

#### Institut für Roboterforschung Abteilung Informationstechnik





# Modellierung

Lokalisierung (Part 1) und verteilte Modellierung der dynamischen Umgebungselemente (Part 2)

Stefan Czarnetzki





## Part 1 – Multiple-Hypotheses Kalman Filter

- Anforderungen an Lokalisierung im RoboCup
  - Schnelle Relokalisation, multimodale Aufenthaltswahrscheinlichkeit
    →Partikelfilter
  - Glatte, wenig schwankende/verrauschte Positionsverfolgung
    →Kalman-Filter
- Ansatz: Multiple-Hypotheses Kalman Filter (aka Gaussian Mixture, Sum of Gaussians, usw.)
  - Theorie ist "nett", aber wachsende Komplexität mit Anzahl Terme
  - Trade-off: Laufzeiteffizienz vs. "was Gaussian Mixture Filtern eigentlich toll macht":-/
- Alternative Umsetzung eines Multiple-Hypotheses Kalman Filter
  - Alles super! ;-)





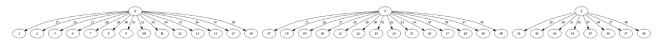
- Bayes Filter (bla bla, kennt ihr alles)
- Belief ist gewichtete Summe von Gaussians
  - $bel(x_t) = \sum \alpha_i N(\mu_i, P_i)$
  - Gewichtung  $\alpha_i$  entspricht grob der Likelyhood des Means  $\mu_i$
- Mehrdeutige Situation → Aufsplitten der Gaussians
  - Diskrete Mehrdeutigkeit: Beobachtungs-Korrespondenzproblem
  - Hohe Bewegungsunsicherheit ≈ "Kontinuierliche Mehrdeutigkeit"
  - Gute Behandlung der Nicht-Linearitäten möglich (theoretisch)



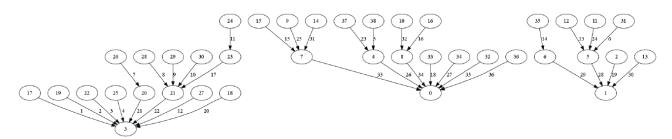


- Problem: Exponentielles Wachstum der Terme
- Klassische Lösung: Pruning
  - Theoretisch korrekt: Berechnung neuer Summe mit gewünschter (geringer) Anzahl Terme, die die alte Summe optimal approximiert
  - Praktisch: Einfaches Verschmelzen und Löschen

Michael J. Quinlan and Richard H. Middleton



(a) Split when models are uncertain

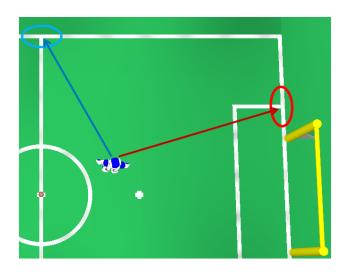


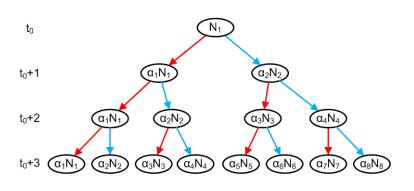
(b) Merge after uncertain split





- Problem: Exponentielles Wachstum der Terme
- Klassische Lösung: Pruning
  - Theoretisch korrekt: Berechnung neuer Summe mit gewünschter (geringer) Anzahl Terme, die die alte Summe optimal approximiert
  - Praktisch: Einfaches Verschmelzen und Löschen









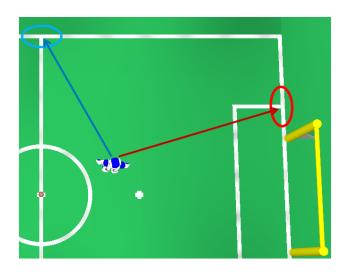
- Gaussian Mixture Performance Dilemma
  - Temporär unwahrscheinliche Bereiche also doch nicht abgedeckt
  - Cluster bleiben unimodal durch aggressives Pruning
- Warum dann überhaupt noch GMs???

