
Cache-Aware Parallel Approximate Matching and Join
Algorithms Using BWT

Jiaying Wang
College of Information Science

and Engineering,
Northeastern University,
Liaoning 110819, China

wangjiaying@research.neu.

edu.cn

Xiaochun Yang
College of Information Science

and Engineering,
Northeastern University,
Liaoning 110819, China
yangxc@mail.neu.edu.cn

Bin Wang
College of Information Science

and Engineering,
Northeastern University,
Liaoning 110819, China
binwang@mail.neu.edu.cn

ABSTRACT

Nowadays, approximate string search and join, as essential
operations in data integration and cleaning, has attract-
ed significant attentions in academic. In this paper, we
study string similarity search and join with edit distance
constraints. Although multicore machines have become the
mainstream computer architecture, most existing methods
only work on a uniprocessor. To address this problem, we
propose a novel parallel framework using BWT. We also de-
vise efficient technique to utilize cache to further speed up
the performance. Our method can solve similar search and
join efficiently and generally. We conducted a comprehen-
sive experimental study of our method to demonstrate the
efficiency.
Keywords:Approximate string search, Similarity join, Ed-

it distance, BWT

1. INTRODUCTION
There are so many applications where we would like to

find approximate pattern matches, rather than exact oc-
currences. In practice, the approximate pattern matching
algorithms are very useful. For example, searching a text
database with keywords may have spelling errors. So pro-
viding approximate results may be more satisfying to users.
And approximate pattern matching has already been used
as powerful tools in the study of genomes, such as sequences
alignment of a DNA sequence.
Approximate string matching typically contains two sub-

problems: Finding approximate strings inside a string collec-
tion and approximate strings matches inside a given string.
In this paper, we focus on solve the former problem, and
leave the latter problem to future work.
There are many similarity functions to measure distance

between two strings, such as edit distance, jaccard similarity,
cosine metrics and so on. In this paper, we will focus on edit
distance, which is the most common metric method.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT/ICDT’13 March 18 - 22, 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1599-9/13/03 ...$15.00.

Approximate string search usually takes advantage of ex-
act match to select candidates, and verifies these candidates
to get the answer. Therefore we can improve the two pro-
cesses to boost the overall performance. To improve the
candidate selection, we take advantage of an improved BWT
index to get exact match substrings. To improve the veri-
fication, we utilize a look ahead method to optimize the
computation.

Nowadays, multicore machines have become the main-
stream computer architecture. Combining with the mul-
ticore technique, we could accelerate the approximate string
matching. However, most current methods still only work on
single core, which enlightens us to devise a multicore frame-
work. Another important component people often ignore is
the cache. Cache is smaller but faster than memory. Try to
re-use the data which are already in cache can help us to get
extra performance.

Challenge: The challenge of this work is to develop an
efficient cache-aware algorithm on a multicore machine to
support approximate string search and join.

Contributions: We make the following contributions in
the paper.

• We propose a cache-aware multicore framework to sup-
port approximate string search and join using BWT.

• We devise efficient pruning techniques to improve the
performance.

• We develop a look ahead algorithm to support bound-
ed edit distance and improve the verification of the
candidate strings.

• We have implemented our method. And the experi-
ment shows the efficiency of our method.

Related work: Existing methods to address the problem
include metric space-based methods, signature-based meth-
ods and trie-based methods.

• The metric space-base methods take the advantage of
triangle inequality property to prune dissimilar strings
in metric space. These methods include BK-Tree [1],
VP-Tree [2] and M-Tree [3].

• The signature-based methods usually use a filter-and-
refine framework. In filter phase, these methods will

generate candidate pairs based on signature; In re-
fine phase, these methods will verify the candidates
to get the answer. Many strategies were proposed
to increase the filter capability. These methods in-
clude Part-Enum [4], All-Pairs-Ed [5], DivideSkip [6],
Vgram [7, 8], Ed-Join [9], Qchunkgram [10], and
PassJoin [11].

• The trie-based methods use a trie structure to take the
advantage of common prefixes of the strings to reduce
repeate computations [12].

There have been many studies on backward search on
BWT [13, 14, 15, 16, 17]. The method has been used in
bioinformatics to solve sequence alignment problem [18, 19].
We organize the rest of the paper as follows: We introduce

all associated vocabularies and structures and give the prob-
lem definitions in Section 2 and propose a query algorithm
using a BWTPA structure in Section 3. Many improvements
on the basic framework are proposed in Section 4. Approx-
imate string join method is studied in Section 5. There are
experimental results in Section 6. Finally, we summarize our
conclusion in Section 7.

2. PRELIMINARIES
We represent the text collection C as T1, T2...Tk. And

Ti contains |Ti| characters over an ordered alphabet Σ =
{c1, c2...c|Σ|}, where |Σ| is the size of the alphabet. We
represent the pattern to be searched for as P , which contains
|P | characters over the same alphabet Σ.

