
WallBreaker - overcoming the wall effect in similarity
search

Stefan Gerdjikov
Faculty for Mathematics and

Informatics
Sofia University

5 James Bourchier blvd.
1164 Sofia, Bulgaria

st_gerdjikov@abv.bg

Stoyan Mihov
Institute of Information and

Communication Technologies
Bulgarian Academy of Science
Acad. G. Bonchev St., Block 25A

1113 Sofia, Bulgaria

stoyan@lml.bas.bg

Petar Mitankin
Faculty for Mathematics and

Informatics
Sofia University

5 James Bourchier blvd.
1164 Sofia, Bulgaria

pmitankin@fmi.uni-
sofia.bg

Klaus U. Schulz
Centrum für Informations- und

Sprachverarbeitung
Ludwig-Maximilians-
Universität München

Oettingenstr. 67
80538 München, Germany

schulz@cis.uni-
muenchen.de

ABSTRACT

In this paper we present the WallBreaker system for sim-
ilarity search as used in the String Similarity Search/Join
Competition, 2013, organized by the Humboldt University
of Berlin [1].

We consider the problem of how to efficiently find for
a given string P (pattern) all words W in a lexicon such
that the distance between P and W does not exceed a given
bound b. Classical solutions to this problem try to align P

with suitable lexicon words in a strict left-to-right manner,
starting at the left border of the pattern. During the search,
only prefixes of lexicon words are visited where the distance
to a prefix P ′ of the pattern does not exceed the given bound
b. The main problem with this solution is the so-called “wall
effect”: if we tolerate b errors and start searching in the lex-
icon from left to right, then in the first b steps we have to
consider all prefixes of lexicon words. Eventually, only a tiny
fraction of these prefixes will lead to a useful lexicon word,
which means that our exhaustive initial search represents a
waste of time.

To avoid the “wall effect”, in WallBreaker we have imple-
mented our new method presented first in [3]. To sketch it
let us assume that the pattern can be aligned with a lexicon
word with not more than b errors. Clearly, if we divide the
pattern into b+1 pieces, then at least one piece will exactly

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
EDBT/ICDT ’13, March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1599-9/13/03 ...$15.00.

match the corresponding substring of a lexicon word in the
answer set. In our approach we first find the lexicon sub-
strings that exactly match such a given piece of the pattern.
Afterwards we continue by extending this alignment, step-
wise attaching new pieces on the left or right side. For the
alignment of new pieces, more errors are tolerated at each
step, which guarantees that eventually b errors can occur.
Since at later steps the set of interesting substrings to be
extended is already small the wall effect is avoided, it does
not hurt that we need to tolerate more errors. For this kind
of search strategy, a new representation of the lexicon is
needed where we can start traversal at any point of a word.
In our new approach, the lexicon is represented as symmet-
ric compact directed acyclic word graph (SCDAWG). This
index structure can be seen as a part of a longer development
of related index structures.

Our implementation executes the search queries in paral-
lel. It is realized in ANSI C, compiled with GCC and does
not use any additional libraries beside LIBC and POSIX
threads. In average it performs a similarity search of a 100
character pattern with up to 16 errors in a lexicon with 750
000 entries in about 0.088 ms.

1. THE CONCEPT OF THE ALGORITHM
In this section we explain the idea of our algorithm using

a small example. We also characterize the kind of resources
needed to achieve its efficient implementation. Consider the
dictionary

D = {ear, real, lead}.

Suppose that for the pattern

P = dread

we want to find all words W in D such that dL(P,W) ≤ 2
where dL is the Levenshtein edit-distance.

(dread, 2)

(dre, 1)

(ad, 0)(d, 0) (re, 0)

F F
rev

F
rev

F

Figure 1: Reducing the original query (dread, 2) into

simpler ones. As a result we obtain an ordered bi-

nary tree representing search alternatives. The la-

bels of the arcs indicate what sort of filter has to be

used at the extension steps. The label F shows that

we extend to the right and thus an ordinary filter

is required, whereas the label Frev means that we

extend to the left and therefore a reverse filter has

to supervise this step. The bound that determines a

filter coincides with the threshold of the query writ-

ten in the parent node.

