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ABSTRACT

We present in this paper scalable algorithms for optimal
string similarity search and join. Our methods are vari-
ations of those applied in Masai [15], our recently pub-
lished tool for mapping high-throughput DNA sequencing
data with unpreceded speed and accuracy. The key fea-
tures of our approach are filtration with approximate seeds
and methods for multiple backtracking. Approximate seeds,
compared to exact seeds, increase filtration specificity while
preserving sensitivity. Multiple backtracking amortizes the
cost of searching a large set of seeds. Combined together,
these two methods significantly speed up string similarity
search and join operations. Our tool is implemented in C++
and OpenMP using the SeqAn library. The source code is
distributed under the BSD license and can be freely down-
loaded from http://www.seqan.de/projects/edbt2013.
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1. INTRODUCTION

This work was inspired by the String Similarity Search/Join
competition initiated by the group of Ulf Leser at the Hum-
boldt University in Berlin, Germany.
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1.1 Competition

The competition consists of performing string similarity
operations under unweighted edit distance for different error
thresholds k. The competition considers two tracks:

I String Similarity Search (SEARCH): Given a set of
strings S and a set of query strings Q, for each query
Q@ € Q find all strings in S within distance k.

IT String Similarity Join (JOIN): Given a set of strings
S, find all pairs of strings within distance k.

Clearly, JOIN of a set S is equivalent to SEARCH @ in S,
for all @ € S. Consequently, in the following of this paper,
unless explicitly stated, we consider only SEARCH.

1.2  Our contribution

We present in this paper efficient and practical algorithms
for solving SEARCH and JOIN. Our methods are variations
of those applied in Masai [15], our recently published tool
for mapping high-throughput DNA sequencing data with
unpreceded speed and accuracy.

Masai is based on efficient filtering methods for approxi-
mate string matching, namely approximate seeds and mul-
tiple backtracking. Approximate seeds provide full-sensitive
filtration without sacrificing filtration specificity. Multiple
backtracking speeds up filtration by searching all seeds si-
multaneously with the help of an additional index. In [15]
we showed that, combined together, these methods yield a
flexible and efficient filter that significantly speeds up ap-
proximate search on genomic data sets.

We show in this paper that minor variations of the meth-
ods of [I5] are sufficient to solve efficiently SEARCH and
JOIN. Differently from [I5], we propose:

e multiple backtracking under the edit distance;
e a parallelization of multiple backtracking;

e stricter filtration criteria for the k-difference global
alignment problem.

In Section 2] we consider online methods for edit distance
computation, first presented in [I8]. Then, in Section we
consider backtracking methods on indices, generalizing those
presented in [15]. Finally, in Section |4} we propose variants
of the filtering methods applied in [15], and based on the
previous two methods.
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2. ONLINE SEARCH

In the following, we first define the edit distance between
two strings and then describe different online algorithms to
compute it. Finally, we propose a banded variant of Myers’
bit-parallel algorithm.

2.1 Banded DP

Edit distance computation is a well-known problem and
studied in many publications. For two given strings, the edit
distance is the minimal number of required edit operations
to transform one string into the other, where an operation
can be a deletion, an insertion, a replacement, or a match
(no change). Sellers [I4] proposed an alignment algorithm
to compute the edit distance between two strings of length
m and n in O(mn) time, w.l.o.g. we assume m < n. The
algorithmic idea goes back to the more general approach
by Needleman and Wunsch [I3] which computes alignments
with maximal similarity in O(mn?) time allowing for ar-
bitrary gap costs that depend on the gap length. Both
algorithms are based on dynamic programming (DP) and
compute the cells of an m x n DP matrix.

More specialized is the problem to compute the edit dis-
tance only up to a maximal distance k£ and to determine that
it is above k, otherwise. This problem is called the banded or
k-difference global alignment problem. We refer the reader
to Gusfield [7] for more details.

LEMMA 1. The k-difference global alignment problem can
be solved by computing only a diagonal band of the DP matriz
of width k+ 1, where the leftmost band diagonal is Lm%"‘HCJ
cells left of the main diagonal (see Figure .

PROOF. Indirect. Assume that a cell outside the band is
part of a global alignment with at most k errors. If the cell
is left of the band, the traceback that starts in the top left
corner would go down at least ¢ = Lm%”'*'kj + 1 cells. Then
it needs to go right at least n — m + ¢ cells to end in the
bottom right corner. Hence it contains at least n —m+2c¢ >
n—m+ 2m="*k — L errors. The assumption that the cell
is right of the band can be falsified analogously. [J
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Figure 1: Banded k-difference global alignment between two
strings of length m and n. The traceback of every possible
global alignment with up to k errors resides completely in the
colored area. Hence the white cells need not to be computed.

