Einführung in die Theoretische Informatik Tutorium VII

Michael R. Jung

27. 11. - 02. 12. 2015

- 1 Chomsky-Normalform und CYK-Algorithmus
- 2 Pumping-Lemma für kontextfreie Sprachen
- 3 PDAs lesen
- 4 PDAs bauen

CNF&CYK

Aufgabe 1

Wandeln Sie G in eine Grammatik G' in CNF um, wobei $L(G') = L(G) \setminus \{\varepsilon\}$. Prüfen Sie mit dem CYK-Algorithmus, ob die Wörter abbaab, aabbab in L(G) liegen.

$$G = (\{S,X\},\{a,b\},P,S)$$
 mit $P = \{$
$$S \rightarrow SS|X,$$

$$X \rightarrow aXb|\varepsilon$$
 $\}$

1 ε -Produktionen entfernen.

$$P' = \{S \to SS|X, X \to aXb|ab\}$$

2 Variablenumbenennung $S \rightarrow X$ entfernen.

$$P'' = \{S \to SS|aXb|ab, X \to aXb|ab\}$$

3 Hilfsvariablen für Terminale einführen.

$$P''' = \{S \to SS|AXB|AB, X \to AXB|AB$$
$$A \to a, B \to b\}$$

4 Rechte Seiten, die zu lang sind, behandeln.

$$P'''' = \{S \to SS|AX'|AB, X \to AX'|AB$$
$$X' \to XB, A \to a, B \to b\}$$

Damit ist $G' = (\{S, X, A, B, X'\}, \{a, b\}, P'''', S)$ wie gefordert. Nun müssen wir noch die beiden Wörter überprüfen.

а	b	b	а	а	b
Α	В	В	Α	Α	В
S, X	Ø	Ø	Ø	S, X	
X'	Ø	Ø	Ø		
Ø	Ø	Ø			
Ø	Ø				
Ø		•			

	а	а	Ь	b	а	b
	Α	Α	В	В	Α	В
	Ø	S, X	Ø	Ø	S, X	
	Ø	X'	Ø	Ø		
	S, X	Ø	Ø			
	Ø	Ø				
\in	S		•			

Zeigen Sie mit dem Pumping-Lemma für kontextfreie Sprachen, dass die Sprache $L = \{ww | w \in \{0, 1\}^*\}$ nicht kontextfrei ist.

Sei $I \in \mathbb{N}$. Betrachte $z = 0^I 1^I 0^I 1^I \in L$. Sei z = uvwxy mit $vx \neq \varepsilon$ und $|vwx| \leq I$.

Fall 1: $|vx| \equiv_2 1. \Rightarrow |uv^2wx^2y| \equiv_2 1. \Rightarrow uv^2wx^2y \notin L.$

Fall 2: $|vx| \equiv_2 0$.

Fall 2.1: Wenn v und x beide in der ersten Hälfte von z liegen, so beginnt die zweite Hälfte von uv^2wx^2y mit einer 1. $\frac{1}{2}$

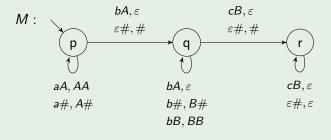
Fall 2.2: Wenn v und x beide in der zweiten Hälfte von z liegen, so endet die erste Hälfte von uv^2wx^2y mit einer 0. $\mspace{1mu}$

Fall 2.3: Hier geht vwx über die Mitte von z. Nun wäre aber $uv^0wx^0y = uwy = 0^l1^i0^j1^l$, wobei gilt: i < l oder j < l. $\frac{1}{4}$

Aufgabe 3

Geben Sie für die Wörter $w_1 = a^3bc$, $w_2 = a^3b^5c$, $w_3 = a^3b^5c^2$ alle möglichen Rechnungen von M an. Welche Sprache erkennt der folgende PDA M? Zeigen Sie die Korrektheit Ihrer Behauptung.

PDAs lesen



 W_1 :

$$(p, a^3bc, \#) \vdash (q, a^3bc, \#) \vdash (r, a^3bc, \#) \vdash (r, a^3bc, \varepsilon)$$

 $(p, a^3bc, \#) \vdash (p, a^2bc, A\#) \vdash (p, abc, AA\#) \vdash (p, bc, AAA\#) \vdash (q, c, AA\#)$

W2:

$$\begin{array}{l} (p, a^3b^5c, \#) \vdash^3 (r, a^3b^5c, \varepsilon) \\ (p, a^3b^5c, \#) \vdash^3 (p, b^5c, A^3\#) \vdash^3 (q, b^2c, \#) \vdash^2 (r, b^2c, \varepsilon) \\ (p, a^3b^5c, \#) \vdash^6 (q, b^2c, \#) \vdash (q, bc, B\#) \vdash (q, c, BB\#) \vdash \\ (r, \varepsilon, B\#) \end{array}$$