Let W in D such that dL(P,W) ≤ 2. When we split P =
dread into the three parts d, re, ad, then there must be a cor-
responding representation of W in the form W = W1 ◦W2 ◦
W3 such that dL(d,W1)+dL(re,W2)+dL(ad,W3) ≤ 2. Then
either dL(d,W1) = 0, or dL(re,W2) = 0 or dL(ad,W3) = 0.

In what follows, the notation (dread, 2) is used as a short-
hand for the algorithmic task to find all substrings V ∈
Subs(D) such that dL(dread, V) ≤ 2, and similarly for other
strings and bounds. The expression (dread, 2) is called a
query with query pattern dread and bound 2. Now consider
the query tree depicted in Figure 1. The idea is to solve
the problems labeling the nodes in a bottom-up manner. To
solve the problems (d, 0), (re, 0) and (ad, 0) just means to
check if d, re, or ad are substrings of lexicon words. We
then solve problem (dre, 1). This involves two independent
steps.

1. We look for extensions of the substring d (as a solution
of the left child in the tree) at the right.

2. We look for extensions of the substring re (as a solu-
tion of the right child in the tree) at the left.

It is important to note that both extension steps are con-
trolled using a Levenshtein filter, see Section 3, for bound
1 for P ′ = dre (see Figure 1). As a result we obtain the
single solution re for the query (dre, 1). The next step in
the bottom-up procedure looks at the root node (dread, 2).
Solving this node again involves two independent steps.

1. We look for extensions of the substring re (as a solu-
tion of the left child in the tree) at the right.

2. We look for extensions of the substring ad (as a solu-
tion of the right child in the tree) at the left.

At this final step we cannot avoid the use of a Levenshtein
filter for dread and bound 2. We respectively obtain (1) rea,

real and (2) ead, lead. Finally, we select those substrings
among {rea, real, ead, lead} that are words in the dictio-
nary D. Thus we obtain that the solutions of the original
query are real and lead.

The correctness of this approach and its formal outline
can be found in [3].

Remark 1.1. In order to efficiently realize a bottom-up
subsearch of the form indicated above we need

1. an index structure that supports the following tasks:

(a) given a string V , efficiently decide if V represents
a substring of a lexicon word,

(b) given a substring V of a lexicon word, give imme-
diate access to all substrings of lexicon words of
the form V ◦ σ that add one letter σ ∈ Σ to the
right,

(c) given a substring V of a lexicon word, give imme-
diate access to all substrings of lexicon words of
the form σ ◦ V that add one letter σ ∈ Σ to the
left.

2. A filter for the bound b specified at the parent node
faced at an upward step. The filter takes as first input
the query pattern P ′ specified at the parent node. Sub-
searches start with a given solution of the left (right)
child query. When adding letters to the right (left) we
use a conventional (“reversed”) filter.

We are going to consider these two issues in the following
Sections.

2. SYMMETRIC COMPACT DIRECTED

ACYCLIC WORD GRAPHS
In order to construct a data structure meeting the re-

quirements 1a and 1b, we first need to represent the set of
substrings of the lexicon, D.

The number of different substrings in a lexicon D can be
proportional to the sum of the length squares of the words in
D. Nevertheless they can be represented via an automaton
of size proportional to sum of lengths of the words in D, [2,
4].

The key observation is that one needs to store (a repre-
sentation) only of such substrings S ∈ Subs(D) which occur
in different left and in different right contexts in D, [4]. And
these substrings are only a few, [2].

We used the algorithm of Inenaga et al. [4] in order
to construct such an automaton in linear time and space.
Essentially this automaton provides the solution required
for the right extensions.