2.2 Banded Myers bit-vector algorithm

In [11], Myers| introduced an algorithm that exploits bit-
parallelism to compute the edit distance in O (™2 +m - |3|)
time, where w is the CPU word size and ¥ the string alpha-
bet. The fundamental idea of his approach is to represent a

DP column by the score in the last row and 2 bit-vectors of
size m encoding the vertical differences -1, 0, or 1 of adja-
cent cells. The DP matrix is computed column-wise, where
the next column can then be computed by O(Z*) logical and
arithmetical operations on these bit-vectors.

In [I8 [I5] we proposed a modification of Myers’ algo-
rithm that computes only the columns of a diagonal band of
the DP matrix yielding the practically fastest algorithm for
the k-difference global alignment problem. Whereas Myers’
original algorithm tracks the scores along the last DP row
and computes bit-vectors spanning whole DP columns, our
approach tracks the scores of the lowest band cells (dark cells
in Figure 1) and computes bit-vectors spanning only the in-
tersection of band and DP columns. We dispensed with the
obligation to preprocess the pattern and reduced the running
time from O(m(#‘zl)) to O(M) and the overall

w

memory consumption from O (m/|%[) to O((k + 1)|3|) bits.

3. BACKTRACKING

A naive approach for solving SEARCH is to compute all
|Q| - |S| k-difference global alignments using online search.
No matter how fast online search can be, this naive approach
quickly becomes impractical. Since the database S is static
and given in advance, we decide to index it. To this intent,
we first introduce radiz trees, optimal data structures rep-
resenting sets of strings. Later on, we consider algorithms
solving multiple k-difference global alignment problem in-
stances on radix trees.

3.1 Radix trees

The radix tree [I0] is a lexicographically ordered tree data
structure representing a set of strings. It can be built via
radix sort in time and space linear in the total length of the
strings.

Assume w.l.o.g. that each string in S is padded with a
distinct terminator symbol, not being part of the string al-
phabet Eﬂ The radix tree of S has one node designated as
the root, and one leaf per string in the set. Every internal
node has more than one child, and edges are labeled with
non-empty strings. Each path from the root to an internal
node spells a different unique prefix. Consequently, prefixes
common to distinct strings in S are compressed.

For simplicity of exposition, in the following we consider
triesEI, although our algorithms are easily extendable to work
on trees. Hence, in the following, we assume S and Q to be
indexed using radix tries S and Q. Given a node x, we denote
with label(z) the label of the edge entering into z, with C(x)
the set of children of x being internal nodeﬂ with £(z) the
set of children of x being leave

Using a radix tree we can find all strings in S equal to a
query string @, in optimal time O(|Q|) and independently
of ||S]|. We locate a query @ by starting in the root node
of S and following the path spelling the query. If we end up
in a node z, each leaf I, € £(z) points to a distinct string
Sz € S that is equal to Q.

I Terminator symbols are necessary to ensure that no string
S; € S is a prefix of another string S; € S.

20n tries, internal nodes can have only one child.
3Entering edges of internal nodes are labeled with symbols
in 2.

4Entering edges of leaves are labeled with terminator sym-
bols.



By backtracking [16} 2] on a radix tree we can find all
strings in S within distance k from a query string @, in aver-
age time sublinear in ||S|| [I12]. A top-down traversal on the
radix tree S spells incrementally all distinct strings present
in the set S. While traversing each branch of the tree, we
incrementally compute the distance between the query and
the spelled string. If the computed distance exceeds k, we
stop the traversal and proceed on the next branch. Con-
versely, if we completely spelled the query @, and we ended
up in a node z, each leaf I, € £(x) points to a distinct string
Sy € S that is within distance k£ of Q.

3.2 Multiple backtracking

In SEARCH we are given a set of query strings O, i.e.
we are given several query strings at the same time. Conse-
quently, we decide to index also Q. Note that, in JOIN, the
radix tree of queries Q is equal to the radix tree of S.

To this intent, we now introduce methods for multiple
offline approximate search to simultaneously locate a set of
queries Q in a set of strings S. We start with an algorithm
for multiple offline exact search, and later we extend it to
multiple approximate search.

