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ABSTRACT

This paper serves as a report for the participation of Spe-
cial Interest Group In Data (SIGDATA), Indian Institute
of Technology, Kanpur in the String Similarity Workshop,
EDBT, 2013. We present a novel technique to efficiently
process edit distance based string similarity queries. Our
technique draws upon some previously conducted works in
the field and introduces new methods to tackle the issues
therein. We focus on achieving minimum possible execu-
tion time while being rather liberal with memory consump-
tion. We propose and support the use of deletion neigh-
borhoods for fast edit distance lookups in dictionaries. Our
work emphasizes the power of deletion neighborhoods over
other popular finger print based schemes for similarity search
queries. Furthermore, we establish that it is possible to re-
duce the large space requirement of a deletion neighborhood
based finger print scheme using simple hashing techniques,
thereby making the scheme suitable for practical applica-
tion. We compare our implementation with the state of the
art libraries (Flamingo) and report speed ups of up to an
order of magnitude.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: Indexing Meth-
ods; D.4 [Performance]: Metrics—complexity measures,
performance measures

General Terms

Performance, Measurement, Experimentation
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1. INTRODUCTION

Amount of textual data present in the cyber-sphere is
growing at a rapid rate. Due to the advent of social net-
working and micro-blogging sites like Facebook, Twitter etc.
production rate of textual data has gained a major boost.
Twitter produces more than 5 billion tweets every 5 days.
Textual data also feature in several research sub-domains
like bio-informatics, information retrieval, data cleaning etc.
Conducting analysis on such large amounts of textual data
encapsulates several problems. One of these problems is to
be able to quantify the similarity between strings and sub-
sequently use the quantification to find all strings similar
to a given query string. There have been several attempts
to define the notion of distance between two strings. Some
of these like Jaccard Index or Cosine Similarity were drawn
from the set theory domain. Perhaps the most popular and
widely used notion of distance between strings is given by
the Levenshtein or the Edit Distance. The Edit Distance be-
tween two strings is the minimum number of single character
edit operations (insert, replace, delete) required to transform
one string to the other. The ability to run fast edit distance
based similarity queries on huge databases is a prime re-
quirement for all domains dealing with textual data. Much
research has been devoted to developing techniques for an-
swering edit distance based similarity queries which are fast,
scalable and memory efficient. This is a challenging prob-
lem because edit distance computation is a costly operation
and therefore for large dictionaries, naively computing edit
distance of the query string with each string in the dictio-
nary is not an efficient method. Most modern strategies use
some preprocessing schemes to index the dictionary which
facilitates fast evaluation of the queries.

To further the cause of development and more specifically
to get a measure of the current state of the art in string sim-
ilarity queries, a String Similarity workshop was organized
as a part of the 16" International Conference on Extending
Database Technology (EDBT). The competition presented



the participants with the challenge to develop fast meth-
ods for answering ‘Similarity Search’ and ‘Similarity Join’
queries over a large string dataset. In this paper we de-
scribe the details of the system we developed for the ‘String
Similarity Search’ problem. Our system uses the power of
deletion neighborhoods to answer threshold based edit dis-
tance queries. More specifically, given a dictionary D and
2-tuple <gq,7>, it lists all tuples from D whose edit distance
from the query string g, is less than or equal to 7. Our
contributions are the following:

e We present a new method which enables practical us-

age of deletion neighborhoods for answering edit-distance

based similarity search queries on large string datasets
with moderately large values of the edit distance thresh-
old.

e We propose the use of novel techniques of suffix-based
hashing and bucketing schemes for reducing the space
requirements of the resulting index structure and de-
creasing the average query processing time.

e We compare our algorithm with one of the previous
state of the art methods and report significant reduc-
tion in average query processing time.

e We mention several important avenues which can be
pursued to make the algorithm even faster.

The remainder of this article is concerned with showing
the basics, the implementation and the results of our sys-
tem. Section 2 presents a formal description of the problem
and mentions the related work. In Section 3 we introduce
the notion of deletion neighborhoods and emphasize their
power for edit-distance queries. In Section 4 we give the
implementation details of the system built to leverage the
power of deletion neighborhoods. We compare our system
with the state of the art Flamingo Project library over the
supplied dataset and present the results in Section 5. Finally
we give directions for future work and conclude.

