze data from sensors/actuators in simulation and from
real robots at first and then to apply machine learning methods to improve
the available model or build a good implicit model from the data of real
robot. Particularly, we plan to:

� improve the simulated model of the robot in SimSpark;

� publish the architecture and a version of SimSpark which can be used
for simulation in SPL;

� transfer results from simulation to the real robot (e.g., team behavior,
navigation with potential field);

So far, we have developed walking gaits through evolutionary techniques
in a simulated environment [7, 6]. Reinforcememt Learning was used for the
development of dribbling skills in the 2D simulation [19], while Case Based
Reasoning was used for strategic behavior [4, 2]. BDI-techniques have been
investigated for behavior control, e.g., in [1, 3].
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Visual Perception

In order to realize a complex and successful cooperative behavior it is neces-
sary to have a appropriate model of the surrounding world. Thus, one of the
main focuses of our current research is the improvement of the perceptional
abilities of the robot and its capabilities to build a world model.
Actually we do not use fixed color class based methods and color tables
anymore. The main tasks of our vision system is detecting the field (includ-
ing field borders), the field lines, the ball and the goal. Others, like a visual
robots detection are not implemented yet. We detect the objects in a specific
order, which makes some computations easier for each following object detec-
tor. First, we compute some statistical informations for each color channel
and use this to classify the fields color. This approach is based on ideas from
[14]. After that, we use this to validate, that the goal posts are grounded in
the field, that lines are within the field, that a ball must be within the field
and to calculate the field borders.

5.1 HistogramProvider

This module scans the top and bottom image, to calculate the statistics for
each color channel. Since we use the YUV color space, this module calculates
three histograms for the top and three for the bottom image. To calculate
the histograms only every 6th pixel is used. In other words, the histogram is
taken from an subsampled image, which is six times smaller. This does not
change much for the distribution information of colors of the original image.
The statistics are similar except for a small error.
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5.2 SimpleFieldColorClassifier

In this module we estimate the field color as a cubic area in the YUV color
space. For this we use statistical information of the distribution of gray level
values, of each color channel. The basic assumption is, that in a robot soccer
environment both (bottom and top) images are mostly covered by the field.
In [14] this is the main assumption too.

Since this algorithm of [14] has some problems, we modified it to cover our
needs. Our approach is slightly different. We do not correct vignetting. We
use statistical information of more than one succeeding frame. As first step
we constrain the brightness. And we use only every 6th pixel to calculate
the color channel statistics. One disadvantage is, that we sometimes have to
tune the parameters to get good results, but the classification algorithm is
still able to adapt to changing conditions.

5.3 ScanLineEdgelDetector
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With this module we detect line border points and estimate some points of
the field border. To do this, we use scan lines, but only vertical ones. Along
every scan line jumps are detected in the Y channel, using a 1D-Prewitt-
Filter. A point of the lines border is located at the maximum of the response
of that filter. We estimate with 2 3x3-Sobel-Filters (horizontal and vertical)
the orientation of the line. While the result of the field color classification
we detect along every scan line a point which marks the border of the field.

5.4 FieldDetector

With the field border points, estimated with the ScanLineEdgelDetector, we
calculate for each image a polygon, which is representing the border of the
field in the image.

5.5 LineGraphProvider

This module clusters neighbouring line border points, detected by ScanLi-
neEdgelDetector.
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5.6 GoalFeatureDetector

In this module we use some scan lines around the artificial horizon, calculated
by ArtificialHorizonProvider, to find groups of pixels, which are likely goal
post pixels. We can choose between absolute value detection or gradient
jump detection.

Till now, the detection using absolute values above a certain threshold
seems to be the best. The scan for absolute values above a certain threshold
is done with a 5x1 gauss kernel,which is moved along a vertical scan line in
the image. For the gradient jump scan a 3x1 Prewitt-Filter is used.

5.7 GoalDetector

The GoalDetector clusters the features found by the GoalFeatureDetector.
The main idea here is, that features, which represent a goal post, must be
located underneath of each other. We begin with the scan line with the lowest
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y coordinate and go through all detected features. Than the features of the
next scan lines (next higher y coordinate) are checked against these features.
Features of all scan lines, which are located underneath of each other, are
collected into one cluster. Each of this clusters represents a possible goal
post.