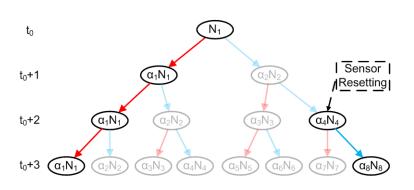




# Alternativ: Maximum Likelyhood-Choices

- Ausschließlich Updates mit Maximum Likelyhood Entscheidungen
  - Jeder Term verhält sich wie Unimodaler Kalman Filter
- Wichtig: Max. Likelyhood kann auch "False Positive" sein!
  - Robust gegen systematische "False Positives" im Publikum
- Weiterhin Pruning durch einfaches Verschmelzen und Löschen



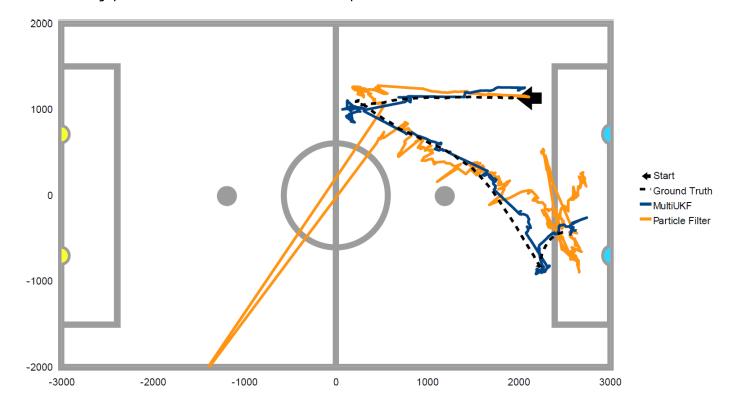






#### Evaluation

- Realer Roboter, Ground-Truth aus Deckenkamera
- Multi-Hypotheses UKF läuft parallel zu altem Partikelfilter

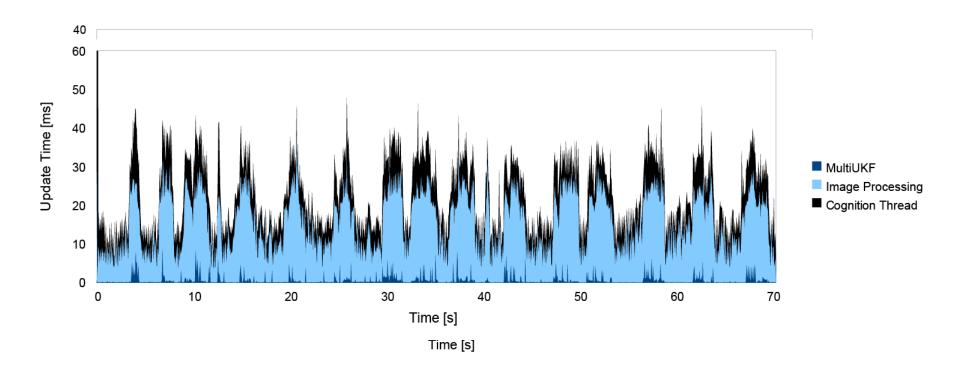






#### Evaluation

Bessere Lokalisierungsqualität bei weit niedrigerer Laufzeit







# Part 1 – Multiple-Hypotheses Kalman Filter

Fragen soweit? :-)







### Part 2 – Kooperative Weltmodellierung

- "Wissen, wo alles ist, auch wenn man selbst grad nicht hinguckt."
  - Eigene Wahrnehmung oft unsicher: Ball noch ok, Roboter sehr unzuverlässig
  - Viele potentielle Verdeckungen bei 4 vs 4
- Weltmodellierung als SLAM-Problem
- Lösung 1: Basierend auf FastSLAM, nur schneller und verteilt (implementiert, funktioniert, nicht ganz schnell genug)
- Lösung 2: Basierend auf MultiUKF-Lokalisierung und EKF-SLAM (noch nicht komplett implementiert, "sollte" klappen)
- Lösung 3: Basierend auf MultiUKF-Lokalisierung, ohne "S" in SLAM (wird seit den GermanOpen2011 benutzt)





#### Weltmodellierung als SLAM-Problem

- In Literatur: Entweder "nur" Lokalisation, oder "komplettes" SLAM
- Realistische Szenarien im Allgemeinen: "Irgendwo dazwischen"
  - A-priori Information oft vorhanden (Karten, Luftbilder, Grundrisse, ...)
  - Nie vollständiges Wissen: Elemente zu Mappen/Tracken
  - Messungen und Modelle mit sehr unterschiedlichen Unsicherheiten
    - Vorher bekannt ⇔ vorher unbekannt
    - Eindeutig ⇔ mehrdeutig
    - Statisch ⇔ dynamisch
    - Lokal ⇔ verteilt
- Kontext SPL: Tore, Linienkreuzungen, Mittelkreis, Ball, Roboter, ...