2. FORMAL PROBLEM STATEMENT AND
RELATED WORK

Consider a dictionary D containing a large number of
strings. The j*" tuple in D, t;, has the signature <id;, s;>
where s; denotes the string and id; denotes the unique iden-
tifier associated with the string. Define a query instance, @,
as a 2 tuple <gq, 7>, where ¢ denotes a (query) string and 7
denotes an edit distance threshold. Consider a list of k such
query instances (denoted as L), where the it" instance Q;,
is given as <q;, 7,>. For every query instance @;, define an
answer set A; as A; = {id;| edit_distance(s;,q;) < 7}. Let
T, denote the total time taken to obtain A; for every Q;
in L. Given D, what is the best way to obtain A; so as to
minimize T, for any given L 7

The problem definition above is very similar to the prob-
lem of Named Entity Recognition (NER) [4, 8]. In NER, it
is required to match entities from a document d with a given
dictionary D. A document is essentially a sequence of char-
acters. A matching can be from any collection of contiguous
characters in d to an entity in D. Good NER algorithms typ-
ically use smart strategies to avoid matching every possible
contiguous sequence of characters [2, 4, 8]. This typically
involves either creating some sort of index structure on the

document d or continually maintaining information which
allows one to skip ahead on a mismatch.

Another related problem is to preprocess the dictionary D
so as to minimize the average computation time per query
[3, 7]. Almost all methods that answer such problem use
some form of finger print based scheme to index the enti-
ties in D in inverted indices. Associated with every finger
print scheme is a (7 dependent) filtering criteria which is
essentially a necessary condition for any two strings lying
within 7 edit distance of each other to satisfy. An example
of such a scheme would be the g-gram signature scheme. A
g-gram signature of a string s is the set of all contiguous
subsequences of length ¢ that can be obtained from s. Let
G, denote the g-gram signature of string x, then, if edit dis-
tance between s; and so is less than 7 then one can show
that |Gs, NGs,| > T where T is a function of [s1], |s2], 7 and
q. Specifically, T' = max(|s1],|s2]) + 1 — (7 + 1).¢. One can
create inverted index for each g-gram and use this filtering
criteria to answer an edit distance query in the following way.
During dictionary preprocessing phase, generate g-gram sig-
nature for every string s in the dictionary. For each b € G,
make an entry of ids in the inverted index of b. Given a
query string m, generate g-gram of m, G,,. The inverted
index of each b’ € G, gives a list of strings that also gener-
ated b’ as a g-gram during their own g-gram generation step.
Let z = |Gy |. Then as per the filtering criteria, the qualified
candidates would be those that appear in at least T" of these
z lists. The last statement refers to a very commonly occur-
ring problem known as the T-occurrence problem. Several
efficient strategies exist to solve this problem [3] and very
efficiently obtain the candidate list which is guaranteed not
to miss any of the answers. Once the candidate list is ob-
tained one can verify (using 7-threshold edit-distance) for
each candidate if the edit distance is indeed less than or
equal to 7. It is expected that higher values of ¢ would be
more selective and hence, generate shorter candidate lists.
However arbitrarily increasing g has a problem. For a query
string m, T is initialized as |m|+1 — (7 +1).¢. It is obvious
that for the filtering criteria to be meaningful, the value of
T must be > 1. This implies that |m| > (v 4+ 1).q. This
puts a serious restriction on the usability of this algorithm
for high values of 7 or q. For example, for ¢ = 2 and 7 = 3,
the algorithm is only useful for queries of length > 8 and for
q = 3, it is only useful for queries of length > 12.

A different class of solutions that aim to minimize the
average query time involves mapping strings to integer do-
main by imposing one (or more) global order on the strings.
Simple examples of such order could be the dictionary or-
der. All strings in the dictionary are sorted according to
the dictionary order and the rank of a string forms its inte-
ger mapping. In [9] the authors construct a B+ tree on the
strings using the integer embedding. A query is then pro-
cessed by efficiently traversing the tree while ensuring the
completeness of the solution.

