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Abstract. Decision-making in humanoid robot soccer is usually ap-
proached from the perspective of a team-level strategy. Existing ap-
proaches typically rely heavily on accurate global positional information
derived through self-localization. However, maintaining a complete, con-
sistent, and accurate global model can be challenging in situations with
a high degree of uncertainty that often occur in robot soccer due to lim-
itations in perceptual capabilities, limited computational resources, and
the dynamic nature of the game. Humans and other animals are able
to navigate such situations by relying on accurate local cues and ap-
proximate global perception for individual decisions, while coordination
on the team level emerges implicitly, resulting from the anticipation of
other players’ decisions. In this work, we study the role of global and
local information in decision-making and the interplay between them. In
an isolated example scenario, we demonstrate that an accurate decision
can be made based on the local perceptual information while the global
model is only needed to resolve ambiguities in the local view. With this,
the task of the global model is reframed from localization to a classi-
fication task that helps identify the relevant local context, significantly
reducing the demand for accuracy. We show how this approach can be
integrated with the anticipatory approach for decision-making based on
internal simulation. Preliminary experiments indicate that with this, ac-
curate and stable decision-making can be achieved without complete and
accurate global knowledge.

Keywords: decision-making - anticipation - self-localization - local per-
ception

1 Introduction

In humanoid robot soccer, robots must make rapid decisions to coordinate both
their individual actions and team behavior. Unlike other experimental setups,
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robot soccer allows for dynamic situations with a high degree of uncertainty,
making it well-suited for studying decision-making in complex situations.

In robot soccer scenarios, the decision making is mostly considered from the
perspective of team coordination in a global context, where the decisions of the
individual players are derived from general strategic decisions made for the entire
team. These decisions require a global representation, which usually includes the
positions of the robots involved in a situation and explicit communication be-
tween the players to synchronize the decisions within the team. Studies focusing
on individual decisions are sparse and typically rely on a global representation of
the situation. In addition, a large portion of studies into decision-making are lim-
ited to experiments in simulated environments. A recent survey [2] provides an
overview of decision approaches within the robot soccer domain. The survey ap-
proaches the decision-making from the perspective of “game strategies” — “team
strategies and joint decision-making processes”, and also includes approaches for
decision-making on the individual level.

Coordinated team play in human soccer seems to emerge synergetically from
individual player decisions, rather than from a global strategic plan, as supported
by recent studies such as [3] and [27]. Essentially, individual players do not “plan
for the entire team” during a game to derive their actions from the common
strategy. On the contrary, they focus on their local situation to make decisions
using the common strategy as a guideline and rely on others to act in accordance
with it as well. This separation is crucial for dealing with the high uncertainty
that the players are experiencing during a game. This approach alleviates the
need for a complete and accurate global representation of the entire game and
the need for extensive explicit negotiation between the players during a game.

In this work, we focus on individual decisions under limited perceptual infor-
mation. We argue that coordination on the team level, like passing a ball, will
emerge from individual decisions. To achieve that, individual agents need to be
able to anticipate the outcome of their actions, which can also be used to predict
the behavior and decisions of other players.

We will use an example of selecting a kick action to study the role of local
and global information in decision making. This work expands on the preliminary
discussion published in [I8] and draws from the [I7]. We propose an approach
based on anticipation and internal simulations that combines global information
about the robot’s location with local perception to enable accurate decisions
despite inaccuracies in self-localization. For this, we introduce an extension to
the predictive decision approach presented in [21120].

2 Decision-Making in Robot Soccer Scenarios

In the following, we briefly review a selection of relevant approaches for decision
mechanisms that focus specifically on the setting of robot soccer and discuss
them from the perspective of the perceptual information that is required to
make decisions.
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The most robust and widely used approaches in scenarios with real robots
remain based on probabilistic and heuristic approaches with a hierarchical struc-
ture. This structure divides the decision problem into manageable components,
like the task of positioning and path planning to approach the ball. It allows for
each of those components to be made stable. An example of such an approach
can be found in a recent study [24], where a probabilistic decision system for
team coordination for wheeled soccer robots in the RoboCup Midsize-League is
discussed. Due to their construction, the robots in the Midsize-League allow for
stable perception with a large global overview of the situation, which is not the
case for humanoid robots.

Two notable examples of decision making on a team level for humanoid robot
soccer are [§] and [26]. In [8], the authors present an approach where the selection
of a kick action is made based on stochastic simulation as part of a probabilistic
framework for team coordination. The decision relies on global knowledge of the
positions of other players. The study was conducted in an abstract simulation.
In [26], Rofer et. al. discuss a multi-layered approach to decision-making that is
deployed in real soccer games with humanoid robots. To decide on team behavior,
such as the direction of a pass, the robots rely on accurate representations of the
global positions of players from both their own and their opponent’s teams.