#### Weltmodellierung als SLAM-Problem

- Warum so kompliziert?!?
  - Lokalisierungsproblem? Gelöst.
  - Tracking üblicherweise einfach in lokalen Koordinaten
    - Ist effizienter
    - Ist "auserforscht": Stationärer Beobachter trackt dynamisches Objekt
- Modellierung des vollständigen Zustandes hat Vorteile
  - Dynamische Elemente potentiell nützlich für Lokalisation
  - Geteilte Information kann mehrdeutige Lokalisierung auflösen
  - Odometriefehler ist in Positionsschätzung schon kompensiert und summiert sich nicht auf





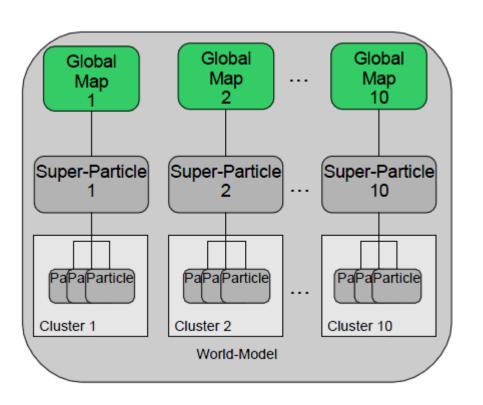
## Lösung 1: Basierend auf FastSLAM

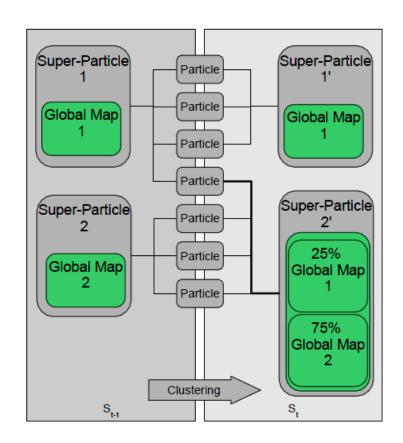
- FastSLAM: Partikelfilter für Lokalisierungsschätzung
  - Torpfosten, Linienkreuzungen, Mittelkreis, usw. brauchen nicht gemappt werden, da im Vorhinein bekannt und unveränderlich
  - Je Partikel eigene Karte mit voneinander unabhängigen Features
- Beobachtung: Funktioniert, ist aber zu langsam und nutzt die Unterschiede der Unsicherheiten in Beobachtungen und Modellen nicht aus
  - Modellunsicherheit überwiegt lokale Lokalisierungsunsicherheit
  - Viele Partikel mit selber Karte → Ineffizient!





## Lösung 1: Anpassung "Super-Partikel"









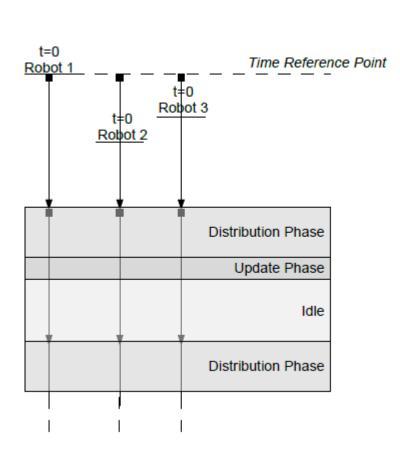
## Lösung 1: Anpassung "Percept-Buffer"

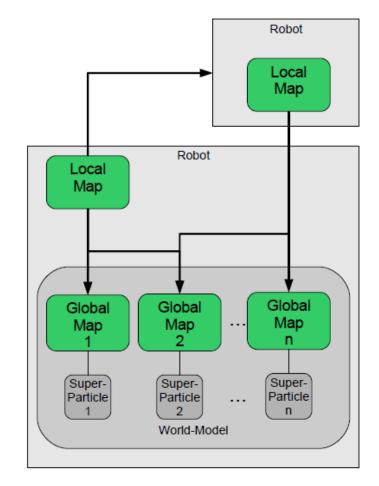
- Akkumulieren von Beobachtungen zur Unsicherheits-Reduktion
  - Lokaler, roboter-zentrischer Percept-Buffer (Kalman Filter)
  - Nur ein Update pro Zeitschritt statt Update pro Partikel
  - Zeitliche Begrenzung (500ms) verhindert Integration von Odometriefehlern
  - Ergebnis wird genutzt, um periodisch die Partikel zu updaten