Edit Distance: Edit distance sometimes is called Lev-
enshtein distance. Given two strings S1 = a1a2...am and
S2 = b1b2...bn. The problem is to find the minimum number
of edit operations to transform S1 to S2. The operations are
insertion, deletion and substitution.
Edit distance can be obtained by a dynamic programming

algorithm. We define d(i, j) to be the edit distance between
the prefix string S1[1...i] and S2[1...j]. The recurrence rela-
tion is

d(i, j) = min







d(i− 1, j) + 1
d(i, j − 1) + 1
d(i− 1, j − 1) + c(i, j)

(1)

where c(i, j) = 0 if ai = bj ; otherwise c(i, j) = 1.
We define ed(S1, S2) to be the edit distance of the two

strings, then ed(S1, S2) = d(m,n).

Approximate String Search: Given a text collection C, a
pattern P , and threshold τ , the problem is to find all Ti ∈ C
such that ed(P, Ti) ≤ τ .
For example, consider the set of strings shown in Fig-

ure 1(a). We want to search the patterns according to
thresholds in Figure 1(b). Searching the first pattern Ma-

jaura and τ = 1 will yield 1 : {2, 5} as the result.

Approximate String Join: Given a text collection C,
and threshold τ , the problem is to find all pairs Ti ∈ C,
Tj ∈ C, such that the ed(Ti, Tj) ≤ τ and i 6= j.1

For example, suppose we have a set of strings as in Fig-
ure 1(a), and want to find all similar pairs with a given

1We focus on self join in this paper.

id Strings
1 Dehri
2 Majaura
3 Deghli
4 lodna
5 Madhura

(a) Strings.

id Strings τ
1 Madaura 1
2 muradgy 2
3 Madghuhra 2

(b) Patterns.

Figure 1: A set of strings, patterns and threshold.

threshold. If τ = 2, we can get {1, 3} and {2, 5} as the
result.

Suffix Array: Given a string S, its suffix array SA records
the start positions of all the suffixes of one string. Since
the suffixes are sorted lexicographically, SA[i] is the start
position of rank i suffix based on the lexicographical order.

BWT: Given a string S, BWT is permutation of S. We
use array L as the result of the transform. The relationship
of L and SA is:

L[i] =

{

T [SA[i]− 1] if SA[i] 6= 0,
$ if SA[i] = 0.

(2)

3. AN APPROXIMATE STRING SEARCH

ALGORITHM
In this section, we propose an algorithm on approximate

pattern matching with the help of Burrows-Wheeler Trans-
form, which can help to efficiently query substrings. Before
giving the algorithm, we introduce our new index BWTPA.

3.1 Improving BWT Index
As we know, BWT is a transform which can support sub-

string search. However, we want to search inside a text
collection, not a string. Therefore we propose a new data
structure called BWTPA to keep BWT and the id informa-
tion of strings. BWTPA index contains two parts, a BWT
array and a position array PA. PA[i] records the string id
of every SA[i]. Therefore we do not need the SA array any
more, and replace the SA with PA. We use B to represent
BWTPA, such that B = L + PA.

We concatenate the strings in collection C with a special
character“$” and add another special character “#” to the
end the last string2.

For instance, suppose there are five words in the collection
C:Dehri, Majaura, Deghli, lodna, Madhura. We concatenate
the words and get the following text:

Dehri$Majaura$Deghli$lodna$Madhura#

Transforming the text can yield the SA as follows:
34 13 26 5 20 14 0 27 6 33 12 25 28 7 9 29 23 15 1

16 17 2 30 4 19 8 18 21 24 22 32 11 3 31 10,

and the corresponding BWT is:

aaaii$#$$rrnMMjaoDDegedrlah$dluuhha

We transform the SA and get the following PA:

2In practice, we use “\n” as “$”, and “\0” as “#”, user can
change it to any other characters c 6∈ Σ.

