
FPI: A Novel Indexing Method Using Frequent Patterns
for Approximate String Searches

Mitsuki Kimura
The University of Tokyo

2-1-2 Hitotsubashi,
Chiyoda-ku, Tokyo, JAPAN

mick@nii.ac.jp

Atsuhiro Takasu
National Institute of Informatics

2-1-2 Hitotsubashi,
Chiyoda-ku, Tokyo, JAPAN

takasu@nii.ac.jp
Jun Adachi

National Institute of Informatics
2-1-2 Hitotsubashi,

Chiyoda-ku, Tokyo, JAPAN
adachi@nii.ac.jp

ABSTRACT
Approximate string searches locates strings in a database
that are similar to input query strings. Forms of this tech-
niques are used in a variety of applications, such as record
linkage, spell checking, and Web searches. Many use fixed n-
gram-based indexing, in which fixed n-grams are substrings
that have a certain length. One disadvantage of this ap-
proach is that the n-gram length can have a negative effect
on the performance of the algorithms. To solve this prob-
lem, using variable length n-grams for indexing have been
proposed. However, these methods have difficulty extracting
variable length n-grams to use for the index. We therefore
developed the algorithm,FPI(Frequent Pattern Indexing),
to extract variable length n-grams for use with approximate
string searches, FPI uses high-frequency patterns that ap-
pear in a dataset for index and returns exact answers Pat-
terns used by the proposed algorithms run in linear-time
using a suffix array and an LCP array.

General Terms
Algorithms

1. INTRODUCTION
Approximate string searches are used in many applica-

tions, such as spell checking, speech recognition, Web search,
and record linkage.
There are many measurements between two strings, such

as Jaccard similarity, cocine similarity, dice similarity, and
edit distance. Avove all, edit distance[9] is particularly pop-
ular due to its utility. The definition of edit distance is the
minimum number of edit operations(deletion, insertion, and
substitution) that are needed to transform a string to an-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT/ICDT ’13, March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1599-9/13/03 ...$15.00.

other. In the case of the “Steve Jobs” string and the “Steven
Jobs” string, if the sixth character of the latter string, ’n’,
is deleted, two strings become the same string. The edit
distance is 2 in this case. However, it takes a lot of time and
space to compute the edit distance, so n-gram indexing is
often used to reduce the computation time. The n-grams of
a string are all its substrings with a length of n. For exam-
ple, the 2-gram of the string mississippi is {mi, is, ss, si, is,
ss, si, ip, pi}. When we use this for indexing, the number of
operations needed to compute the distances can be reduced
because similar strings have many of the same grams. When
this n-gram indexing is used, its length is often fixed. So the
gram length can greatly affect its performance.

To solve this, we use the variable length n-gram for index-
ing. Variable length n-gram is useful for

In this paper, we propose the efficient indexing for ap-
proximate string searches using frequent patterns for Index.
Using a suffix array and its LCP array, this frequent pat-
terns are extracted in linear time. This extraction method
can be used for text mining.

2. PROBLEM DEFINITION AND RELATED
WORKS

2.1 Problem Definition
First, let us define some of the relevant notations uned

in this study. For a set S, |S| denotes the cardinality of
S. For a string s, |s| denotes its length. For a position
i (0 ≤ i < |s|), s[i] denotes the ith character in s and si
denotes the suffix of s that starts from the ith character.
For positions i and j (0 ≤ i ≤ j < |s|), s[i : j] denotes
the substring that starts from the ith character to the jth
character. For a pair of strings s1 and s2, lcp(s1, s2) and
ed(s1, s2) respectively denote the longest common prefix and
edit distance between s1 and s2.

In record linkage, we need to detect identical entities in a
database. Entities are usually represented by a string and
identical entities may be represented by slightly different
strings. Approximate string matching is a fundamental func-
tion to find a candidate set of strings that may represent the
identical entities. In this paper, we consider an approximate
string search problem. Suppose we have a database D that

consists of numeraous strings, each of which represents an
entity. For a query string q, the problem is defined to obtain
the following set of strings:

{s ∈ D | ed(s, q) ≤ k} , (1)

where k is a predefined threshold given by the user.

For a pair (s, q) of strings, a O(|s||̇q|) calculation is re-
quired and the size of the database D is usually very large.
Therefore, the key point is to develop an efficient approxi-
mate string search algorithm.