Our approach for this competition is based on deletion-
neighborhoods and draws upon the techniques described in
[1, 6, 8]. The core idea in all of these studies have been to
generate deletion neighborhoods for the query and the dic-
tionary string. Deletion neighborhoods being longer than
g-grams, describe an alternative signature scheme which is
more selective than the g-gram scheme. Unlike the g-gram
scheme which requires the query string to have a minimum
length L.,in, deletion neighborhood as a finger-print scheme



Table 1: Terminology
s original string
T edit distance threshold
s’ k — neighbor of s
Fi(s k-neighborhood of s

(s)
H,(s) T-variant family of s

is applicable for queries of any length and for any value of
7. The caveat with deletion neighborhood based schemes is
that they have large space requirements. In the next sec-
tion, we introduce the relevant terms and give the details of
a generic deletion neighborhood based string similarity an-
swering system.

3. DELETION NEIGHBORHOODS

Consider a string s of length l;. Assume we are to delete
k characters from s. We denote 7 as a bit vector of length
ls with a 1 in each of the k positions which are selected for
deletion in s. Clearly, for a fixed k, multiple r’s are possible.
For a fixed k, we define Dy as the set of all possible r’s.
Clearly, |Di| = (lkb) Consider some r € Di. Deleting the k
characters as specified in  will result in a unique string s’.
We say s’ is a k-neighbor of s. Qualitatively, a string s is a k-
neighbor of s if s’ can be generated by deleting k characters
from s. We define k-neighborhood (denoted Fy(s)) as the
set of all k-neighbors of s. It is possible that a k-neighbor
s’ generated via r is also generated by some other r’ € Dy,
r’ # r. For ex. the string AK, which is a 2-neighbor of
string AKKA will result for » = 0011 and r = 0101. We
now define the 7-variant family of a string s, denoted H(s)
as the following.

Definition 1. For a given string s and a given value of 7,
define H,(s) as H,(s) ={s' : s’ € Fx(s) ,0< k <7}

Consider any two strings s1 and sa. If ED(s1,82) < 7 it
can be shown that H-(s1)NH-(s2) # ¢. The proof is simple
and we refer the readers to [6] for the same. The underlying
idea is that if the total number of single edit operations
required to transform s; into sz is < 7, then the two strings
should be reducible to a common form after performing at
the max 7 deletions. Since H,(s) is qualitatively the set
of all possible subsequences of characters in s that can be
generated by deleting k characters from s (where 0 < k < 1)
the common form should be present in both H-(s1) and
HT (52).

Theorem 1. If ED(s1,82) < 7 then H,(s1) N H-(s2) # ¢

Using H-(s) as a finger-print scheme and Theorem 1 as a
filtering condition we can now construct an algorithm which
leverages the power of deletion neighborhoods for efficiently
answering string similarity search queries.

It can be easily inferred that the selectivity of a ¢g-gram
finger-print scheme is not as high as that of the deletion-
neighborhood finger-print scheme. To illustrate this, con-
sider the following example. Say we need to find all strings
in the dictionary with in 2 edit distance of the string placat-
ing. Lets say that the g-gram signature scheme uses ¢ = 3.
Then for 7 =2, T=941—(241).3 = 1. Therefore the can-
didate list includes any string that appears in the inverted
index of any 3-gram of placating. Notice that ing will be

a g-gram of the string. Any string in the dictionary which
ends in an ing will be in the inverted index of ing. All such
strings will be valid candidates as per the filtering criteria
(T =1). It is clear that the candidate list will be rather
large. Next consider how deletion-neighborhood finger-print
scheme would handle the same query string. We would first
generate the 2-variant family of placating. Notice that every
string in H,(s) will be at least 7 characters long. Thus all
occurrences of ing in the T-variant family will be preceded
by at least 4 characters. This would drastically reduce the
total number of strings ending in ing that would appear in
the candidate list. Notice that the size of T-variant family,
|H~(s)|, would be much larger, O((i) + (Til)., (é)), than the
total number of g-grams, O(l — ¢ + 1). The number of lists
that need examining would therefore increase for deletion-
neighborhoods scheme but every string in it will be highly
selective. Thus the total number of candidates would, ex-
pectedly, be very low.