From the features of a cluster, the orientation of the possible goal post is
estimated and used to do scan up and down along the estimated goal post.
This is done to find the foot and head point of that post. A goal post is seen
as valid, if the foot point is inside of the field and if some of the pixels under
the goal post (in image coordinates: over the post) are classified as field
color. If a goal post is valid, then the statistical information, collected while
scanning for the foot and head point, is used to update three histograms,
which describe the distribution of the posts color in the YUV color space.

5.8 BallDetector

This module scans all pixels int the image, which are covered by the field.
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The pixel with the most red appearance is taken as a possible central
point inside the ball. This Pixel must be more red than any field colored
pixel. Eight scan lines, beginning in this pixel and directing in 8 different
directions, are used the find border pixels of the assumed ball. The 8 scan
directions cover equally distributed 360 degrees. The resulting border pixels
are used to estimate a circle, which represents the estimated ball shape in
the image. This estimated ball shape in the image is projected to the ground
and checked for its size.
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Modeling

In order to realize a complex and successful cooperative behavior it is neces-
sary to have a appropriate model of the surrounding world. In our approach
we focus on local models of particular aspects of the environment. In this
section we present two local models: a compass and a goal model.

6.1 Probabilistic Compass

We estimate the orientation of the robot on the field based on the detected
line edgels utilizing the fact, that all field lines are either orthogonal or par-
allel to the field. Based on the orientations of the particular projected edgels
it is possible to estimate the rotation of the robot up to the π symmetry. We
calculate the kernel histogram over the orientations of the particular pro-
jected edgels, i.e., edgels in the local coordinates of the robot. To utilize the
symmetry of the lines we use sin as distance measure. Let (xi)

n
i=1 be the set

of edgel orientations. We calculate the likelihood S(x) for the robot rotation
x ∈ [−π, π) as shown in the equation 6.1.

S(x) =
n∑

i=1

exp

{
−sin2(2 · (x− xi))

σ2

}
(6.1)

This compass is calculated in each frame where enough edgels have been
detected. It has shown to be robust regarding outliers, e.g., when some edgels
are detected in a robot. It can be directly used to update the likelihood of
particles in the self locator. Figure 6.1 shows a set of edgels detected in a
particular frame on the left side. On the right side the according histogram
is plotted.

25
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Figure 6.1: Left figure visualizes edgel graph in the local coordinates of the
robot in a particular frame. Right illustrates the kernel histogram over the
orientations of edgels shown left calculated with the formula 6.1.

6.2 Multi-Hypothesis Goal Model (MHGM)

In this section we describe a multi-hypothesis approach for modeling a soccer
goal within the RoboCup context. The whole goal is rarely observed and we
assume the image processing to detect separate goal posts. So we represent
the goal by its corresponding posts. To reduce complexity of the shape of
uncertainty we model the separate goal posts in local robot coordinates. The
ambiguous goal posts are tracked by a multi-hypothesis particle filter. The
actual goal model is extracted from the set of post hypotheses.

The joint uncertainty can be subdivided in noise, false detections and
ambiguity. Each of this components is treated separately in our approach.
The multi-hypothesis filter has to take care of noise and false detections, but
it does not resolve the ambiguity of the goal posts. Instead, all occurring
goal posts are represented by corresponding hypotheses and the ambiguity is
solved on the next level when the goal model is extracted. Particle filters are
great in filtering noise and are shown to be very effective for object tracking.
To deal with sparse false positives we introduce a delayed initialization proce-
dure. We assume a false positive to result in an inconsistency, i.e., it cannot
be confirmed by any existing goal post hypothesis. In this case the percept
is stored in a short time buffer for later consideration. This buffer is checked
for clusters, in case a significant cluster of goal post percepts accumulated
during a short period of time, a new hypothesis is initialized based on this
cluster. The dense false detections result in post hypotheses, which is later
ignored while extracting the goal.
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More detailed description of the algorithm as well as the experimental
results can be found in [17].

Figure 6.2: The left Figure illustrates the experiment setup. The robot faces
the goal and an additional goal post is placed to its right side. From the
object recognition perspective, this post is identically to the real goal posts.
The Figure in the center visualizes all percepts collected during the course
of the experiment. The full circles illustrate perceived goal posts, whereby
their color indicates the classification by the MHGM: red - left post, blue -
right post, gray - unknown post, black - none (percept buffer). The circles
with holes stand for artificially generated sparse false positive perceptions.
The right Figure illustrates a snapshot of the state modeled by the MHGM
at the end of the experiment. Drawn are the particle filter representing the
goal posts with corresponding deviations as well as the extracted goal model.
Similar to the Figure in the center, the colors of the particles indicate the
classification of the hypotheses.
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Motion Control

The performance of a soccer robot is highly dependent on its motion ability.
Together with the ability to walk, the kicking motion is one of the most
important motions in a soccer game. However, at the current state the
most common approaches of implementing the kick are based on key frame
technique. Such solutions are inflexible and costs a lot of time to adjust
robot’s position. Moreover, they are hard to integrate into the general motion
flow, e.g., for the change between walk and kick the robot has usually to
change to a special stand position.