### Lösung 1: Multi-Robot Sensor Fusion

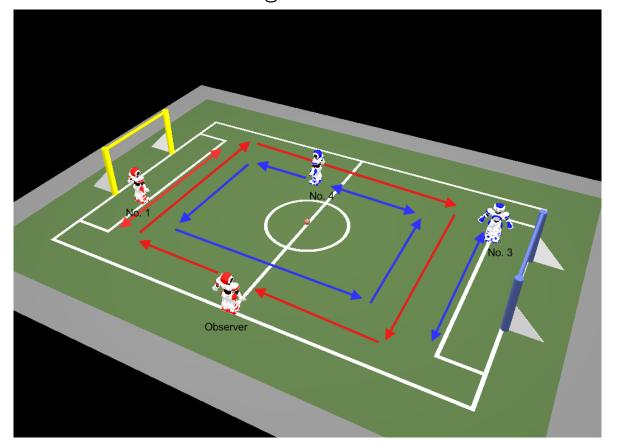








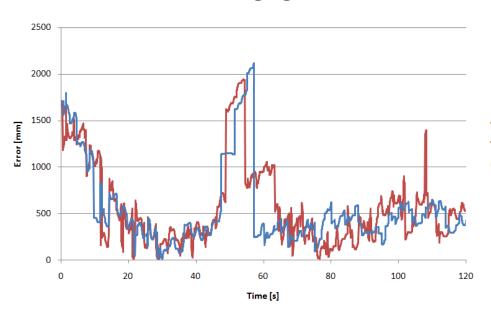
Odometrie und Wahrnehmungsfehler wie beim realen Roboter

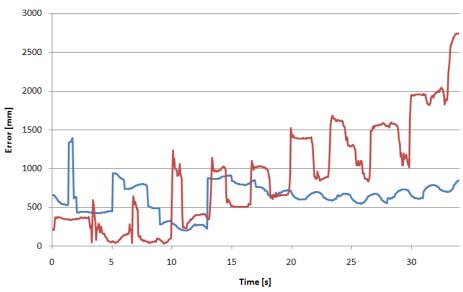






 Vorteil von Modellierung des vollen Zustands gegenüber separater Modellierung





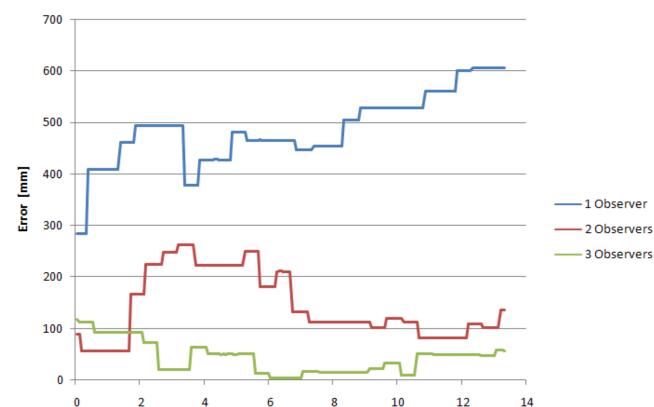
Frequently observed robot

Infrequently observed robot





Genauigkeitsgewinn durch Multi-Robot Sensor Fusion



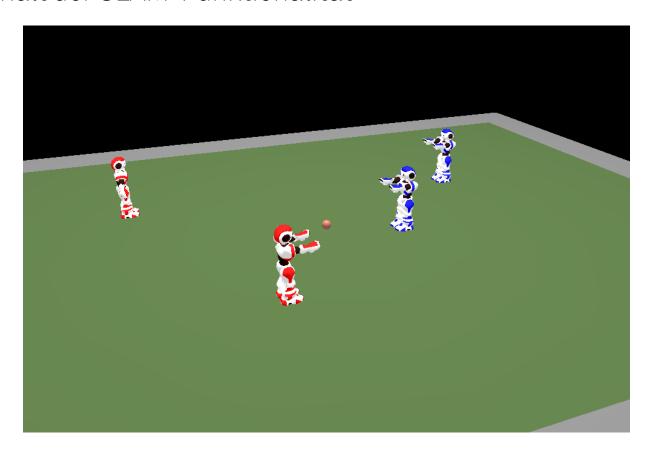
Time [s]