��������������	�A�B�A�C���A�������D���E�����E�F�����A���	�A�����C�����A�

������D���E�����E�F�����A���	�A�����C���A���������������	�A�B�A�C�����A�

��	�A�����C���A���������������	�A�B�A�C���A�������D���E�����E�F�������A�

��	�A�B�A�C���A�������D���E�����E�F�����A���	�A�����C���A���������������

��E�F�����A���	�A�����C���A���������������	�A�B�A�C���A�������D���E�����

����D���E�����E�F�����A���	�A�����C���A���������������	�A�B�A�C���A�����

������������	�A�B�A�C���A�������D���E�����E�F�����A���	�A�����C���A�����

	�A�����C���A���������������	�A�B�A�C���A�������D���E�����E�F�����A�����

	�A�B�A�C���A�������D���E�����E�F�����A���	�A�����C���A�����������������

A���������������	�A�B�A�C���A�������D���E�����E�F�����A���	�A�����C�����

A�������D���E�����E�F�����A���	�A�����C���A���������������	�A�B�A�C�����

A���	�A�����C���A���������������	�A�B�A�C���A�������D���E�����E�F�������

A�����C���A���������������	�A�B�A�C���A�������D���E�����E�F�����A�����	�

A�B�A�C���A�������D���E�����E�F�����A���	�A�����C���A�����������������	�

A�C���A�������D���E�����E�F�����A���	�A�����C���A���������������	�A���B�

����C���A���������������	�A�B�A�C���A�������D���E�����E�F�����A���	���A�

����A���	�A�����C���A���������������	�A�B�A�C���A�������D���E�����E���F�

��D���E�����E�F�����A���	�A�����C���A���������������	�A�B�A�C���A�������

����������	�A�B�A�C���A�������D���E�����E�F�����A���	�A�����C���A�������

D���E�����E�F�����A���	�A�����C���A���������������	�A�B�A�C���A���������

��E�����E�F�����A���	�A�����C���A���������������	�A�B�A�C���A���������D�

��������	�A�B�A�C���A�������D���E�����E�F�����A���	�A�����C���A���������

��C���A���������������	�A�B�A�C���A�������D���E�����E�F�����A���	�A�����

����	�A�B�A�C���A�������D���E�����E�F�����A���	�A�����C���A�������������

����E�F�����A���	�A�����C���A���������������	�A�B�A�C���A�������D�����E�

B�A�C���A�������D���E�����E�F�����A���	�A�����C���A���������������	���A�

E�����E�F�����A���	�A�����C���A���������������	�A�B�A�C���A�������D�����

E�F�����A���	�A�����C���A���������������	�A�B�A�C���A�������D���E�������

��A���	�A�����C���A���������������	�A�B�A�C���A�������D���E�����E�F�����

F�����A���	�A�����C���A���������������	�A�B�A�C���A�������D���E�������E�

��A���������������	�A�B�A�C���A�������D���E�����E�F�����A���	�A�������C�

��A�������D���E�����E�F�����A���	�A�����C���A���������������	�A�B�A���C�

������	�A�B�A�C���A�������D���E�����E�F�����A���	�A�����C���A�����������

C���A���������������	�A�B�A�C���A�������D���E�����E�F�����A���	�A�������

C���A�������D���E�����E�F�����A���	�A�����C���A���������������	�A�B���A

�� ���

��

��

��

�

��

��

�

��

�

��

��

��

��

�

�

��

��

��

�

��

��

�

��

�

��

�

��

��

��

��

��

��

�

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
��

�

�

�

�

�

�

�

�

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

Figure 2: BWTPA data structure.

5 2 4 1 3 3 1 5 2 5 2 4 5 2 2 5 4 3 1 3 3 1 5 1 3

2 3 4 4 4 5 2 1 5 2.
We can see that PA[0] = 5, which means SA[0] = 34

belong to the 5th word. Fig. 2 shows a example of BWTPA
data structure. Note that we only need L and PA.

3.2 A BWTPA Based Approximate String
Search Framework

Our approximate string search algorithm is based on a
partition approach. Suppose we have a pattern P and a
threshold τ . We decompose P to τ +1 chunks S. Then if P
matches the text with at most τ errors, at least one of the
parts will match a substring of the text exactly. We can use
this feature to prune many dissimilar strings. As we know,
short pattern usually appears with higher probability than
long one, so we segment P to the same length L, where

L = |P |
τ+1

. If there is a remainder r = |P |%(τ + 1), we
calculate the length of ith segment as Equation 3.

Li =

{

L+ 1 if 1 ≤ i ≤ r,
L if r + 1 ≤ i ≤ τ + 1.

(3)

As we know, if pattern P is similar to a string Ti in C, a
segment of P should match a substring of Ti exactly. We
take the advantage of BWT backward search algorithm to
do the job. Then, we can access the PA array to get the
candidate string id i, and verify it to get the answer.
We depict the basic process in Algorithm 1. We first seg-

ment the pattern P to τ + 1 segments (line 1). Then we

Algorithm 1: Searching Pattern using BWTPA

Input: BWT L, Position array PA, Pattern P ,
Threshold τ

Output: A = {Ti ∈ C | ed(P, Ti) ≤ τ }

1 P = segment(P , τ + 1);
2 foreach element s ∈ P do

3 pair〈l, h〉 = backwardSearch(L, s);
4 if l ≤ h then

5 for j ← l to h do

6 Candidate← Candidate ∪ TPA[j];

7 A ← verify(Candidate, P, τ);
8 return A;

Procedure segment(P , n)

Input: Pattern P , Segment number n
Output: P = {S1S2..Sn}

1 L = |P |/n;
2 r ← |P |%n;
3 for i← 1 to r do

4 P ← L+ 1

5 for i← r + 1 to n do

6 P ← L

Procedure backwardSearch(L, S)

Input: BWT L, String S
Output: pair〈l, h〉

1 l← 1, h← L.length;
2 for i← s.length to 1 do

3 l← C[S[i]] +Occ(L, S[i], l − 1) + 1;
4 h← C[S[i]] +Occ(L, S[i], h);
5 if l > h then

6 break;

7 return pair〈l, h〉 ;

Procedure verify(Candidate, P , τ)

Input: Candidate Candidate, Pattern P , Threshold τ
Output: A = {Ti ∈ C | ed(P, Ti) ≤ τ }

1 foreach element Ti ∈ Candidate do

2 if ed(Ti, P) ≤ τ then

3 A ← A∪ i ;

4 return A;

search each segment in our BWTPA data structure to get
the range of occurences as depicted in line 3. We insert each
PA value in the range to get candidate set(line 5- 6). We
verify the candidate set to get the answer(line 7).

For instance, consider string set in Figure 1(a). We search
pattern Madaura with τ = 1 as depicted in Figure 2. First,
we segment the string Madaura to Mada and ura. We search
Mada to get an empty range and search ura to get range
〈34, 35〉. Second, we can retrieve corresponding string id
{2, 5} as the candidate set. Third, we verify the candidate
set to get the eventual result {2, 5}.