In [3], we also describe how this structure can be amended
with additional information as to satisfy requirement 1a.
Our algorithm runs in linear time and space.

As a result we obtain a data structure of linear size which
satisfies the requirements 1b and 1c.

For our example from the previous Section 1, where D =
{ear, read, lead} this structure is built for the set #D$ and
is depicted on Figure 2.

3. FILTERS
In this section we turn our attention to requirement 1c.

It asks for an efficient filter which controls that only words

0
r

1 2 4 5

6 7 8

3

r

ea

ae

ea

$
$#

#

l

l

d$

dael#

#

ead$

lead$

aer#

$

real$

ear$

dael#

laer#

rae#

l#

d$

r#

l$

#

r$

$

ae#

eal$

#

Figure 2: SCDAWG for {#ear$,#lead$,#real$}.

which have the chance to satisfy the query will be generated.
In case of Levenshtein edit-distance this can be stated as
follows [3]:

Definition 3.1. Let b ∈ N denote a given bound. By a
Levenshtein filter for bound b we mean any algorithm that
takes as input two words P, U ∈ Σ∗ and decides

1. if there exists a string V ∈ Σ∗ such that dL(P,U ◦V) ≤
b,

2. if dL(P,U) ≤ b.

In what follows we briefly revisit three different kinds of
Levenshtein filters which correspond to different trade-offs
between space and time.

3.1 Ukkonen dynamic programming scheme
In [8] Ukkonen presents a dynamic programming scheme

which given two words P and W and a bound b determines
whether dL(P,W) ≤ b and if this is the case it also provides
the edit-distance dL(P,W). The problem is reduced to the
computation of a strip of length 2b+1 along the main diag-
onal of a matrix of size |P |×|W |. In this way the Ukkonen’s
algorithm requires only linear space but the time required
by the algorithm is O(bmin(|P |, |W |)).

3.2 Levenshtein automata
The deterministic Levenshtein automata [7, 5, 6] are uniquely

determined by a bound b and do not depend on the specific
alphabet, see Figure 3. Their alphabet consists of bit vec-
tors of length at most 2b+2. Given two words P and W the
problem whether dL(P,W) ≤ b is reduced to the problem
whether a sequence of bit vectors χ(W,P) is recognised by
the deterministic Levenshtein automaton determined by the
bound b. The sequence of bit vectors χ(W,P) is computed
from W and P in linear time O(b|P |) and the traversal of
the automaton then requires O(|W |) time. Furthermore if
χ(W,P) is recognised by the Levenshtein automaton, one
can read the value dL(P,W) from the final state reached by
the traversal. Thus Levenshtein automata spare a constant
factor in comparison to the Ukkonen’s algorithm, but the
space required for their storage grows exponentially with b.

Figure 3: The deterministic Levenshtein automaton

for b = 1

3

1

2

(a,a)

(b,b)

(b,$)

($,a)

($,b)

(a,$)

(b,b)

(a,a)

8

(b,a)

13

(a,b)

4

(b,$)

(a,a)

(b,b)

7

(b,a)

6

(a,$)

(b,b)

(a,a)

5

(a,b)

($,b)

(a,$)

(a,a)

10

(b,b)

14

(a,b)

($,b)

(a,a)

(b,b)

0

(a,b)

12

($,a)

(b,b)
(a,a)

11

(b,a)

($,a)

(b,$)

(b,b)

(a,a)

9

(b,a)

($,a)

(a,a)

(b,a)

($,b)

(a,b)

(b,b)

(a,$)

(a,a)

(a,b)

(b,$)

(b,a)

(b,b)

($,a)

(b,$)

(a,a)

(b,b)

(b,a)

($,b)

(a,$)

(b,b)

(a,a)

(a,b)