Fixed motions such as keyframe nets perform well in a very restricted
way and determinate environments. More flexible motions must be able to
adapt to different conditions. There are at least two specifications: Adaption
to control demands, e.g., required changes of speed and direction, omnidi-
rectional walk, and adaptation to the environment, e.g., different floors. The
adaptation of the kick according to the ball state and fluent change between
walk and kick are another examples.

At the current state we have a stable version of an omnidirectional walk
control and a dynamic kick which are used in the games. Along with further
improvements of the dynamic walk and kick motions our current research
focuses in particular on integration of the motions, e.g., fluent change between
walk and kick.

Adaptation to changing conditions requires feedback from sensors. We
experiment with the different sensors of the NAO. Especially, adaptation
to the visual data, e.g., seen ball or optical flow, is investigated. Problems
arise from sensor noise and delays within the feedback loop. Within a cor-
related project we also investigate the paradigm of local control loops, e.g.,
we extended the Nao with additional sensors.
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Behavior

The Extensible Agent Behavior Specification Language — XABSL cf. [10] is
a behavior description language for autonomous agents based on hierarchi-
cal finite state machines. XABSL is originally developed since 2002 by the
German Team cf. [9]. Since then it turned out to be very successful and is
used by many teams withing the RoboCup community. We use XABSL to
model the behavior of single robots and of the whole team in the Simulation
League 3D and also in the SPL.

Figure 8.1: (left) XabslEditor: On the left side, you see the source code
of a behavior option. On the right side the state machine of this option is
visualized as a graph (right). In the main frame the execution path is shown
as a tree; at the bottom, some monitored symbols can be seen, the developer
can decide which symbols should be monitored; On the left side, there is a
list of buffered frames, which is very useful to see how the decisions changed
in the past;

In order to be independent from the platform, we develop our tools in
Java. In particular we are working on a Java based development environment

29
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for XABSL, named XabslEditor. This tool consists of a full featured editor
with syntax highlighting, a graph viewer for visualization of behavior state
machines and an integrated compiler. Figure 8.1 (left) illustrates the XABSL
Editor with an open behavior file.

Another useful tool we are working on is the visualizer for the XABSL
execution tree, which allows monitoring the decisions made by the robot at
runtime. At the current state, this visualizer is part of our debugging and
monitoring tool RobotControl. Figure 8.1 (right) illustrates the execution
tree of the behavior shown within the visualizer.

8.1 Strategy

We’ve only implemented a rather simple strategy so far. Our strategy is
based on kickoff positions, passive positions and the use of only one striker.
Every robot has a unique kickoff position. We distinguish the cases ”oppo-
nent kickoff” and ”own kickoff”. The kickoff position depends on the player
number. In our strategy, only one robot is allowed to go to the ball. This

Figure 8.2: (left)The initial and kickoff positions when the opponent team
will kickoff
(right)The initial and kickoff positions when our team will kickoff

robot has the striker role. All other robots are in passive mode. Passive
means that the robot will look for the ball and, if it doesn’t find the ball, it
will go to the passive position according to its player number. While going
to the passive position, the robot continues to look for the ball. When the
robot finds the ball, it will look at it and turn toward the ball. When the
robot is at its passive position, it will do the same. If the ball is moved, the
passive robots will adjust. A robot becomes striker and is therefor not in
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Figure 8.3: The Passive Positions

passive play anymore if all the robots calculated that this robot should be
the striker. The Goalie becomes striker if the ball is near the own goal or all
the other robots are not in play anymore.

8.2 Role Change

Each robot communicates it’s estimated distance to the ball. The robot with
the shortest distance becomes striker. This is implemented in a way that
oscillations of the role change are prevented.

8.3 Voronoi Based Strategic Positioning

Strategic positioning is a decisive part of the team play within a soccer game.
In most solutions the positioning techniques are treated as a constituent of
a complete team play strategy.

In our approach, based on the conditions of a specific strategy, the field is
subdivided in regions by a Voronoi tessellation and each region is assigned a
weight. Those weights influence the calculation of the optimal robot position
as well as the path. A team play strategy can be expressed by the choice of
the tessellation as well as the choice of the weights. This provides a powerful
abstraction layer simplifying the design of the actual play strategy.

