Dirac’s Difference Equation and the Physics of Finite Differences

page para line

XVII third line from bottom: m (Euler Roman Medium m, not m Slanted Roman Medium m); page 272, Eq.(9)

XVIII 13 Z (Euler Roman Medium Z); page 279, Eq.(3)

1 2 headline: 1.1 Maxwell’s Equations . . .

28 3 2 n = 3 instead of n = 4

30 2 5 39 instead of 33

33 1 6 becomes

58 in Fig.2.1-1: Ψ(y) not Ψ(z) along y-axis

72 1 first line of Eq.(20): . . . v^2 + (2 . . . not . . . v^2 = (2 . . .

73 after Eq.(29): terms in large parentheses in Eq.(18)

94 Eq.(13): replace (λ_1^2/4 + β_1^2) by (λ_2^2/4 + β_2^2)

95 Eq.(18): replace λ_1(λ_2^2 − λ_3^2 + λ_3^2)1/2/4 by λ_2/2

95 Eq.(18): replace (λ_2^2 + λ_3^2)/4 by (λ_2^2 + λ_3^2)/4

96 Eq.(24): (q_κ + Δq_κ) − (q_κ − Δq_κ)

100 Eq.(3): Change summation index κ = 0 to κ = 0

167 second line of text from bottom: Eqs.(4.1-12)–(4.1-14)

178 left part of Eq.(37): v(θ),

235 line before Eq.(1): v_{11} not v_{1}

240 caption of Table 5.3-1, see Eq.(32): k^2 = l^2(l + 1)^2/4

258 line before Eq.(76): . . . that [see Eq.(3.4-48)]:

260 Sec.6.5, line 2: . . . Eqs.(5.1-15), (5.1-17), and (5.1-18).

283 Eq.(27): (s_0^2 − 1)^2/s_0^2 = ω_mω_p

288 Left sides of Eqs.(48), (49) are determinants. () → | |

289 Left side of Eq.(50) is a determinant. () → | |