2.2 Approximate String Matching
Approximate string matching is a longstanding problem

in computer science and many types of data structures and
algorithms have been proposed in responce to it, such as suf-
fix tree, automaton algorithms, and bit parallel algorithms
[13][19]. However, it is still a challenging problem when han-
dling “Big data”.
A naive solution to the approximate string search problem

is to calculate the edit distance between a query string q and
each string in the database. However, this is computation-
ally prohibited when the database contains a high number
of strings. We therefore usually use n-gram based indexing
methods and construct an index.[18, 4, 6, 3]. An n-gram is a
substring with a length of n and an n-gram-based indexing
method constructs an inverted-list consisting of all available
n-grams with the pointers to the records that include the n-
gram. For example, let us consider a string database shown
in Table 1. The bi-gram inverted index for the database is
given by Table 2. Usually similar strings include common
n-grams. We can solve the approximate string search prob-
lem efficiently by solving the following T-occurrence Problem
before calculating edit distances directly[17].
Let G(s) be the multi set of the n-grams of a string s. T-

occurrence Problem is that finding the string ids that appear
at least T times on the inverted lists of grams in G(q).
T-occurrence Problem can be used to filter out strings

in the database whose distance is longer than the specified
threshold k. It can be applied to various types of distances
such as cosine similarity, Jaccard similarity, and Dice sim-
ilarity. In the case of the edit distance, the number T is
calculated as follows.

T = max(|q|, |s|)− n · (k − 1)− 1 (2)

By using an n-gram based index, the approximate string
search problem is solved by the following steps:

1. Decompose the query string into its n-grams and ob-
tain the corresponding id lists from inverted lists.

2. Search the all strings ids that occur at least certain
times (= T) on the lists.

3. Calculate the distances or similarities between the query
string and string ids obtained in step 2.

Step 2 is safe filtering to search approximate strings. Many
join algorithms can be used for this, includingMergeOpt[17],
DevideSkip[10], and MergeSkip[10].
There are some disadvantages associated with n-gram based

indexing. First, the performance of the search algorithms
can be negatively affected by the length n grams. For a
short n, string lists in inverted lists can be long, which causes
longer computation time for joining the id lists. In contrast,

Table 1: string example
id string
0 stich
1 stick
2 such
3 stuck

Table 2: inverted list example
gram string ids
ch → 0,2
ck → 1,3
ic → 0,1
st → 0,1,2
su → 2
ti → 0,1
tu → 3
uc → 2,3

a long n generally results in huge entries in the inverted file
because the number of n-grams can be O(|Σ|n), where Σ
denotes an alphabet. Therefore, we need to choose the ap-
propriate n carefully, or alternatively, we can use variable-
length n-gram indexing method proposed in VGRAM[11].

VGRAM uses substrings with lengths between Nmin and
Nmax, where Nmin and Nmax are parameters. These param-
eter need to be determined so that resultant grams have high
frequency. However the frequency parameter are required to
decide depending on the data. When we use VGRAM, we
count the frequencies of the all substrings in a dataset with
lengths between Nmin and Nmax , and if a substring is very
frequent, keep some of its extended substrings for the index.
This means VGRAM requires three parameters, so choosing
the optimal parameters is very complicated. Moreover , it
uses a tree structure for extracting the index, which causes
increased time and space consumption.

When using the VGRAM index, we need to use the fol-
lowing T in the T occurrence problem [21]:

T = max{|V G(q)| −NAG(q, k),

|V G(s)| −NAG(s, k)} , (3)

where V G(s) is the set of variable length n-grams included in
s, and NAG(s, k) is the number of affected grams in V G(s)
when we perform k edit operations to string s.

2.3 Frequent Pattern Mining
Frequent pattern mining refers to finding frequent sub-

itemsets or sub-data structures in large databases [16]. A
well-known problem is association rule mining. Many algo-
rithms are in place for mining frequent sequential patterns
[2], subtrees [1], or subgraphs [20], most of which are based
on the Apriori algorithm, which prunes an itemset if its sub-
set is not frequent.

Successive patterns are important, when mining frequent
patterns from text data, but in the case of sub-sequential
pattern mining, their algorithm can find only sequential pat-
tern but not successive pattern. For example, mississippi$
and militarypolice$ have the common sequential pattern

“miipi′′. We therefore cannot apply the sub-sequential pat-

tern mining algorithms to frequent substring mining.
However some data structures have been proposed that

can count the frequency of all substrings in a text [12][8].
There are also various frequent substring mining methods,
including N-gram PrefixSpan [15] and Mining Frequent Sub-
strings [22].