It is clear that deletion neighborhoods offer a very selec-
tive finger-print scheme for strings. However, they have
not been incorporated into modern systems. The reason,
as mentioned previously, is the amount of space required to
index every single string in H,(s) for every string s in the
dictionary for a range of values of 7. For a fixed edit dis-
tance threshold 7, alphabet set size 3, average string length
[ and total number of string in the dictionary n, the space
requirement (if one were to index every string in H-(s) for
every string s) would be O(nl"X7) [8]. The large space re-
quirement makes the algorithm impractical for real world
applications. It would be very lucrative to reduce the space
requirements. This is precisely the point that previous stud-
ies involving deletion neighborhoods have addressed. In [1]
the authors reduce the space requirement per string to O (7).
Despite the significant improvement, the algorithm still has
heavy space requirements. In [8] the authors have further
reduced the space requirement to O(I,72) (I, being a design
parameter) making the system practical for general values
of 7. The idea in [8] is essentially to generate and index 7-
variant family for partitions of strings instead of the entire
string. This significantly reduces the space complexity. The
authors further impose a condition on the T-variant family
of the partitions of the strings. The condition is derived
from the main filtering criteria for deletion neighborhoods
(Theorem 1) and is weaker than the original filtering crite-
ria.

We take a different approach to reduce the space require-
ments. We make use of suffix hashing scheme to reduce the
over all size of the index structure whilst maintaining the
correctness of the algorithm. The reduction in space is on
the cost of admitting false positives in the candidate list
which are later discarded during the verification step. We
further use novel bucketing schemes to reduce unwanted col-
lisions in our hash-table. Our focus during this endeavor has
been to reduce the space requirements just enough to fit the
index structure in the memory. The next section describes
the details of our index structure.

4. IMPLEMENTATION

The issue in using deletion neighborhoods as a finger-print
scheme is the large size of the 7-variant family, H-(s). In
a string s of length [s if no character occurs twice, then
|H-(s)| = (1) + (_,)--(})- The size of the T-variant family
is still large even if there are character repetitions. For a dic-



tionary containing n strings (s1 to s,), if G = J_, H-(s:),
then the total number of inverted index lists required will
be |G| which can be very large. To guarantee that we do
not miss any answer s;, it is necessary to make an entry of ¢
(id of s;) in the inverted index of each s’ € H.(s;). Hence,
one cannot omit any string in H,(s;). However, notice that
this analysis about large space requirement only applies if
we decide to index the string itself, i.e., if an inverted in-
dex were to be created for each s’ € G, and an entry of the
id of s; were to be made for each s’ € H,(s;), for each s;.
If it were possible to hash the strings in H;(s;), intention-
ally introducing collisions, then one could create an inverted
index structure over the hash-keys of the strings in H-(s;)
instead of the strings themselves. Because of enforced col-
lisions the total number of hash-keys would be much lower
than |H-(s;)|. This would reduce the space requirement
substantially. However, since we would have to hash each s;
in the dictionary, there would also be collisions across the
T-variant families for two different strings in the dictionary
i.e. if we had two strings s; and s; in the dictionary, such
that H,(s;) N H-(s;) = ¢, then it is possible that for some
s’ € H-(s;) and s € H-(s;), h(s") = h(s") where h denotes
the hash function. Notice that hashing ensures the com-
pleteness of the solution, i.e. there are no false dismissals.
The proof is the following. Assume the query <gq,7>. Let
s € D be an answer of the query. Then by Theorem 1, 3
s s.t. ' € Hr(q) and s € H;(s). Because s’ € H.(q), all
entries in the inverted index of h(s’) will be taken as valid
candidates. And since s’ € H,(s), an entry of ids will be
made in the inverted index of h(s’). Thus s will be present
in the candidate list and will be subsequently picked up as
an answer post verification.

We propose a system which uses this idea to reduce the
space requirement. Further we use bucketing schemes to
reduce the number of unwanted collisions in the hash-table.
We create a dedicated index structure for each value of 7.
We denote these structures as I for 7 = {0,1,2,3,4}. All
queries with edit distance 7 are handled by I.. Each I,
has the same basic structure, the main features of which are
described below.