W3:

$$\begin{array}{l} (p, a^3b^5c^2, \#) \vdash^3 (r, a^3b^5c^2, \varepsilon) \\ (p, a^3b^5c^2, \#) \vdash^6 (q, b^2c^2, \#) \vdash^2 (r, b^2c^2, \varepsilon) \\ (p, a^3b^5c^2, \#) \vdash^8 (q, c^2, BB\#) \vdash (r, c, B\#) \vdash (r, \varepsilon, \#) \vdash (r, \varepsilon, \varepsilon) \end{array}$$

0000

Lösung: L(M) = L

$$L(M) = \{a^n b^m c^k | 0 \le m = n + k\} := L$$

$L(M) \supseteq L$:

Sei
$$w = a^n b^m c^k$$
 mit $0 \le m = n + k$. Sei $n' = \begin{cases} n & \text{falls } n > 0 \\ 1 & \text{sonst} \end{cases}$

k' analog. Dann gibt es folgende Rechnung von M:

$$(p, a^n b^m c^k, \#) \vdash^n (p, b^m c^k, A^n \#) \vdash^{n'} (q, b^{m-n(=k)} c^k, \#) \vdash^k (q, c^k, B^k \#) \vdash^{k'} (r, \varepsilon, \#) \vdash (r\varepsilon, \varepsilon)$$

$L(M) \subseteq L$:

Betrachten wir eine akzeptierende Rechnung von M:

Da # vom Keller gelöscht werden muss, endet eine solche Rechnung in r.

Desweiteren ist leicht zu erkennen, dass as nur in p gelesen werden können, dass wir nach dem Lesen des ersten bs in g landen, dass wir weitere bs nur dort lesen können und dass wir nach dem Lesen des ersten cs in r landen. Folglich ist die korrekte Reihenfolge der Buchstaben gesichert. Wir müssen also nur noch die Korrektheit der Anzahlen überprüfen, d.h. $L(M) \subseteq \{a^n b^m c^k | n, m, k \in \mathbb{N}\}.$

CNF&CYK

$L(M) \subseteq L$ (Forts.):

Sei $w = a^n b^m c^k \in L(M)$.

Für jedes gelesene a am Anfang, legen wir ein A auf den Keller. Diese können wir nur mit einer gleichen Anzahl bs löschen, da nur zum Löschen von As nur die Regeln $pbA \rightarrow q\varepsilon$ und $qbA \rightarrow q\varepsilon$ existieren, d.h. $(p, w, \#) \vdash^* (q, b^{m-n}c^k, \#)$ und dies ist die einzige Möglichkeit zum Lesen von as.

Alle weiteren bs legen ein B auf den Keller, d.h.

 $(q, b^{m-n}c^k, \#) \vdash^* (q, c^k, B^{m-n}\#)$ und dies ist die einzige Möglichkeit zum Lesen von weiteren bs.

$L(M) \subseteq L$ (Forts.):

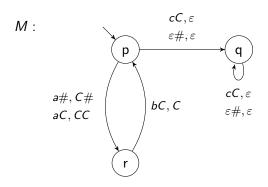
Ein B kann nur durch Lesen eines cs gelöscht werden $(qcB \rightarrow r\varepsilon, rcB \rightarrow r\varepsilon)$, d.h. $(q, c^k, B^{m-n}\#) \vdash^* (r, c^{k-(m-n)}, \#)$. Hier können nun keine weiteren cs gelesen werden, sondern nur noch die Raute ohne ein weiteres gelesenes Zeichen gelöscht werden, d.h. $(r, c^{k-(m-n)}, \#) \vdash (r, c^{k-(m-n)}, \varepsilon)$. Da der Keller nun aber leer ist, gilt also

$$k - (m - n) = 0 \Leftrightarrow k + n - m = 0 \Leftrightarrow m = k + n.$$

Aufgabe

Geben Sie einen PDA M für die Sprache $L := \{(ab)^n c^n | n \in \mathbb{N}\}$ an. Entwerfen Sie außerdem eine Grammatik G für L und wandeln Sie diese in einen PDA M' um.

Lösung: PDA



Lösung: Grammatik \rightarrow PDA

$$G = (\{S\}, \{a, b, c\}, \{S \rightarrow \varepsilon | abSc\}, S)$$

$$egin{aligned} \mathcal{M}' &= (\{q\}, \{a,b,c\}, \{a,b,c,S\}, \delta, q, S) \ & \delta: qaa
ightarrow q & qarepsilon S
ightarrow q \ & qbb
ightarrow q & qarepsilon S
ightarrow qabSc \ & qcc
ightarrow q \end{aligned}$$