2.4 Suffix Array and LCP Array
A suffix array is a data structure that searches for any

substrings that appear in the target string. Its main ada-
vantage is that it reduces the processing time and the space
consumption of the suffix tree. A suffix array is constructed
by sorting all suffixes in a string into a lexicographical order.
Many linear-time algorithms to construct a suffix array were
proposed in [7, 5, 14].
An example of the suffix array of the string “mississippi$”

is shown in TABLE 3. In a suffix array, we can efficiently
count the number of times a substring p appears in the string
T because all suffixes are sorted lexicographically.
Let i and j be satisfied with the following equations (in

which this appearance number, freqp, is as follows).

i = argmin
0≤a<|T |

(Ta[0; |p| − 1] = p) (4)

j = argmax
0≤b<|T |

(Tb[0; |p| − 1] = p) (5)

freqp = j − i+ 1 (6)

In this example, when counting the substring“i”appearance,
i = 1 and j = 5, sofreq”i′′ = 5− 1 + 1 = 5.
An LCP array is an array that contains the length of lcps

between suffixes that are adjacent in the suffix array. The
LCP array of a string T is defined as follows.

LCP [i] = lcp(TSA[i], TSA[i+1]) (0 ≤ i < |T | − 1) (7)

An example of an LCP array is shown in TABLE 3. This
example array is a monotonically decreasing function if one
lcp pair is fixed.

LCP [i] ≥ lcp(TSAT [i], TSAT [i+2]) (8)

Therefore, the lcp value of any pair in a suffix array is the
least value between the interval.

lcp(Ti, Tj) = min
i≤k<j

LCP [k] (9)

An LCP array linear time construction algorithm has also
been proposed, for use when suffix array is known[8].

3. PROPOSED METHOD
We propose the indexing method for approximate string

matching using an LCP array: frequent pattern indexing
(FPI). This method is required to extract variable length
patterns for indexing, but the extraction phase requires the
only linear time.

3.1 Frequent Pattern Indexing (FPI)
FPI is comprised of the following steps.

Step 1 Construct the suffix and the LCP arrays of all strings
in a dataset.

Table 3: The example of suffix array and LCP array
of the string ”mississippi$

Pos SA LCP suffix
0 12 0 $
1 11 1 i$
2 8 1 ippi$
3 5 4 issippi$
4 2 0 ississippi$
5 1 0 mississippi$
6 10 1 pi$
7 9 0 ppi$
8 7 2 sippi$
9 4 1 sissippi$
10 6 3 ssippi$
11 3 - ssissippi$

Step 2 Run algorithm 1 in Fig. 1 and extract frequent
patterns in a dataset.

Step 3 Index a dataset using frequency patterns.

In step 1, we concatenate all strings in a dataset, D, with
a special end mark, ($ 6∈ Σ), make one string, and compute
the suffix array and LCP array of this string.

In step 2, Algorithm 1 computes the frequent patterns
whose frequency is equal or longer than the specified param-
eter n. To compress the index, this algorithm output only
the maximal substrings whose freqeuncy is equal or longer
than n. Suppose a frequency of a substring “abcde” is equal
or longer than n. Then, it is obvious that frequencies of its
substrings such as “abc” and ”abcd” is equal or longer than
n. If frequencies of any strings that include “abcde” are less
than n, i.e., “abcde” is optimal, the algorithm outputs only
“abcde” and omits its substrings. This algorithm requires
a LCP array, its size(N) and just two parameters for the
input: the minimum frequency pattern length (n) and the
frequency parameter(τ).

The variables and the functions used in Algorithm 1 are
denoted as follows.

• candidate : the output candidate that contains a po-
sition and an LCP value,

• Pk : the bucket of positions with an LCP value of k,

• len(Pk) : return of the number of positions in Pk,

• P.clean : removal of all buckets,

• candidate.initialled : the setting of both candidate.
position and candidate. lcp to 0

In the algorithm, first, set tmpn to n. Second, the posi-
tions at which LCP values of more than tmpn are the same
should be placed in the same bucket until the number of
positions in the all buckets reaches τ . If a value less than
tmpn is found, remove the all buckets and, if a candidate
remains, output the candidate. This removal is can be per-
formed safely because of Eq. (9). When the volume of the
bucket contents reaches τ , select the minimum value from
the LCP values of the buckets, and update the candidate,
buckets and tmpn. Because patterns that function as the
prefixes of other frequency patterns must not be outputted,