4.1 Hash Table

We use a simple hashing scheme, h, where h(s) is the
suffix of the string s. The size of the suffix, Ls, is a de-
sign parameter. The strings generated by applying the hash
function h on strings in H(s;) form the keys of the hash
table. Hereafter we also refer to these keys as hash-strings.
Associated with every key in the hash-table is a linked list.
Let Us, denote the set of hash-strings generated by hashing
the strings in H(s;). To index the string s;, for each hash-
string w € Us,, we enter the id of s;, denoted ids,, into the
linked list associated with w.

Notice that if the alphabet set is denoted as X, then
the total number of keys in the hash-table would be upper
bounded by |%|¥¢. While this bound is high for large alpha-
bet sets and high values of Ls, our experiments reveal that
higher values of Ls can still be practical for large alphabet
sets. This is because the different strings in the dictionary
will tend to generate many common hash-strings. Thus the
expected number of unique keys in the hash-table would be
significantly smaller than the maximum number of unique
keys possible. We denote H K as the set of all hash-strings,
then figure 1 shows the generic structure of our hash-table.

The keys h1 to hgk| are the unique hash-strings generated
by hashing H-(s;) Vs; in the dictionary D. Associated with
every hash-string h; is a list of ids of all strings s; € D s.t.
hj c USz"

h ha hymk|

Figure 1: Bucket Overview
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Figure 2: Index structure (I.) overview for 7 =2

4.2 Bucketing Scheme

Instead of creating a single hash-table for all the strings in
the dictionary, we create k small hash-tables (hereafter re-
ferred to as buckets). Each of the k buckets is responsible for
indexing the strings of length within a specified range. This
presented us with the choice to either use overlapping ranges
or non-overlapping ranges for adjacent buckets. Overlap-
ping ranges have higher space requirement since dictionary
strings in the overlapped regions would have to be indexed
in both the buckets. Non-overlapping ranges have the ex-
act space requirement as a single hash-table. However, with
non-overlapping ranges, for every query <gq,7> such that the
range [lq-7:l4+7] spans over two buckets, one would inadver-
tently have to lookup both the buckets to ensure complete-
ness of the solution. We chose the overlapping strategy with
an overlap of 27 within adjacent buckets which ensures that
every query can answered by a single bucket alone. Notice
that if s is an answer of the query <gq,7> then |l; — 4| < 7.
This condition effectively describes a length filter which can
be used for pruning the candidate set.

The key motivation behind bucketing is to apply the length
filter at an early stage. This results in smaller hash-tables
and hence speeds up the lookup. The following example
emphasizes the power of bucketing scheme. Suppose one
were to use a single hash-table along with the suffix size pa-
rameter Ls = 4 . Suppose further that we had the string
placating with id i in the dictionary. Clearly, the inverted
index of the string ting would contain i. Now, suppose the
query <bating,2> arrives. Hashing the strings present in



the 7-variant family of the string bating will result in the
hash-string ting. Thus, 7 will be present in the candidate
set. Notice that one can indeed use a length filter at this
stage and discard placating but this operation would still re-
quire some finite computation. And the same would have to
be done for any other ting-ending string in the dictionary.
Instead, if a bucketing scheme were used and say the "
bucket was responsible for the range [4:8], then only those
ting-ending strings would have to be examined which have
a length I, within the range [4:8]. This would rule out pla-
cating and a number of other strings. Figure 2 shows an
overview of the bucketing scheme for 7 = 2. In Figure 2
we divide the length spectrum of dictionary strings into 3
overlapping ranges. Bucket 1, By, will index every string s;
€ Dst. 1<l <10. Bucket 2, B2, would index every
string s; € D s.t. 7 < l;; < 10. B3 would index s; € D
s.t. ls; > 13. Notice that we allow an overlap of 27 between
adjacent buckets. This ensures that any query < ¢, 7 > can
be completely answered using a single bucket. In Figure 2
B; would be responsible for all queries < ¢,7 > s.t. I3 < 8.
B> would handle all queries with length in the range [9:14].
B3 would handle all queries with I, > 15.