- Vollständigkeit
  - Missing:1.2 → 0.3
  - False positive:
    0.16 → 0.25





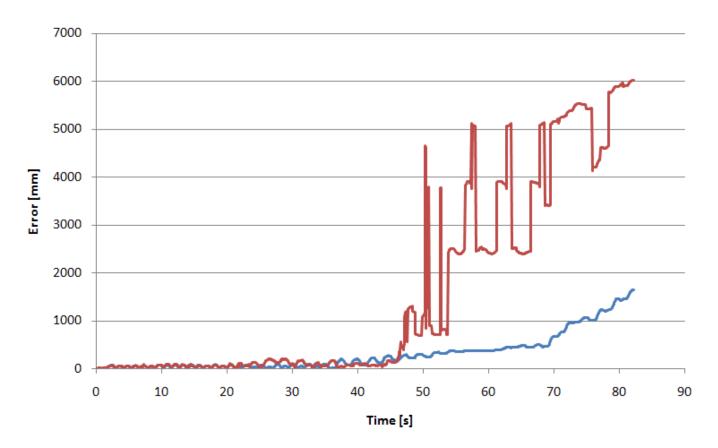
Erhalt der SLAM-Funktionalität







Erhalt der SLAM-Funktionalität







## Lösung 1: Fazit

- Basiert auf FastSLAM, nur schneller und verteilt
  - Implementiert
  - Funktioniert
  - Nicht ganz schnell genug
  - Außerdem Umstieg von Partikelfilter auf MultiUKF-Lokalisierung





#### Lösung 2: Basierend auf MultiUKF und EKF-SLAM

- Basierend auf MultiUKF-Lokalisierung
- Percept-Buffern und Verteilung der temporären, lokalen Modelle wie in Lösung 1
- Grundidee: MultiUKF-Lokalisierung ist auch nur Percept-Buffer, nicht endgültiges Lokalisierungsergebnis
  - Verletzt die Bayes-Annahme voneinander unabhängiger Beobachtungen, da die Lokalisierung nicht resettet wird
- Je Lokalisierungs-Hypothese (oder auch nur für Haupthypothese) ein EKF über alle Roboterpositionen und die Ballposition
  - Lokale gepufferte sowie verteilte Percepte ergeben periodische Updates mit entsprechenden Kovarianzen zwischen Lokalisierung und Roboterwahrnehmungen





# Lösung 3: Basierend auf MultiUKF, ohne "S" in SLAM

- Basierend auf MultiUKF-Lokalisierung
- Percept-Buffern und Verteilung der temporären, lokalen Modelle wie in Lösung 1&2
- Grundidee: Eigenes MultiUKF-Lokalisierungsergebnis ist korrekt
  - Theoretische Konsequenz: Einzelne Modelle sind unabhängig
  - Praktische Konsequenz:
    - Niedrige Berechnungskomplexität :-)
    - Fremde Beobachtungen beeinflussen eigene Lokalisierung nicht, wohl aber das modellierte Objekt
    - Fehler in relativen Abständen, was scheiße ist für Ballannäherung und Ausweichen :-/





## Lösung 3: Fazit

- Basiert auf MultiUKF-Lokalisierung, ohne "S" in SLAM
- Ist umgesetzt und wird seit den GermanOpen2011 benutzt
  - Funktioniert (aber noch keine quantitative Analyse)
  - Schnell genug
  - In manchen Situationen trotzdem noch lokales Modell nötig
    - Ballannäherung auf mittlere bis kurze Distanz, Ball ständig im Blick: vertretbar, siehe Auswertung zu Lösung 1
    - Ausweichen: eigentlich nicht gewünscht, da die Robotermodellierung am meisten von gemeinsamer Modellierung profitiert
  - Taktische Entscheidungen auf globalem Gegnermodell möglich





# Part 2 – Kooperative Weltmodellierung

Noch Fragen? :-)