4. IMPROVING APPROXIMATE STRING

SEARCH
In this section, we propose strategies to accelerate the

basic approximate string search algorithm.

4.1 A Cache-aware Parallel Optimization
Framework

Cache-aware Optimization: As we know, if the recent
accessed data can be hit in cache can help to save a lot of
time to access the memory. Figure 3 shows access time of
different parts of hardware in the computer system. We can
find that cache is smaller but faster than memory. In this
section, we propose a cache-aware optimization framework
to accelerate the approximate search process.

���������

��	ABCD�

�E	ABCD�

F�����

����

�������	��

����	��

���E��	��

������������

Figure 3: Access time of different parts of hardware.

Our cache-aware optimization strategy is based on dis-
jointed partition of the text collection C. Consider cache
size is M , we segment the C to partitions {C1, C2...Cn}, and
build BWTPA index on each partition {B1, B2...Bn}. We
guarantee that sizeof(Bi) ≤M , for 1 ≤ i ≤ n.

��������	AAA

���

��

B�C�D��EF���

�����

���������EAAA

��

�E��

�����

B�C�D��EF�����

�� �	

B�C�D��EF��A B�C�D��EF��B

����������

AAA �����C��DAAA

�C

AAA

���

B�����E���

Figure 4: Assigning tasks to multicore.

Optimizing Approximate Processing Using a Multi-

core Processor: To take advantage of the multicore re-
source, we utilize the multi threads technique. The straight-
forward assignment is to assign each work of a block to a core
statically. However, as we can see that the work loads on
different blocks could be different, assigning the tasks to d-
ifferent cores dynamically is more desired. We consider each
thread as a worker in a factory. We adopt the pull model –
a idle worker fetches the next block of index automatically.
We maintain a counter to record the current block id to pre-
vent the same task to be assigned to other workers. Since
we segment the text collection C without common strings,

each thread will not need to synchronize during the search-
ing process. For long run search, every worker undertakes
similar amount of work.

Figure 4 shows an example of assigning tasks to 4 workers.
Worker1 has finished the task of B1, it currently search on
B2. worker2 has finished two smaller tasks of B3 and B5.
Each worker has finished similar amount of work.

4.2 Pruning Techniques

Length Filtering: Consider two strings S1, S2, if ed(S1, S2)
≤ τ , the length |S1| and |S2| must be within τ . With this
property, We can prune many dissimilar strings. To make
its utilities to further extent, we sort the strings in C based
on their lengths, and tag each block with a length range
[lmin, lmax]. The possible length range of pattern P with τ
is [|P | − τ, |P | + τ]. We search the block only if there is a
common range between block tag [lmin, lmax] and possible
length range [|P | − τ, |P |+ τ]. To accelerate the locating of
the corresponding blocks, we use binary search algorithm.

For instance, if we search Dehli with τ = 1 in Figure 1(a).
The possible length range [|P |−τ, |P |+τ] = [4, 6]. The only
possible block that can report answer is block 1. Therefore
we can skip other blocks safely. Figure 5 shows the example
of locating the possible blocks.

�������������� 	ABAC�AD	E��� F�����E����D���

���������������E�� �� �����

	AC����E��D���

����	A���	ABC�

�������� ��D������� ���

������ �������

������

���

������ �������

���

��� ���

Figure 5: Sketch of locating a possible block.

Position Filtering: Position Filtering takes the advan-
tage of position information to prune many dissimilar strings.
Consider two strings S1, S2, and ed(S1, S2) ≤ τ . If we par-
tition the S1 to τ + 1 segments, there must be one of the
segment si match a substring start at j position of S2, such
that the start position of si and j must be within τ .

As we can see that the matched segment separate a string
to three parts: prefix, matched segment, and suffix. The
traditional position filter only considered of the prefix posi-
tion, actually there is a symmetrical suffix position filter. In
this section, we consider both the prefix and suffix position
filter.

For instance, if we search muradgy with τ = 2 in Fig-
ure 1(a). It will be partitioned to three segments mur ad

and gy. Madhura will be selected as a candidate, since the
second segment ad can be found in Madhura, and the total
length difference is 0. However we can also prune it as fol-
lows. If we match ad of the two strings, Madhura will be
segmented to M, ad, and hura. We can see that ed(M, mur)
≥ 2 and ed(gy, hura) ≥ 2 based on length filtering, thus the
total edit distance must be greater than or equal to 4. So
Madhura can be safely pruned.

4.3 Optimizing Search Processing for Multi-
ple Queries

In this section, we optimize the search processing for mul-
tiple queries. It is common that queries might share the
same segments. Taking advantage of this property, we want
to avoid the search processing for those duplicated segments
of queries.
Consider that some patterns may share the same segment.

We would like to search only once for these identical seg-
ments. Since we use the backward search algorithm of BWT,
we need to reverse segments. By partitioning each string to
τ +1 segments and inserting the reversed segment, we build
a reversed segment trie to merge the identical segments.

�����

������

���	A

���	A

������

BC	A�DE C

F

�

F

F

�

��

F

�

�

�

�

(a) Queries.