In robot soccer, adaptation in the form of learning is often done in simulated
environments and, in some cases, transferred to real robots. The learning archi-
tectures studied in simulated environments often do not consider the limitations
and significant uncertainty in perception that arise in real robot soccer. This
severely widens the reality gap and limits the possibility of transfer to real-world
scenarios.

In the study [15], humanoid agents learn to play soccer in a simulated en-
vironment, whereby all aspects are learned in a multi-stage process, beginning
with skills to strategic decisions. The analysis results show, in particular, that the
agents acquire an ability to predict the behavior of opponents and teammates.
The analysis also shows a positive correlation between the higher performance
of an agent and its ability to predict future game states. This approach was ex-
tended to real robots in [II], where small humanoid robots learn to play soccer
“one versus one” in an isolated environment. The robots develop and demon-
strate impressive skills such as running, getting up, and scoring goals against
each other. The uncertainty in this setup is reduced by using soft walls and
the floor to limit the chance of damage and by an external tracking system
providing robots with accurate, detailed information regarding the state of the
environment.

The study [14] introduces layered learning, a machine learning framework
designed to address complex, multi-agent tasks like robot soccer by breaking
them into a hierarchy of subtasks. For example, basic skills like moving to the
ball are first learned, followed by more advanced skills like passing and shooting.
Finally, these individual skills are combined into team strategies that require
coordination and adaptation to dynamic game situations. The approach was ap-
plied in the physical, simulated scenario in RoboCup, where their team won the
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championship over several years. In a reduced setting, the authors demonstrate
that certain specific skills, like ball interception and shooting behaviors, learned
in simulation could be transferred to real robots. This, however, required man-
ual fine-tuning to account for such aspects as actuator limitations and sensor
inaccuracies.

A number of works focus on the task of selecting an optimal kick-action.
In [6], a probabilistic approach is used to describe the kick selection problem,
which is then solved using the Monte Carlo simulation. In [8], the kick is chosen to
maximize a proposed heuristic game situation score, which reflects the goodness
of the situation. In [I], the authors use an instance-based representation for the
kick actions and employ a Markov decision process as an inference method.

3 Self-Localization in RoboCup

Self-localization is an integral component in mobile robots in general and has
been studied in RoboCup soccer since the very beginning [5[7]. It seems natural
that a robot needs to know its location in the environment to navigate and
perform tasks, and an explicit representation of the robot’s position is convenient
and universal.

Because of its universality and convenience, self-localization is often used as
a central point of the robot’s behavior and as a basis for global and local deci-
sions. This demands the self-localization to be both - stable regarding integrating
percepts from different modalities over extended periods of time, and accurate
to enable fine-grained local decisions. Trying to accommodate both demands
is challenging and might lead to either inconsistency in self-localization or low
fidelity in local navigation due to inaccurate estimation of the robot’s global
position.

This issue has been extensively studied from different perspectives: alterna-
tive state space representation and explicit detection of inconsistencies [T0J9],
questioning of the Markov Assumption [I2], analyzing and finding more stable
sensor models [19], and studying geometric stability of landmarks [I6/12] and
more recently [22].

Typically, the self-localization in RoboCup SPL is based on particle filters
(Monte Carlo approximations) [BI7J25/4] or Multi-Hypothesis approaches[23] and
[28]. Because of the limitation in computational resources, they are usually imple-
mented with a high degree of discretization, e.g., with a low number of particles
or hypotheses.

Of course, higher precision and robustness can be achieved with more sophis-
ticated approaches that would require a significant expansion of the state, e.g.,
memorizing past locations and considering correlations between individual ob-
servations, similar to approaches like Graph-Based SLAM or approaches based
on Deep Neural Networks. While such methods are available, they come with
a significantly increased complexity in implementation and computational ef-
fort, and a fundamental question remains unanswered: do we need (an accurate)
localization to make accurate decisions?



Contextual Perception for Stable Decisions 5

The classical view on predictive reasoning in space is planning. In the well-
known book “Planning Algorithms”[I3], LaValle remarks that many tasks can
be achieved without knowing the exact state. On the other hand, humans are
able to realize accurate behavior by combining rough cognitive maps for global
decisions [29] and accurate perceptual maps for local decisions.