In our implementation, for each 7 we use different number
of buckets. For 7 = {1, 2,3}, we keep the number of buckets
in I fixed at 4. For 7 = 0, I, consists of one single bucket.
For 7 = 4 we use 3 buckets. The range for each bucket was
decided manually after inspecting the length distribution of
the query and dictionary strings. However, notice that if
the two length distributions are indeed known, smarter au-
tomated strategies (employing some empirical measures) can
be used to decide both, the number of buckets and the range
for each bucket. However, we refrain from doing that in our
current implementation.

4.3 Length and Threshold Aware Edit Distance
Computation

When a query < gq,7 > arrives it is forwarded to the ap-
propriate I.. It is further routed to the appropriate bucket
within I.. A lookup in the bucket is subsequently done
which results in a candidate set which is guaranteed to con-
tain all the answers. We need to check each string in the
candidate set and verify if it is an answer. Until now we
have only focussed on strategies that help us efficiently con-
struct a candidate set that is also small. However, for high
values of 7 and low values of query length [, the candidate
set can still be huge. For ex. <Manora, 4> results in a can-
didate set of size 58000. Therefore there is a clear need for
a fast verification method. Notice that exact edit distance
computation is not required. For every string in the candi-
date set we only need to answer if edit distance between the
query and the candidate is less than the specified thresh-
old 7. We implemented the idea suggested in [5] into our
system, which helps us answer this in O((7 + 1)min(lq,ls))
where [4 and [ denote length of the query and the candidate
strings respectively. The idea in [5] is essentially to exploit
the length and threshold information to avoid computing all
lg X ls values in the matrix during the computation of the
levenshtein distance.

We make some competition specific changes into our sys-
tem. The first change is the use of multiple threads to pro-
cess several queries simultaneously. After index construc-
tion, our system first reads and classifies all queries on the
basis of the edit distance threshold (7) in each query. It then

Algorithm 1 Index construction

Input: D, 7
Output: I,
for s € D do
ls < length(s)
B+ {Bj :ls € range(B7)}
Us < h(H:(s))
for h; € Us do
for b € B do
insert(ids, hj,b)
end for
end for
end for
return I,

Algorithm 2 Query execution

Input: s, 7
Output: A={s:se€ D,ED(s,q) <7}
Uq < H:(q)
A+ ¢
b <+ By :ls € queryRange(BY)
for h; € U; do
Cj «— getList(hj,b)

end for
[Uq|

Ciag= U C;
J

Cstring={s: s € D,ids € Ciq}
for s’ € Cstring do

d + ED(q,s)

if d < 7 then

A+ AU{s'}

end if
end for
return A

uses 8 threads to process all queries with 7 = 0. Thereafter
it moves to all queries with 7 = 1 and so on. The second
change is using a buffered disk-I/O for producing the result
file. By using buffered disk-I/O we have observed a signif-
icant improvement in total query execution time as seen in
Figure 14. The improvement is significant for the values of
T > 2 as the answer set is usually large for such queries.

S. RESULTS

In this section we evaluate the performance of the pro-
posed algorithm. For comparison, we used the state of the
art Flamingo Project! which is a library that offers fast, ef-
ficient implementation of several string similarity search al-
gorithms. We implemented the proposed algorithm in C++
and compiled in g++ 4.7.0 using the -O2 flag. The test
environment was an Intel core 7 — 2600 machine with 3.4
GHz CPU and 24 GB RAM running Linux Fedora Core 17
with kernel 3.3.4 — 5. fc17.286_64. We perform the compar-
ison only against a g-gram based approach [3]. We used
the experimentation dataset supplied by the organizers of
the String Similarity Workshop, EDBT, 2013%. The dictio-
nary contains names of geographical locations from across

"http://flamingo.ics.uci.edu
*http://www2.informatik.hu-berlin.de/~wandelt /searchjoin
competition2013/



the globe. The dictionary size is 400K and the average string
length is 10. The distribution of string length is shown in
Figure 7. The query file consists of a total of 5000 queries.
Every entry in the query file is essentially a 2 tuple contain-
ing the query string and the required edit distance threshold.
The range of edit distance threshold 7 varies from 0 to 4.
The exact number of queries for each threshold is shown in
Table 2. The average query length is 9.7 .