�

�

�

�

�

�

��������

�

�

�����

�

	

�A

�� ��

�� �����

�

�

��

�

�

��

(b) Reverse segment trie.

Figure 6: Reverse segment trie on multi query.

For instance, we want to search the patterns in Figure 6(a).
We start from the first string lodna. Since τ = 1, we parti-
tion it to two segments lod and na. We insert the dol and
an to the reverse segment trie. Then we process the other
strings in the same way.

4.4 An Improved Look Ahead Verification Ap-
proach for Bounded ED

In this section, we focus on improving the verification step.
Consider two strings S1 and S2. A straightforward method
to verify ed(S1, S2) ≤ τ is to compute the actual edit dis-
tance of the two strings using dynamic programming. How-
ever, there is no need to compute the true edit distance of
the two strings. There is a bounded edit distance algorith-
m only consider the cells within τ distance from the main
diagonal[20]. The idea is that since each insert or delete
a character will increase 1 to edit distance, so all the val-
ue of cells beyond τ distance from the main diagonal are
large than τ . It can help us to improve the verification from
O(|S1| × |S2|) to O(τ ×min(|S1|, |S2|))

3.
We take advantage of look ahead method to improve the

bounded edit distance algorithm. When we come to current
cell located at (i,j) on the edit distance matrix, we compute

3Bounded edit distance also improves the space from
O(|S1| × |S2|) to O(τ).

the current value Vij , and look ahead to get the maximum
possible edit distance Vmax = Vij +max(|S1|, |S2|) and min-
imum possible edit distance Vmin = Vij + ||S1|−|S2|− i+j|.
There are two cases to finish the computation early.

Case 1: If any Vmax ≤ τ , we can stop the computation and
report that ed(S1, S2) ≤ τ .

Case 2: If Vmin > τ for all the columns, we can stop the
computation and report that ed(S1, S2) > τ .

Figure 7(a) shows the first case. there are two strings
similarly and similalry. We want to check if τ ≤ 3, and we
can see that there is a 0 in the shadow cell, and we look
ahead the maximum possible error is 3. Therefore we can
safely skip extra computation to be sure that ed(similarly,
similalry) ≤ 3. Figure 7(b) shows the second case. For two
strings reference and different. We want to check if τ ≤ 3.
We can find that only one cell of shadow column contains
Vij ≤ 3. However, we look ahead the minimum possible
error is 1. Sum the current error 3 and minimum look ahead
error 1, we will get τ ≥ 4. Therefore we can safely skip extra
computation to be sure that ed(reference, different) > 3.

� � � � � � � � �

�

�

�

�

�

�

�

�

�

�

	

A

B

C

D

E

	

A

B

C

D

F

�

A

B

C

D

F

�

�F �

�

�

�

� �

F

	

B

C

D

F

�

�

�

F

A

C

D

F

�

�

�

C

F

B

�

�

�

F

B

C

C

F

�

A

C

B

D

�

�

�

F

D

C

	

B

A

D F

F

�

F

D

C

B

�

A

	

F

F

F

D

C

B

A

E

	

�

D

D

D

�

�

F

D

F

D

(a) Case 1.

� � � � � � � � �

�

�

�

�

�

�

�

�

�

	

A

B

C

D

E

F

A

B

C

C

D

E

	

B

C

C

D

D

E

�� �

�

�

�

� �

�

A

B

B

C

D

E

�

E

E

A

B

C

D

E

E

E

D

D

A

C

C

B

D

E

D

D

C

C

B

B

B

C

E

D

C

C

B

B

A

A

A

D D

D

C

B

B

A

A

	

	

	

C

C

B

A

A

	

	

F

F

F

E

D

C

D

C

D

E

D

D

(b) Case 2.

Figure 7: Bounded look ahead verification.

5. APPROXIMATE STRING JOIN

ALGORITHMS
In this section, we focus on the approximate string join

problem. The main difference between the approximate
string search and join is that the query pattern is the same
with text collection.

5.1 An Incremental Approximate String Join
Algorithm

Consider two strings S1 and S2. If ed(S1, S2) ≤ τ , we
know that ed(S2, S1) ≤ τ for sure. We can improve the
join process by removing the symmetrical case. Instead of
searching the whole text collection C for each string, we
search the subset, which contains smaller string ids than
current string id. However, the strings in BWTPA index
are unordered. Note that we have partitioned the text col-
lection C to small portions {C1, C2...Cn}. Although BWTPA
index is unordered, these portions do have order. We tag
each portion Ci with the first string id T f

i in Ci.
Algorithm 2 gives the pseudo-code of the incremental ap-

proximate join. We first construct a BWTPA index for all
the strings in C (line1). For all the strings, we use binary

search to locate the corresponding block, which is the first
block contains some strings with length less than or equal
to the current string’s length minus τ (line 3). Then we
segment the current string to τ + 1 segments (line 4). The
search process can be early terminated if we reach a block
to have all strings’ lengths ≥ current string length plus τ ,
or the first string id is greater then current id (line 6). We
backward search these blocks just as the approximate search
algorithm to get candidates (line 8 - 12). We verify these
candidates to get the result (line 14).