Algorithm 1 Extracting frequent substrings

1: Input: LCP, N, n and τ
2: i:=1
3: e:=τ
4: tmpn := n
5: candidate.initialled
6: while e < N do
7: while (

∑
k len(Pk) < τ and e < N) do

8: if LCP[i] < tmpn then
9: P.clean
10: tmpn := LCP[i]
11: i++
12: e := i + τ
13: if candidate.lcp > n then
14: Output:candidate
15: candidate.initialled
16: end if
17: else
18: PLCP [i].push(i)
19: i++
20: end if
21: end while
22: m ← the minimum value k of Pk

23: s ← the last value in Pm

24: for all Pk do
25: Pk.pop() until the first value in Pk becomes the least

number which is greater than s
26: end for
27: if candidate.lcp < m then
28: candidate.lcp := m
29: candidate.position := s
30: tmpn := m
31: end if
32: end while
33: if candidate.lcp > n then
34: Output:candidate
35: end if

Table 4: The example of LCP array
Pos 0 1 2 3 4 5 6 7 8 9 · · ·
LCP 0 5 4 6 5 5 6 3 4 2 · · ·

Figure 1: The example of Applying Algorithm 1

the output function is implemented only when values less
than that of the candidate are found.

An example of behavior of this algorithm using the LCP
array from Table 4 and τ = 3, n = 3 is shown in Fig. 1.
When the position goes to 3, the buckets 4, 5, and 6 are
created and put in their corresponding positions (step 1 in
Fig.1). In this case, since the number of positions reaches
the τ , the least number of the buckets, 4, is set to the
candidate (candidate.position= 2, candidate.value= 4) and
all positions in the all buckets less than candidate.position
(step 2 in Fig.1) are removed. When the position reaches
5, the candidate is updated to candidate.position= 5, candi-
date.value= 5 because of the previous candidate.value is less
than the present value. Since the LCP value is less than the
candidate. value, the candidate is output when the position
moves to 7.

In step 3 of FPI, index the all strings in a dataset are
indexed using the frequency patterns obtained in step 2.
FP denotes these pattern sets. To reduce the size of the
inverted index, impose the following rules.

1. Use the longest substrings with which any prefix of
patterns in FP coincide.

2. Do not use any substrings that belongs to another in-
dex.

For example, if FP={’uni’,’iv’,’ivr’,’ver’, ’vers’, ’rs’,’sit’, ’ty’,
’ity’} the index set of the string ”university” is not {“uni”,
“iv”, “ver”, “rs”, “sit, “ity”, “ty”} but rather {“uni”, “iv”,
“vers”, “sit, “ity”}. In spite of the existence of the ’vers’
pattern, the set does not use the longest substring for the
index, and ‘ty’ is the substring of ’ity’ so the index set be-
comes the latter. If no substring is found in FP , we use the
length n substring for the index, instead.

We process the query the same as in the n-gram-based
indexing. However, when decomposing the query, we use
FP .

4. EXPERIMENTAL RESULTS
In this section, we present the results of our experimants

with the FPI and the LFPI methods. First, we measured

1http://www.sisap.org
2http://www.informatik.uni-trier.de/~ley/db/index.
html

Table 5: Data sets used in the Experiments
Data Size Averaged length Σ Description

EnglishDictionary 635K 9.4 26 english dictionary supplied in SISAP1

DBLP 78M 104.5 93 bibliography data supplied in DBLP2

Table 6: Data sets used in the Experiments
Data parameters Extraction(sec) Query Processing(sec)

FPI Englisn (n, τ) = (2, 200) 0.02 2.59
VGRAM English (Nmin, Nmax, τ) = (2, 4, 1000) 0.17 2.40
FPI DBLP (n, τ) = (4, 1000) 10.6 173.0
VGRAM DBLP (Nmin, Nmax, τ) = (4, 8, 10000) 194.4 176.8

Table 7: Suffix array and LCP array construction
Time

Dataset Suffix Array(sec) LCP array(sec)
English Dictionary 0.3 0.09
DBLP 96.81 25.36

the patterns extraction time of both algorithms. For this
extraction, we used the sa is algorithm[14] to construct the
suffix array, and used the linear-time LCP computation algo-
rithm[8] to construct the LCP array. Second, we evaluated
the effect of the different parameters on the performance of
our algorithms. In query processing in FPI, we used the
MergeOpt algorithm[17] to merge the string ids lists.
We performed these experiments on a server running Red

Hat GNU/Linux 5.1 with an AMD Opteron(TM) 8384 CPU
(2.70GHz) and 192 GB main memory. All of algorithms are
written in C and we compiled all codes with a GCC compiler.