To ensure even comparison, we do not make use of any
multi-threading in our implementation i.e. for a given edit
distance threshold, 7 we use only a single thread to process
all queries with the threshold 7, sequentially. As per the
competition specifications, the total time spent from read-
ing the query file to writing the result to a disk is measured
as the score. However, writing the query results to the disk
can be an obvious bottleneck in the performance of both the
algorithms and hence is avoided to ensure a clear compari-
son.

Before comparing our algorithm with the state of the art
methods, we show the time and memory consumption of our
algorithm. First, we show the variation in the space require-
ments of the index structure with changes in the dictionary
size N and the suffix size Ls. Figure 3 shows the complete
size of the hash table as it varies with change in IV for dif-
ferent values of 7. The value of L is kept fixed at 5. It
must be mentioned here that for every 7, shown size is the
size of the index structure constructed specifically for that
value of 7, i.e size of I;. It can be seen from Figure 3 that
the size of the index structure has better than linear depen-
dence on the dictionary size, N. This reason is that several
strings will generate the same hash-key. The following ex-
ample better illustrates this point. Suppose we have indexed
n strings into the hash table (s1 to s, ) and are now inserting
the (n + 1)th string s,+1. The number of hash-keys in the
hash table at this stage will be the total number of unique
hash-keys generated by the first n strings. Let this set of
unique hash-keys be denoted as HK. To index the sn4+1,
we would generate H;(sn+1). If n is sufficiently high, it
will be highly unlikely that H-(sn+1) generates a hash-key
which is not already present in HK. Thus inserting sn+1
will not increase the number of hash-keys in the hash ta-
ble. The only other cost associated with inserting s,+1 will
involve inserting the id of s,4+1 for every unique hash-key
produced by strings in H;(sp+1). If the expected length of
a string in the dictionary is Lavg then the expected number
of unique hash-keys produced by H(sn+1) will be bounded
by (L“T”Q) + (I;Tf)..(L‘ng) , which can be approximated as
a constant c, for a fixed 7. Thus inserting sn+1 will only re-
quire an additional space of O(c X size of id). It is clear that
higher values of 7 will have higher space requirements as is
evident from Figure 3 and 4. The reason is that a string s
will generate more number of hash-keys for higher values of
7 and this will require more number of insertions (an entry
in the inverted index of each of the hash-keys generated by
s).

Figure 4 shows the variation in space requirement with
change in suffix size Ls for the different values of 7. The
dictionary size (N) is fixed to 400K. Increasing the suffix
size Ls, as expected, dramatically increases the space re-
quirement. This is because L; is essentially the size of the
hash-key and increasing L increases the size of the hash
string. The effect is more pronounced for higher values of
7 (see Figure 4) because as mentioned previously higher 7

Table 2: Number of queries and optimal L, value
| T | number of queries | optimal L, value |

0 1673 8
1 854 8
2 827 7
3 839 7
4 807 6

implies more number of hash-keys per string.

We show the dependence of index construction time on
dictionary size (V) and suffix size (L) in Figure 5 and 6.
In Figure 5 we keep the suffix size Ls fixed at 5 and vary
N from 100K to 400K for 7 = {0,1,2,3,4}. As mentioned
previously, the reported time for each 7 is the time taken to
build an index specifically for that value of 7. It can be seen
that the index construction time varies linearly with increase
in the dictionary size N. In Figure 6, we keep the dictionary
size fixed at 400K while varying Ls from 4 to 8. The index
construction time increases rapidly with increase in suffix
size Ls. This is expected because as stated previously, higher
values of L, imply that for a string s, more number of hash-
keys will be generated by strings in H-(s).

We next compare the average query execution achieved by
the two algorithms i.e. the proposed implementation and
the Flamingo Library. Figure 8 shows the average query
time achieved by the Flamingo Library implementation and
our own algorithm for different values of the edit distance
threshold (7). Figure 8 clearly shows that our algorithm is
an order of magnitude faster than the Flamingo Library, one
of the current state of the art methods. Thus our claim that
deletion neighborhoods are more selective, when compared
to g-gram based methods, and are scalable stands verified.