Algorithm 2: Incremental Approximate Join Algorithm
using BWTPA

Input: Text collection C, Threshold τ
Output: A = {〈Ti, Tj〉 ∈ C ⊲⊳ C | ed(Ti, Tj) ≤ τ }

1 BWTPA ← buildBWTPA(C) ;
2 foreach Ti in C do

3 k = binarySearch(lmax, |Ti| − τ) ;
4 P = segment(Ti, τ + 1);
5 while k < n do

6 if lmin
k > |Ti|+ τ | i < T f

k then

7 break ;

8 foreach element s ∈ P do

9 pair〈l, h〉 = backwardSearch(Lk, s);
10 if l ≤ h then

11 for j ← l to h do

12 Candidate← Candidate ∪ T k
PA[j];

13 k++;

14 A ← verify(Candidate, Ti, τ);

15 return A;

5.2 A Trie-based Approximate String Join
Algorithm

Incremental approximate string join algorithm has to back-
ward search every string in the text collocation C, which is
inefficient when the string collection is big. However we do
not need to computer these strings one by one. Instead
we build a trie for the reversed segments of these strings.
Backward searching all these strings as a whole string col-
lection can help us to avoid unnecessary repetitive compu-
tations. Figure 8 shows the reversed segment trie based on
Figure 1(a). We segment each string in C, and insert the
reversed segments to trie. We add the id of these strings to
the leaf nodes of the trie.

� ��� �

� ��

�

	

A

�B

�

C

D

C

D

E

B

�

�

	

��

��

��

����� �� ����

��

��

Figure 8: Reversed segment trie on text.

Algorithm 3: Trie-based Approximate Join Algorithm
using BWTPA

Input: Text collection C, Threshold τ
Output: A = {〈Ti, Tj〉 ∈ C ⊲⊳ C | ed(Ti, Tj) ≤ τ }

1 BWTPA ← buildBWTPA(C) ;
2 T ← new Trie ;
3 foreach Ti in C do

4 P = segment(Ti, τ + 1);
5 foreach element s ∈ P do

6 revs = reverse(s) ;
7 insert(T , revs) ;

8 S ← new Stack;
9 l← 1;

10 h← L.length;
11 Let r denote the root of Trie T .;
12 S.push(r);
13 p← r.firstchild ;
14 while S is not empty do

15 while p is not null do
16 p← S.top ;
17 l← C[c] +Occ(L, c, l − 1) + 1;
18 h← C[c] +Occ(L, c, h);
19 if p is a leaf node then

20 for j ← l to h do

21 Candidate← Candidate∪ 〈p.id, PA[j]〉;

22 S.push(〈p, l, h〉);
23 c← p.firstchild ;

24 〈p, l, h〉 = S.pop();
25 p← p.nextsibling ;

26 verify’(Candidate, τ) ;
27 return A;

Algorithm 3 gives the pseudo-code of the trie-based ap-
proximate join. Different from the incremental method, the
trie-based method builds a trie initially, and inserts all the
reversed segments of the strings in C to trie(line 2 - 7). We
use a stack to depth-first traverse of the trie. Initially, we
set a range 〈l, h〉 to cover the whole text collection C (line 9
- 10). When reach a node with character c, we use c to up-
date the old range 〈l, h〉 (line 17 - 18). When reach a leaf
node, we can get the candidate pair, which is the current
node id and corresponding string id based on position array
(line 21). Then we push the triple 〈p, l, h〉 to the stack, and
verify all the candidate pairs to get the answer (line 26).

5.3 Pruning techniques
All the pruning methods given in Section 4.2 can be com-

bined to the incremental method and the trie-based method.
We increase a new count filter based on self join.

Count Filtering: Each string is the same to itself, so we do
not need to verify the pair with identical string id. Consider
a range 〈l, h〉, l is the position of the first occurrence of
the substring based on lexicographical order, and h is the
position of the last occurrence of the substring. When l
equals to h, we can safely skip the current branch, since
there is only one string in the range, which must be the
same string.

6. EXPERIMENTS
We have implemented our method and conducted experi-

mental studies on three real data sets:

(1) Geographical name data, which contains 400, 000 names
of cities from all over the world4.

(2) DBLP author data, which contains 612,781 author’s
name from the DBLP computer science bibliography5.

(3) Human genome read data, which contains 750,000 genome
reads of human.

Table 1 shows the detail information of the data sets. Fig-
ure 9 gives the string length distributions of the data sets.

Table 1: Data sets.
Data sets count Avg Len Max Len Min Len
Geonames 400,000 10.106 60 1
Authors 613,542 13.815 46 4
reads 750,000 100.388 106 86

We have implemented all the methods in this paper. All
the algorithms were implemented in C++ and compiled with
G++ 4.4.5 with -O3 flags. All the experiments were run on a
machine with 2.93 GHz Intel Core CPU, 4 GB main memory,
and Ubuntu operating system (Linux distribution).

6.1 Evaluate similarity search
In this section, we evaluate similarity search algorithms.

We implemented the following five methods as follows.

(1) Basic, which is the basic search algorithm using B-
WTPA.

(2) Cache, which is the Cache-aware parallel algorithm as
discussed in Section 4.1.

(3) Prune, which combines the pruning techniques in Sec-
tion 4.2.

(4) Multi, which takes the advantage of multi-query opti-
mization, as given in section4.3.

(5) Bound, which improves the edit distance with bounded
look ahead optimization, as depicted in section4.4.