4.1 Datasets
The three datasets we used are shown in TABLE5. DBLP

records contain the journal title, author, conference names,
etc. We concatenated all the values in one record and then
constructed one string from this record.
For query processing, we generated the random queries:

for each dataset, we randomly chose 1,000 strings and then
randomly made some minor changes to each string . Using
the “English Dictionary” dataset, we ramdomly performed
one edit operation on selected strings and made queries,
while for the“DBLP”, we performed five edit operations and
made queries. In query processing, we measured how long it
took to retrieve all the strings corresponding to the queries
from the datasets.
We compared with VGRAM. In suffix array indexing,

first, we construct a suffix array of the string that we con-
catenate all strings in a dataset. In query processing, we
search the longest common prefix between a query strings
and strings using suffix array and calculate the edit distance
between a query and strings that have the prefix. This suffix
array indexing doesn’t also find exact answers.

4.2 Results
Index Extraction : We evaluated the overhead of the

proposed methods. We fixed the pattern length to n and

varied the frequency parameter τ for each datum. In English
Dictionary, we chose n = 2 and varied τ from 100 to 250. In
DBLP, n = 4 and τ was varied from 1000 to 5000. TABLE7
shows the time it took to construct both suffix and LCP
arrays for each datasets The pattern extraction times are
shown in Fig.2(FPI) and in Fig. The larger the frequency
parameter is, the more time it takes.

The Effect of the Parameter n in FPI: We examined
the effect of the parameter as pattern length in FPI method,
using the English Dictionary and DBLP datasets. With En-
glish Dictionary, τ = 200 and n was changed from 2 to 5
and with DBLP, τ = 1500 and n was changed from 3 to 8.
The results are show in Fig.3. When we used English dic-
tionary, the query processing time increased as n increased,
while DBLP, as n increased, the query processing time first
decreased, then reached a minimum at n = 6 (DBLP), and
then increased again. This is because when n os large, the
number of the substrings shared by various strings can be
small and the string lists thus easily merged, but when the
n is too large, T can be less than 0 and the system needs to
check all strings in a dataset.

The Effect of the Parameter τ in FPI: We next ex-
amined the effect of the frequency parameter τ using the
same datasets. We set n = 2 and varied τ from 100 to 250
for English Dictionary, and n = 8 and varied τ from 1000 to
5000 for DBLP. The results are shonw in Fig.4 . The best
performances were shown at τ = 200 (English Dictionary)
and τ = 1500(DBLP). This is because the averaged index
length becomes long in small τ and T in T-occurrence Prob-
lem can be less than 0. However, in large tau, almost all
index lengths can be n, and this approximate string search
system can’t benefit from variable length N-grams.

Comparison FPI vs. VGRAM We compared FPI
with VGRAM. We examined both of variable length n-gram
extraction time and query procrssing time. The results and
parameters that we used are shown in TABLE6 The variable
length extraction time in FPI was about 10 times faster than
VGRAM and the query processing time was nearly equal.

5. CONCLUSION
In this paper, we presented new indexing structures FPI

for approximate string matching. The pattern extraction
algorithms used in FPI can also be used for text mining.
These algorithms can run in a linear-time using a suffix array
and an LCP array.

(a) English Dictionary

(b) DBLP

Figure 2: Index Extraction Time(FPI)

6. REFERENCES
[1] Kenji Abe, Shinji Kawasoe, Tatsuya Asai, Hiroki

Arimura, and Setsuo Arikawa. Optimized substructure
discovery for semi-structured data. In Tapio Elomaa,
Heikki Mannila, and Hannu Toivonen, editors,
Principles of Data Mining and Knowledge Discovery,
volume 2431 of Lecture Notes in Computer Science,
pages 57–100. Springer Berlin / Heidelberg, 2002.
10.1007/3-540-45681-3.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Mining
sequential patterns. pages 3–14, 1995.

[3] Alexander Behm, Shengyue Ji, Chen Li, and Jiaheng
Lu. Space-constrained gram-based indexing for
efficient approximate string search. In Proceedings of
the 2009 IEEE International Conference on Data
Engineering, pages 604–615, Washington, DC, USA,
2009. IEEE Computer Society.

[4] Marios Hadjieleftheriou and Chen Li. Efficient
approximate search on string collections. Proc. VLDB
Endow., 2(2):1660–1661, 2009.