Figure 4: The synchronised Levenshtein automaton

for b = 1

3.3 Synchronised automata
Given a bound b and an alphabet Σ, the synchronised

automata [6] recognise pairs of words 〈P,W 〉 over Σ such
that dL(P,W) ≤ b, see Figure 4. The alphabet of the syn-
chronised automaton is (Σ ∪ $) × (Σ ∪ $) where $ is a new
character and they are deterministic with respect to this al-
phabet. Thus the property dL(P,W) ≤ b can be tested in
time O(min(|P |, |W |) + b) and hence is a factor of b faster
than the equivalent Levenshtein automaton or the Ukko-
nen’s algorithm. However being dependent on the size of
the alphabet Σ they require much more space than the de-
terministic Levenshtein automaton for the same bound.

4. IMPLEMENTATION DETAILS
As explained in [3] the bottom-up search can be equiva-

lently replaced by a depth-first search. This choice is deter-
mined by the space constraints during the search. In this
way we need only O(|P |) additional space per query word P .
However some of the answers of the query may be reported
more than once.

WallBreaker is implemented in ANSI C and can be com-
piled with GCC. For the creation of the SCDAWG we do
not use any additional libraries beside LIBC. For parallel
processing of queries we use POSIX threads. The imple-
mentation was tested on Fedora 17 and Mac OS X 10.6.6.

5. EXPERIMENTAL RESULTS
We tested WallBreaker on the 5% excerpt of the genom

reads provided by the organizers of the competition, [1], -
750 000 strings, average length per string - 100, alphabet
size - 5. The experiments were run on a machine with 64
gygabytes of RAM, two 2.4 GHz Quad-Core Intel Xeon 4-
core processors, 256 KB L2 cache memory per core and 12
MB L3 cache memory per processor. The construction of
the SCDWAG took 324 seconds and the allocated memory
was 2623.13 MB. We generated 100 000 query patterns by
applying random insertions, deletions and substitutions to
strings from the 5% excerpt of the genom reads. The number
of errors was randomly choosen from the set {0, 4, 8, 12, 16}.
The generated 100 000 patterns were processed for 8.794
seconds using 16 threads.

Further experimental results can be find in Section 6 in [3].
There the authors report tests conducted on different datasets
and also communicate query times.

6. ACKNOWLEDGEMENTS
The research work reported in the paper is partly sup-

ported by the project CULTURA“CULTivating Understand-
ing and Research through Adaptivity”, grant 269973, funded
by the FP7 Programme (Specific Targeted Research Projects)
and the project AComIn “Advanced Computing for Inno-
vation”, grant 316087, funded by the FP7 Capacity Pro-
gramme (Research Potential of Convergence Regions).

7. REFERENCES
[1] http://www2.informatik.hu-berlin.de/~wandelt/

searchjoincompetition2013.

[2] A. Blumer, J. Blumer, D. Haussler, R. McConnell, and
A. Ehrenfeucht. Complete inverted files for efficient
text retrieval and analysis. Journal of the Association
for Computing Machinery, 34(3):578–595, 1987.

[3] S. Gerdjikov, S. Mihov, P. Mitankin, and K. U. Schulz.
Good parts first - a new algorithm for approximate
search in lexica and string databases. ArXiv e-prints,
Jan. 2013.

[4] S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda,
S. Arikawa, G. Mauri, and G. Pavesi. On-line
construction of compact directed acyclic word graphs.
Word Journal Of The International Linguistic
Association, 146(2):1–12, 2005.

[5] S. Mihov and K. U. Schulz. Fast approximate search in
large dictionaries. Computational Linguistics,
30(4):451–477, 2004.

[6] P. Mitankin, S. Mihov, and K. U. Schulz. Deciding
word neighborhood with universal neighborhood
automata. Theoretical Computer Science, 412(22):2340
– 2355, 2011.

[7] K. U. Schulz and S. Mihov. Fast string correction with
Levenshtein automata. IJDAR, 5(1):67–85, 2002.

[8] E. Ukkonen. Algorithms for approximate string
matching. Information Control, 64:100–18, 1985.