We randomly extract 20%, 40%, 60%, 80%, and 100%
strings of the data sets as the text collections, and random-
ly select 5000 strings in the text collections as query. For
geographical names and author names we randomly select
0, . . . , 4 as threshold τ , for genome reads, we select 0, . . . , 16
as threshold. Note that τ = 0 is the same as searching exact
pattern.
Figure 10 compares the performance of the five search al-

gorithms on the three data sets. Figures 10(a) and 10(c)
show the performance of search algorithms varied with dif-
ferent data size. We can see that basic method is the most
time-consuming one. For 20% geographical names, it took
27.71 seconds, and for 100% geographical names it took
130.65 seconds. The cache method took only about half

4http://www2.informatik.hu-berlin.de/~wandelt/
searchjoincompetition2013/Dates.html
5http://www.informatik.uni-trier.de/~ley/db/

of the basic method, which took 15.09 seconds, and 74.27
seconds for the two corresponding data sizes. The Prune
method further reduced the time to 11.22 seconds and 64.56
seconds. The multi method reduced the cost to 10.72 sec-
onds and 55.85 seconds. The bounded method is the fastest
one, which took 8.33 seconds for 20% data size, and 40.3
seconds for 100% data size. We can find similar results for
author names and genome reads.

Figures 10(d) and 10(f) show the performance of search al-
gorithms on the whole data set varied with different thresh-
olds. We set the threshold τ of each query to 0, . . . , 4, re-
spectively, for geographical names and author names. For
genome reads, we set threshold τ to 0, 4, 8, 12, and 16. We
see that the basic method had the worst performance for
τ = 0, it took 1.99 seconds, and for τ = 4, it took 511.68
seconds. The cache method took 1.03 seconds and 270.77
seconds with the corresponding τ . The Prune method im-
proved the time to 0.93 seconds and 230.55 seconds. The
multi method further reduced the time to 0.75 seconds and
184.65 seconds. The bounded method is the fastest one. It
took 0.561 seconds when τ = 0, and 141.74 seconds when
τ = 4.

6.2 Evaluate similarity join
In this section, we evaluate similarity join algorithms. We

implemented three methods as follows.

(1) The incremental Approximate string join algorithm,
which is denoted by Incremental.

(2) The trie-based string join algorithm, which is denoted
by Trie-based.

(3) Prune method combines the prune techniques with the
trie-based method.

First we compare the performance of join algorithms var-
ied with different data sizes. We set τ = 2. Figure 11 shows
the results. We see that the trie-based method is better
than the incremental method. For 20% geographical names,
the incremental method took 13.32 seconds, and for 100%
names, it took 74.88 seconds. The trie-based method only
took 11.69 seconds and 59.71 seconds for corresponding data
sizes. The reason is that tried-based method saves the un-
necessary computation of the identical segments. The prune
method further improved the performance to 7.93 seconds
and 42.6 seconds.

Figures 11(d) and 11(f) compare the performance of join
algorithms using different thresholds. With the increase of
the threshold, the time costs of all the methods increase.
The prune method outperformed the trie-based method which
in turns was better than the incremental method.

7. CONCLUSION
In this paper, we have studied the similarity search and

similarity join problem with edit distance constrains. We
proposed a cache-aware parallel method using BWT to find
similar strings in text collection. We devised a new index
called BWTPA. We used BWTPA to index strings, and we
partitioned queries to segments. We developed an algorithm
to search these segments to find candidates efficiently and
verified the candidates to get the results. We also developed
several optimization strategies to improve the performance.

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60

C
o
u
n
t
(
x
1
0
0
0
0
)

String Length

(a) Geographical names.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50

C
o
u
n
t
(
x
1
0
0
0
0
)

String Length

Author

(b) DBLP Authors.

 0

 10

 20

 30

 40

 50

 85 90 95 100 105 110

C
o
u
n
t
(
x
1
0
0
0
0
)

String Length

(c) Genome reads.

Figure 9: String length distributions.

 0

 20

 40

 60

 80

 100

 120

 140

 20 40 60 80 100

T
i
m
e
(
s
)

Percentage(%)

Basic
Cache
Prune
Multi
Bound

(a) Geographical names.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 40 60 80 100

T
i
m
e
(
s
)

Percentage(%)

Basic
Cache
Prune
Multi
Bound

(b) DBLP Authors.

 0

 500

 1000

 1500

 2000

 2500

 20 40 60 80 100

T
i
m
e
(
s
)

Percentage(%)

Basic
Cache
Prune
Multi
Bound

(c) Genome reads.

10
-1

10
0

10
1

10
2

10
3

 0 1 2 3 4

T
i
m
e
(
s
)

Threshold(τ)

Basic

Cache

Prune

Multi

Bound

(d) Geographical names.

10
0

10
1

10
2

10
3

 0 1 2 3 4

T
i
m
e
(
s
)

Threshold(τ)

Basic

Cache

Prune

Multi

Bound

(e) DBLP Authors.

10
1

10
2

10
3

10
4

10
5

 0 4 8 12 16

T
i
m
e
(
s
)

Threshold(τ)

Basic

Cache

Prune

Multi

Bound

(f) Genome reads.