The Voronoi tessellation is used to separate the field in regions and is
defined by a set of points, called Voronoi sites, distributed over the field.
The area around the robot is divided in higher-resolved regions. With this
we can easily construct very complex tessellations based on the conditions
given by our strategy. Apart from a set of regions, we also get a graph, called
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Delaunay graph, which is defined by the cells as nodes and the neighborhood
as edges. This graph gives us a possibility for efficient search within the
tessellation.

Scalar fields are used to formulate strategies and to express it in terms
of weights of the VBSM. Thereby, the target position is modeled as the
global minimum of a scalar field. The striker, goal posts as well as the line
between ball and opponent goal should be avoided and therefore are modeled
as maxima of the scalar field. In a different way from the target position, the
objects should have a limited range of influence. For each Voronoi cell we
define the weight as a sum of the scalar fields at the Voronoi site p defining
the cell.

The whole situation map is defined by this Voronoi tessellation and pos-
itive weights assigned to each cell. Thus, the map consist of the spatial
separation of the field in regions and a graph structure over the defining
nodes. Basically, we can consider this map as a weighted undirected graph
where the weights of the nodes are given directly by the definition and the
weights for the edges are determined as a combination of the metric distance
between the defining points and the weights of the nodes.

To solve the positioning task the A* algorithm is employed to find the
shortest path. Thereby the start node is the region containing the position
of the robot and the target node defined by the minimal weight.

Note that the geometry of the tessellation changes over time depending
on the position of the player. The path calculated in one frame gives only a
rough direction for the movement. The resulting path which emerges through
the robot following the given directions will be much smoother as the higher
resolution around the robot moves with it. The Fig. 8.4 (right) illustrates
the resulting tessellation. [8]
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Figure 8.4: An example situation: (left) initial positions of the supporter
(center) and the attacker (closer to the ball); the center (black diamond) of
the red dashed rectangle illustrates the target position for the supporter; the
scalar field encoding the strategy is depicted by the intensity of the yellow
glow (the global minimum is at the diamond); (right) the Voronoi tessellation
with the weights of the regions depicted by the intensity of the yellow color;
path calculated by the A*.
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[2] Ralf Berger and Gregor Lämmel. Exploiting Past Experience. Case-
Based Decision Support for Soccer Agents. In Proceedings of the 30th
Annual German Conference on Artificial Intelligence (KI’07). Springer,
2007.

[3] Hans Dieter Burkhard. Programming Bounded Rationality. In Proceed-
ings of the International Workshop on Monitoring, Security, and Res-
cue Techniques in Multiagent Systems (MSRAS 2004), pages 347–362.
Springer, 2005.

[4] Hans-Dieter Burkhard and Ralf Berger. Cases in robotic soccer. In
Michael M. Richter Rosina O. Weber, editor, Case-Based Reasoning
Research and Development, Proc. 7th International Conference on Case-
Based Reasoning, ICCBR 2007, Lecture Notes in Artificial Intelligence,
pages 1–15. Springer, 2007.

[5] Giuseppe Cotugno and Heinrich Mellmann. Dynamic motion control:
Adaptive bimanual grasping for a humanoid robot. In Proceedings of
the Workshop on Concurrency, Specification, and Programming CS&P
2010, volume Volume 2, Börnicke (near Berlin), Germany, September
2010.

[6] Daniel Hein. Simloid – evolution of biped walking using physical sim-
ulation. Diploma thesis, Humboldt-Universität zu Berlin, Institut für
Informatik, 2007.

[7] Daniel Hein, Manfred Hild, and Ralf Berger. Evolution of biped walking
using neural oscillators and physical simulation. In RoboCup 2007: Robot
Soccer World Cup XI, Lecture Notes in Artificial Intelligence. Springer,
2007.

34



BIBLIOGRAPHY 35

[8] Steffen Kaden, Heinrich Mellmann, Marcus Scheunemann, and Hans-
Dieter Burkhard. Voronoi based strategic positioning for robot soccer.
In Marcin S. Szczuka, Ludwik Czaja, and Magdalena Kacprzak, editors,
Proceedings of the 22nd International Workshop on Concurrency, Spec-
ification and Programming (CS&P), volume 1032 of CEUR Workshop
Proceedings, pages 271–282, Warsaw, Poland, 2013. CEUR-WS.org.
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