3.2.1 Exact search

Algorithm [I]takes as input two nodes s and g, respectively,
of S and Q, and reports all pairs of leaves (Is,1;) € L(s) %
L(q) such that the path from ¢ to l4 spells exactly the path
from s to ls. Consequently, by applying Algorithm [1| on the
root nodes of S and Q, we obtain all pairs of leaves (Is,(q)
such that the query string pointed by [, is equal to the string
pointed by .

Algorithm 1 Multiple exact search.

1: procedure SEARCH(s, q)
2: report £(s) x £(q)
for all ¢, € C(q) do
if 3es € C(s) @ label(cs) = label(cq) then
SEARCH(cs, ¢q)
end if
end procedure

In JOIN, since Q = S, Algorithm [1] can be replaced by a
simple top-down traversal that reports each leaf paired to
each of its sibling leaves.

3.2.2 Approximate search

Algorithm [2] takes an additional input argument e denot-
ing the number of errors left, i.e. initially e = k. The
algorithm computes the union of all paths in the subtrees
rooted in s and g, within edit distance k. It reports all pairs
of leaves (Is,1q) € L(s) x L(q) such that the path from g to
lq spells the path from s to [, within edit distance k.

Therefore, by applying Algorithm [2| on the root nodes of
S and Q, we obtain all pairs of leaves (Is,lq) such that the
query string pointed by [, is within edit distance &k from the
string pointed by [s.

For k = 0, lines 5-16 of Algorithm [2| are equivalent to Al-
gorithm[I] However Algorithm [I]is preferred to Algorithm [2]
because it traverses only edges spelling common strings in-
stead of all pairs of edges and it is thus more efficient. Fig-
ure 2 in [I5] depicts a run of Algorithm

Algorithm 2 Multiple approximate search.

1: procedure SEARCH(s, q,€)

2: if £ =0 then

3: SEARCH(S, q)

4 else

5: report £(s) x £(q)

6: for all ¢, € C(s) do

7 for all ¢, € C(q) do

8 if label(cs) = label(cy) then
9: SEARCH(cs, ¢q, €)

10: else

11: SEARCH(cs, cq, € — 1)
12: end if

13: for all ¢; € C(s) do

14: SEARCH(cs,q,e — 1)

15: for all ¢, € C(q) do

16: SEARCH(S, cq,e — 1)

17: end if

18: end procedure

3.2.3 Parallelization

Parallelization of multiple backtracking is not straightfor-
ward. We start multiple backtracking with a single thread
on the top of the two trees. Every time the traversal reaches
a fixed depth d, instead of recursing, we append the argu-
ments of recursive calls to Algorithms [I] and 2] to a work
queue. In this way, we save the state of the algorithms at
depth d. Each saved recursive call defines an independent
job.

Once the algorithm stops, we continue backtracking in
parallel. We let a fixed number of threads remove recursive
call arguments from the queue, and continue the recursion
by calling Algorithms [I] or 2] with removed call arguments.

To facilitate load balancing, the work queue must contain
an adequate number of jobs. We choose d such that the
work queue contains roughly 1000 jobs.

4. FILTRATION

Backtracking methods presented in Section [3| are only
practical for short queries and small edit distance. For in-
stance, single backtracking for a query ) exhibit worst case-
time time complexity O(|Q|*-|2|*) [I2]. We can obtain more
efficient and practical filtration methods by combining the
methods presented in Section [2] and [3]

The banded DP alignment matrix in Figure 2] suggests us
the key idea behind filtration methods. Let Q be one query
string, and S any string from the set S. We partition the
query string @ in non-overlapping factors called seeds. Such
partitioning induces a partitioning of the DP alignment ma-
trix of @ and S, and a partitioning of the global alignment
trace in smaller traces. We are only interested into occur-
rences of seeds from @ in S that would fall inside the band
of the DP alignment matrix. Indeed, seeds occurring outside
of the band would not be part of any valid global alignment
trace.

4.1 Exact seeds

An application of the pigeonhole lemma, analogous to that
one proposed in [3], gives us a convenient partitioning. We
partition a query string @ into k + 1 non-overlapping seeds.
Since each edit operation can affect at most one seed, for



CGCANATAATCAG CGCANATAATCAG

mraaaa

Qra A4 B2ra Qo

Q@raAd=-

(a) Exact seeds. (b) Approximate seeds.