Figure 10: Performance of similarity search.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 20 40 60 80 100

T
i
m
e
(
s
)

Percentage(%)

Incremental
Trie-based

Prune

(a) Geographical names.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 40 60 80 100

T
i
m
e
(
s
)

Percentage(%)

Incremental
Trie-based

Prune

(b) DBLP Authors.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 20 40 60 80 100

T
i
m
e
(
s
)

Percentage(%)

Incremental
Trie-based

Prune

(c) Genome reads.

10
0

10
1

10
2

10
3

10
4

 0 1 2 3 4

T
i
m
e
(
s
)

Threshold(τ)

Incremental

Trie-based

Prune

(d) Geographical names.

10
0

10
1

10
2

10
3

10
4

10
5

 0 1 2 3 4

T
i
m
e
(
s
)

Threshold(τ)

Incremental

Trie-based

Prune

(e) DBLP Authors.

10
0

10
1

10
2

10
3

10
4

10
5

 0 1 2 3 4

T
i
m
e
(
s
)

Threshold(τ)

Incremental

Trie-based

Prune

(f) Genome reads.

Figure 11: Performance of similarity join.

We proposed two methods to do similarity join on the in-
dex. We have implemented our algorithms, and experiments
showed the efficiency of our method.

8. ACKNOWLEDGMENTS
The work is partially supported by the National Basic Re-

search Program of China (973 Program) (No. 2012CB316201),
the National Natural Science Foundation of China (Nos.
61129002, 61272178), the Doctoral Fund of Ministry of E-
ducation of China (No. 20110042110028) and the Funda-
mental Research Funds for the Central Universities (Nos.
N110804002, N110404015).

9. REFERENCES

[1] Walter A. Burkhard and Robert M. Keller. Some
approaches to best-match file searching. Commun.

ACM, 16(4):230–236, 1973.

[2] Peter N. Yianilos. Data structures and algorithms for
nearest neighbor search in general metric spaces. In
SODA, pages 311–321, 1993.

[3] Paolo Ciaccia, A. Nanni, and Marco Patella. A
query-sensitive cost model for similarity queries with
m-tree. In Australasian Database Conference, pages
65–76, 1999.

[4] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik.
Efficient exact set-similarity joins. In VLDB, pages
918–929, 2006.

[5] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan
Srikant. Scaling up all pairs similarity search. In
WWW, pages 131–140, 2007.

[6] Chen Li, Jiaheng Lu, and Yiming Lu. Efficient
merging and filtering algorithms for approximate
string searches. In ICDE, pages 257–266, 2008.

[7] Chen Li, Bin Wang, and Xiaochun Yang. Vgram:
Improving performance of approximate queries on
string collections using variable-length grams. In
VLDB, pages 303–314, 2007.

[8] Xiaochun Yang, Bin Wang, and Chen Li. Cost-based
variable-length-gram selection for string collections to
support approximate queries efficiently. In SIGMOD

Conference, pages 353–364, 2008.

[9] Chuan Xiao, Wei Wang, and Xuemin Lin. Ed-join: an
efficient algorithm for similarity joins with edit
distance constraints. PVLDB, 1(1):933–944, 2008.

[10] Jianbin Qin, Wei Wang, Yifei Lu, Chuan Xiao, and
Xuemin Lin. Efficient exact edit similarity query
processing with the asymmetric signature scheme. In
SIGMOD Conference, pages 1033–1044, 2011.

[11] Guoliang Li, Dong Deng, Jiannan Wang, and Jianhua
Feng. Pass-join: A partition-based method for
similarity joins. PVLDB, 5(3):253–264, 2011.

[12] Jianhua Feng, Jiannan Wang, and Guoliang Li.
Trie-join: a trie-based method for efficient string
similarity joins. VLDB J., 21(4):437–461, 2012.

[13] Paolo Ferragina and Giovanni Manzini. Opportunistic
data structures with applications. In FOCS, pages
390–398, 2000.

[14] Paolo Ferragina and Giovanni Manzini. Indexing
compressed text. J. ACM, 52(4):552–581, 2005.

[15] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and
Gonzalo Navarro. Compressed representations of

sequences and full-text indexes. ACM Transactions on

Algorithms, 3(2), 2007.

[16] Gonzalo Navarro and Veli Mäkinen. Compressed
full-text indexes. ACM Comput. Surv., 39(1), 2007.

[17] Jouni Sirén, Niko Välimäki, Veli Mäkinen, and
Gonzalo Navarro. Run-length compressed indexes are
superior for highly repetitive sequence collections. In
Amihood Amir, Andrew Turpin, and Alistair Moffat,
editors, SPIRE, volume 5280 of Lecture Notes in

Computer Science, pages 164–175. Springer, 2008.

[18] Heng Li and Richard Durbin. Fast and accurate short
read alignment with burrows-wheeler transform.
Bioinformatics, 25(14):1754–1760, 2009.

[19] Ruiqiang Li, Chang Yu, Yingrui Li, Tak Wah Lam,
Siu-Ming Yiu, Karsten Kristiansen, and Jun Wang.
Soap2: an improved ultrafast tool for short read
alignment. Bioinformatics, 25(15):1966–1967, 2009.

[20] Esko Ukkonen. On approximate string matching. In
FCT, pages 487–495, 1983.