We will demonstrate that an accurate representation of the robot’s location
is not necessary to make stable decisions, and we will show that stable and
accurate behavior can be realized with simple methods like Monte Carlo sampling
and only rough approximations of motion and sensor models. We will split the
task of representing the environment into local and global contexts. With this,
self-localization can focus on a stable estimation of the robot’s location with low
requirements for accuracy. We will reformulate the task of the global model from
the estimating robot’s global position to identification (classification) of the local
contezt. Our preliminary experiments indicate that this division can significantly
improve the stability of the robot’s decisions.

4 Localization of Decisions

Making decisions on the soccer field, like choosing a direction for a kick, requires
the robot to have a representation of the objects in its surroundings. Dynamic
objects involved in the immediate interaction, such as a ball or obstacles, are
typically represented by local models. Static objects like lines or goals are rep-
resented implicitly as part of a map, paired with the estimated position of the
robot within the map. When choosing a direction for a kick, the robot essentially
aims to control the relationship between the ball and other objects, such as the
goal (the ball needs to be inside), the outer line (the ball should not cross and
leave the field), or between the ball and an obstacle (the ball should not collide).
The interactions between the objects in the local frame can usually be es-
timated with a high level of accuracy because the objects are observed close
to each other in time and might even be directly visible in the same image of
the robot’s camera. The interactions between the ball and the static objects, like
goals, are typically done in the global frame (global field coordinates) and involve
computations based on local (ball model) and global models (self-localization).
Effectively, this corresponds to considering the relationship BF. The mismatch
implies that the robot attempts to control the relationship BG between the ball
and the goal indirectly by controlling the relationship between the ball and the
field BF. Making accurate decisions would require high accuracy in the estima-
tion of the robot’s location on the field, at least in the proximity of important
objects like goals or outer lines. On the one hand, this can be challenging to
achieve on a robot with limited resources in a dynamic game with a limited
number of observations. On the other hand, humans are able to combine only
a rough global representation with local perceptual information to make and
execute accurate decisions. In the future, we can expect robots to play on fields
with varying sizes and incomplete or unconventional features, like two backpacks
marking a goal, as in the “Any Place Challenge” in RoboCup SPL in 2014.
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Fig. 1. The left figure shows an example scenario where the robot observes a ball in
front of a line. The figure on the right shows the situation from the perspective of the
robot’s camera.
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Fig. 2. Distance between the line and the ball estimated based on the local perception
(black) and based on the global self-localization (gray) while approaching the ball.

Consider an example scenario where a robot must decide whether a ball is
inside or outside the soccer field, as illustrated in Figure [I] left. Figure [I] right
illustrates the view from the perspective of the robot’s camera. A ball is located
close to an outer line of the field, and the robot can observe both the ball and
the line.

This type of decision can play a crucial role in a real setting of robot soccer.
The ball leaving the field triggers a protocol (set-piece) that drastically changes
the situation, where a human referee manually relocates the ball to a specific
location, and a special set of rules is activated. This drastic change might in-
troduce additional uncertainty in the robot’s behavior. For instance, from the
robot’s perspective, the ball might seem to disappear and reappear at another
location, resulting in a discontinuity in the ball’s behavior. The robot can use
this decision to react adequately to the situation.

Typically, this decision could be solved by transforming the perceived location
of the ball into a global coordinate system and comparing this global position



Contextual Perception for Stable Decisions 7

Fig. 3. Situation perceived by the robot. Left: Local representations of an observed
line (green bar) and the ball (orange circle); the line is identified as “0” (red number)
- meaning ‘“right outer field line”. Right: Global situation model derived from partial
models: particle cloud models the robot’s position on the field; the lines detected in the
image are classified by the voting of the particles (blue lines with the corresponding
number of votes).

of the ball with the map of the field to determine whether the ball is inside
or outside the field area. The accuracy of this decision depends directly on the
accuracy of the estimated position of the robot. Figure 2| shows the distance
between the ball and the line computed based on the robot’s global position and
direct local perception while approaching the ball. We can see that the global
estimation is significantly less accurate than the local one.

Let’s take a closer look at the example setup Figure [1] (left) with the ques-
tion: What minimal information is needed to decide whether the ball is inside
or outside the field? If we look at the picture taken by the robot’s camera in
Figure [1] (right), we see that the ball is located on the same side of the line as
the robot. One image alone is enough to extract this information (local context).
Depending on the robot’s location on the field, the ball might be inside or out-
side of the field, or inside or outside of the goal (global context). To resolve this,
we need to know which line exactly the robot is seeing in the picture. This can
be decided based on the robot’s location on the field (global context).