Figure 2: Filtration strategies. A query string Q (verti-
cal) matches a database string S (horizontal) with 3 errors.
(a) If we partition @ into 4 seeds, at least one seed (CAG)
occurs exactly in S. (b) Alternatively, if we partition @ into
2 seeds, at least one seed (TATCAG) occurs with at most 1
error in S.

the pigeonhole principle, the trace of @ and S contains the
trace of some seed without errors. Therefore, it is sufficient
to search exactly all £+ 1 seeds of @ in the index of S, and
to consider only their occurrences inside the diagonal band
defined in Lemma However, the converse is not true,
therefore it is necessary to verify whether the occurrence of
some seed of Q induces a string S within edit distance k.

Filtration specificity in terms of strings to verify is strongly
correlated to seed length. Since we want to maximize the
length of the shortest seed, we let the minimum seed length
be [|Q|/(k + 1)]. Clearly, a big k or a short query Q dete-
riorates filtration specificity. If we want to improve on it by
increasing the seed length, we have to resort to approximate
seeds.

4.2 Approximate seeds

A generalization of the pigeonhole lemma, analogous to
that one proposed in [I2], suggests us a more flexible parti-
tioning. We partition @ into s < k41 non-overlapping seeds.
According to the pigeonhole principle, the trace of @ and S
then contains the trace of some seed within distance |k/s].
It is sufficient to search (k mod s) + 1 seeds within distance
|k/s], and the remaining seeds within distance |k/s| — 1.
To prove full-sensitivity it suffices to see that, if none of the
seeds occur within its assigned distance, the total distance
must be at least s- |k/s| 4+ (k mod s) +1 = k+ 1. Hence all
strings S € § within distance k& will be found.

Strings in Q have variable length and, in SEARCH, even
variable number of errors. For simplicity, we decide to fix
a priori the seed length [, and let it be a parameter to the
filtration algorithm. The seed length [ enforces the number
of seeds s to be ||Q|/l] for each query string. The optimal
seed length [ depends on the nature of the database as well
as on the query length and the absolute number of errors.
In general, by increasing [, filtration becomes more specific
at the expense of a higher filtration time.

4.3 Finding seeds

For simplicity, we index S with a generalized suffix tree S.
The suffix tree [I9] of a string S is the radix tree of all the
suffixes of S. It can be built in time and space O(|S]) [17].
In addition, the generalized suffiz tree is the suffix tree of a
set of strings S. Once more, we refer the reader to Gusfield

[7] for more details.

Consequently, we partition each query string into a vari-
able number of seeds of fixed length [, having a variable
number of errors e € [0,k]. We group all seeds (from all
queries) having e errors in a set Q.. Then, we index each
group of seeds Q. using one radix tree Q..

In order to locate all seeds in Q. as substrings of any string
in S, we apply Algorithm [[]and [2]to the root nodes of S and
Qe, and let them report £(s) x E(q), where L(s) is the set
of leaves of the subtree rooted in s.

S. IMPLEMENTATION

For simplicity, we emulate radix and suffix trees using
radiz and suffiz arrays [9]. We implemented a generic suffix
tree top-down traversal on top of the suffix array. Conse-
quently, the implementation of our algorithms is abstract
from that of the underlying substring index. Therefore, suf-
fix arrays could be easily replaced by enhanced suffix arrays
[, lazy suffiz trees [6], or g-gram indices.

Generalized suffix arrays can be constructed in linear time
using an adaptation of the DC7 algorithm [4] to multiple se-
quences. Likewise, radix arrays can be constructed in linear
time by radix sort. However, on one hand, we do not dis-
pose of parallel versions of DC7 and radix sort. On the
other hand, strings from SEARCH and JOIN test datasets
have short longest common prefixes on average. For these
reasons, we prefer to construct radix and suffix arrays us-
ing std::sort from the Multi-Core Standard Template Library
(MCSTL).

Our implementation of multiple backtracking is more in-
volved than the pseudocode of Algorithm [2] Indeed, we
align tree labels using banded DP. Conversely, Algorithm
follows independently all active DP diagonals in the trees,
analogously to [8]. Essentially, our implementation uses DP
to simulate a Nondeterministic Finite Automaton (NFA)
for the k-differences problem, while Algorithm [2] simulates
the same NFA naively. Consequently, we prefer the former
approach, since it minimizes the number of node traver-
sals. A third possible approach simulates the NFA using
bit-parallelism, as done in [I2]. However, in [12] the full
query string is preprocessed in advance, while in multiple
backtracking this is not possible.

Our tool is implemented in C++ and OpenMP using the
SeqAn [5] library. The source code is distributed under
the BSD license and can be freely downloaded from http:
//www.seqan.de/projects/edbt2013. Online search, index
construction, and multiple backtracking algorithms are part
of the SeqAn library.
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