[5] Juha Kärkkäinen, Peter Sanders, and Stefan
Burkhardt. Linear work suffix array construction. J.
ACM, 53(6):918–936, November 2006.

[6] Min-Soo Kim, Kyu young Whang, Jae-Gil Lee, and
Min jae Lee. n-gram/2l: A space and time efficient
two-level n-gram inverted index structure. In In
VLDB, pages 325–336, 2005.

[7] Pang Ko and Srinivas Aluru. Space efficient linear
time construction of suffix arrays. Journal of Discrete
Algorithms, 3(2âĂŞ4):143 – 156, 2005. Combinatorial
Pattern Matching (CPM) Special IssueThe 14th
annual Symposium on combinatorial Pattern
Matching.

[8] Gad Landau, Toru Kasai, Gunho Lee, Hiroki Arimura,

(a) English Dictionary

(b) DBLP

Figure 3: Query Performance(n)

Setsuo Arikawa, and Kunsoo Park. Linear-time
longest-common-prefix computation in suffix arrays
and its applications. In Combinatorial Pattern
Matching, volume 2089 of Lecture Notes in Computer
Science, pages 181–192. Springer Berlin / Heidelberg,
2006. 10.1007/3-540-48194.

[9] Vladimir I Levenshtein. Binary codes capable of
correcting spurious insertions and deletions of ones.
Problems of Information Transmission, 1(1):8–17,
1965.

[10] Chen Li, Jiaheng Lu, and Yiming Lu. Efficient
merging and filtering algorithms for approximate
string searches. Data Engineering, International
Conference on, 0:257–266, 2008.

[11] Chen Li, Bin Wang, and Xiaochun Yang. Vgram:
improving performance of approximate queries on
string collections using variable-length grams. In
VLDB ’07: Proceedings of the 33rd international
conference on Very large data bases, pages 303–314.
VLDB Endowment, 2007.

[12] Makoto Nagao and Shinsuke Mori. A new method of
n-gram statistics for large number of n and automatic
extraction of words and phrases from large text data
of japanese. In Proceedings of the 15th conference on
Computational linguistics - Volume 1, COLING ’94,
pages 611–615, Stroudsburg, PA, USA, 1994.
Association for Computational Linguistics.

[13] Gonzalo Navarro. A guided tour to approximate string
matching. ACM Comput. Surv., 33:31–88, March 2001.

[14] Ge Nong, Sen Zhang, and Wai Hong Chan. Two
efficient algorithms for linear time suffix array
construction. IEEE Transactions on Computers,
60:1471–1484, 2011.

[15] Jian Pei, Jiawei Han, B. Mortazavi-Asl, H. Pinto,

(a) English Dictionary

(b) DBLP

Figure 4: Query Performance(τ)

Qiming Chen, U. Dayal, and Mei-Chun Hsu.
Prefixspan,: mining sequential patterns efficiently by
prefix-projected pattern growth. In Data Engineering,
2001. Proceedings. 17th International Conference on,
pages 215 –224, 2001.

[16] Anand Rajaraman and Jeffrey D Ullman. Mining of
massive datasets. Lecture Notes for Stanford CS345A
Web Mining, 67(3):328, 2011.

[17] Sunita Sarawagi and Alok Kirpal. Efficient set joins on
similarity predicates. In SIGMOD ’04: Proceedings of
the 2004 ACM SIGMOD international conference on
Management of data, pages 743–754, New York, NY,
USA, 2004. ACM.

[18] Esko Ukkonen. Approximate string matching with
q-grams and maximal matches. Technical report, 1991.

[19] Chuan Xiao, Wei Wang, and Xuemin Lin. Ed-join: an
efficient algorithm for similarity joins with edit
distance constraints. Proc. VLDB Endow.,
1(1):933–944, 2008.

[20] Xifeng Yan and Jiawei Han. gspan: graph-based
substructure pattern mining. In Data Mining, 2002.
ICDM 2003. Proceedings. 2002 IEEE International
Conference on, pages 721 – 724, 2002.

[21] Xiaochun Yang, Bin Wang, and Chen Li. Cost-based
variable-length-gram selection for string collections to
support approximate queries efficiently. In SIGMOD
’08: Proceedings of the 2008 ACM SIGMOD
international conference on Management of data,
pages 353–364, New York, NY, USA, 2008. ACM.

[22] TSUBOl Yuta. Mining frequent substrings(natural
language understanding and models of
communication). IEICE technical report. Natural
language understanding and models of communication,
103(408):79–86, 2003-10-31.