It must be mentioned here that the value of Ls is not the
same for each 7. For each 7, we select the optimal value of
L, within the range [4:8] by performing exhaustive experi-
mentation. The results are shown in Figure 9 through 13.
The optimal values obtained are mentioned in Table 2. We
admit that the probed range is rather small, but since the
space requirement increases rapidly with increase in L, this
puts a serious restriction on the values of L, that can be
used. Keeping in the mind the memory constraint (48 GB)
as specified in the competition, we only considered those
values of Ly which seemed plausible for the competition.

In Figures 9 through 13 we show the variation in aver-
age query time with change in the suffix size parameter
Ls. Increasing Ls would decrease collisions between differ-
ent strings in the dictionary i.e. in Figure 1, the average
length of the list corresponding to each h; would decrease.
However, the total number of hash-keys generated by H-(q)
would also increase. Hence more lists would need to be
merged. Hence, changing the Ls value is essentially a trade-
off between merging fewer lists which are not very selective,
or more number of lists which are selective. For all values
of 7 ={0,1,2,3,4}, the behavior is nearly similar. Increas-
ing the 7 value initially provides significant reduction in the
average query time. However, it quickly assumes a minima
and increasing Ls beyond the minima slowly increases the
average query time.

In Figure 14, we present the comparison between the total
time taken by the two disk writing methods i.e. standard
disk I/O and buffered disk I/O. In standard 1/O, we write
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each answer of each query on a separate line, as soon as it is
confirmed. In the latter, the same is first written to a buffer
in the memory. After all the queries are processed, the buffer
is then traversed and the result is written onto the disk in
a single operation. Figure 14 shows the percentage reduc-
tion in the total time (query computation + disk i/o) when
using the buffered approach as compared to the standard
approach. As expected, using buffered 1/0 is significantly
faster for higher values of 7, particularly because higher 7
implies a bigger answer set. In Figure 15 we show the total
time spent on writing the results to the disk as a fraction
(in %) of the total time spent in the query. Notice that the
time spent on file I/O is very small (less than 0.55%) of the
total time spent on the query.

6. FUTURE WORK

There are many possible directions of future work. While
in the paper, we address the problem of string similarity
search laying stress on reducing the running time with an
abuse to memory, steps can be taken to make this solution
more memory efficient. The index structure could be made
more compact in a number of ways. At a finer level of granu-
larity, the idea of bucketing could be modified incorporating
the use of non-overlapping buckets instead of the overlapping
ones. Whereas at a broader level the hashing scheme could
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be altered, by using a single hash table constructed only for
the Timaez and maintaining pointers along with each 7 vari-
ant as to which value of 7 generated it, instead of separate
hash tables for each value of 7. The above two modifications
will guarantee reduction in memory requirements, whereas
the running times might change, which needs to be further
investigated by rigorous experimentation. The edit distance
computation can also be made more efficient as explained as
follows. Given two strings, if we are able to get hold of any
common substring, then this information can be leveraged
to compute edit distance by parts which is more efficient as
shown in [5]. It is not hard to see that deletion neighbor-
hoods contain the above mentioned information inherently,
which could be obtained in constant time while constructing
the 7 variant family.

One other improvement can be made by selecting hash
functions from 2-Universal Hash Family and hashing the
complete strings. By varying size and number of hash tables
we could eliminate majority of non-answers in the candidate
set.

7. CONCLUSION

We present in this paper the details of a system developed
at the Special Interest Group in Data (SIGDATA), Indian
Institute of Technology, Kanpur for the String Similarity
Search Competition, EDBT, 2013. Our system emphasizes
the power of deletion-neighborhoods over other finger-print
schemes. We propose the use of novel hashing schemes to
reduce the space requirement of the index structure. We
also propose the use of bucketing schemes to reduce colli-
sions in the aforementioned hashing scheme. The proposed
method achieves significant reduction in the average query
execution time when compared against a previous state of
the art method.
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