The Figure [3] illustrates this inference process. On the left side in Figure [3]
we can see the relation between the ball and the line in the local coordinates
of the robot. The identifier 0 assigned to the line identifies the line as the right
outer line. On the right side in the Figure[3] we see the global context - the cloud
of particles representing possible locations of the robot is used to determine the
local context by classifying the relevant lines.

This conceptualization allows us to structure our inference based on the con-
text. In our example, metric information, like the distance between the ball and
the line, can be derived in the local context. The identity of the line is the only
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Fig. 4. Simulation of three different kicks: sampled distributions of the possible ball
positions after a left (yellow) and right (red) sidekicks, and the forward kick (cyan).

additional information that is needed from the global context. The robot’s lo-
cation on the field does not need to be known accurately to correctly identify
the line. We can allow a high level of ambiguity in the robot’s location on the
field. On the other hand, the relationship between the line and the ball can be
estimated with high fidelity based on local information. This significantly re-
duces the precision required to estimate the robot’s location and simplifies the
modeling procedure. At the same time, it significantly reduces the uncertainty
in decisions.

This approach effectively shifts the role of the global model from estimating
the robot’s position in the global context to identifying the objects and percep-
tions in the local context.

5 Predictive Decision-Making based on Internal
Simulation

In this section, we briefly summarize and extend the decision approach based
on anticipation and internal simulation introduced in [21120]. The algorithm was
tested in simulation and real games and is being used in games by the team
Berlin United in the SPL league.

The approach was implemented to decide on a kick direction. Figure [] illus-
trates an example situation where the ball is located in front of the robot, and
the robot needs to select between the three possible kick actions - kick forward,
left, or right. The decision scheme consists of three different phases: predict,
evaluate, and select.
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Fig. 5. Left: outer field line, seen by the robot’s camera; Right: local view of the robot
with the projections of detected lines and predicted results of the kicks (left - blue,
right - green, forward brown)

Predict For each kick, the robot simulates possible final locations of the ball
after the kick is executed. The simulation approximates a kick model with a
Monte Carlo sampling and a rudimentary physical simulation of the ball. It
captures only the essential aspects: the final location of the ball and collisions,
which are assumed to be non-elastic. The task of the simulation is to capture
the essence of the uncertainty in the kick action in a local situation.

Evaluate The results of the simulation of each action are evaluated according
to two separate models: (1) a value function that captures the global static
aspects of the game, e.g., closer to the goal is better, and (2) the likelihood
of discrete events own goal, opponent goal, out, field, explicitly capturing the
local situation. The value function is computed as an expected value over all
samples of the action. The likelihood of the events is computed as a relative
frequency; for this, each sample is classified and counted.

Select The selection uses the estimated likelihoods of discrete events to reject
actions with a high likelihood of scoring an own goal or the ball leaving the
field and to select an action that is likely to score a goal. If the decision
cannot be made based on the local decision model, then the expected value
is used to decide on an action.

In the experiments presented in [2120], both steps of the evaluation — the
value function and the event likelihoods — are estimated using a global model (the
robot’s location on the field and the map). The estimation of event likelihoods
captures the local situation and needs to be as accurate as possible, while the
value function captures the global aspects, like the geometry of the field and
the general strategy, and can be approximate. Thus, it makes sense to compute
the value function based on the global model (robot’s position on the field) and
estimate the likelihood of the events based on a more accurate model of the local
situation. This would require a specific model for such objects as goals and lines,
which can be challenging and would introduce an additional level of complexity.
Instead of estimating explicit local models of objects, we propose to classify the
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individual simulated particles based directly on visual perception as discussed
in Section @

Figure [5] illustrates the first experiments demonstrating the approach. The
decision of whether a ball (particle) crossed a line can be made on the visual
perception of a line. The line can be classified based on the global model (self-
localization) to decide which line it is. The self-localization does not need to be
accurate for the correct classification of the local perception.

6 Discussion

In the proposed approach, we decouple the decision-making from the global
model. Local decisions such as “ball over a line” or “ball inside goal” can be
made based on local perception alone. A global model is necessary to classify
the local perception and to evaluate the predictions when no clear event can be
predicted, i.e., the ball stays within the field. Neither of the two tasks requires
accurate self-localization, resulting in a stable and accurate decision scheme.
Our current work focuses on the formalization of the proposed approach and
experiments with different situations that might arise during a game.

In the presented framework, the decisions of others can be represented im-
plicitly through their effect on the environment and the possible outcomes of the
robot’s own decisions. From this perspective, we do not require an explicit rep-
resentation of other players; we only need to predict the effect of their possible
actions on the environment. This way, the decisions and coordination on a team
level emerge directly from the framework for individual decisions.
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