Trie-based Edit Similarity Search & Join [SSS&J Workshop]

Jianbin Qin, Xiaoling Zhou, Wei Wang

University of New South Wales, Australia

Chuan Xiao

Nagoya University, Japan

Outline

- Context
- Problem Definition & Motivations
- Overview of Our Approach
- Conclusions

NB: Many other approaches not covered here !

Context

Problem Definition

- With an edit distance threshold t in [0, t_{max}]
- ed-search(Q, \mathfrak{B}) = { S in \mathfrak{B} | ed(S, Q) \leq t }
- ed-join(ℜ, ℬ) = {<R, S> | ed(R, S) ≤ t, R in ℜ, S in ℬ}
 Special case: self ed-join
- Comments
 - The workshop specification is slightly different
 - Allow t = 0
 - Ed Join: output $\langle x, y \rangle$ and $\langle y, x \rangle$; output $\langle x, x \rangle$; input not sorted
 - Ed Search: queries with different t; queries given in batch; pretty generous constraints in indexing time& size.

Source: Hadjieleftheriou & Li, VLDB09 tutorial

Motivations / 1

Case Western

AT&T--Research

Yannis Papakonstantinou

Meral Ozsoyoglu

Marios Hadjieleftheriou

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/index.html

Source: http://www.ics.uci.edu/~chenli/pubs.html

Motivations /2

- Typographical errors
 - Why everybdoy can undrstand this?
 - Person's names (or other Named entities)

- Efficient Approximate Search on String Collections (Tutorial), Marios Hadjeleftheriou and Chen Li, VLDB 2009. [PDF], [Part I], [Part I].
- Efficient Approximate Search on String Collections (Tutorial), Marios Hadjieleftheriou, Chen Li, ICDE 2009, [<u>PPT-Part1</u>], [<u>PPT-part2</u>].
- Quality-Aware Retrieval of Data Objects from Autonomous Sources for Web-Based Repositories, Houtan Shirani-Mehr, Chen Li, Gang Liang, Michal Shmueli-Scheuer, ICDE 2008 (poster). [PDF]
- 7 Communication-Efficient Query Answering with Quality Guarantees in Client-Server

Motivations /3

- Big data intel project Department of Defense, Australia
 - Cross-document Coreference Resolution (CDCR)
 - Requires finding highly similar "mentions" based on a sophisticate similarity measure, which includes edit distance (to measure orthographic similarity)
 - Naïve solution requires $O(n^2)$ comparisons, where n = 40.3 million in a recent study [Singh et al, ACL HLT 2011]
 - (Self) Similarity join can help

Trie-based Ed-Search [Chaudhuri & Kaushik, SIGMOD09, Ji et al, WWW09, Li et al, VLDBJ11]

• Idea:

Generalization of t=0

- Incrementally maintain the Active Node Sets (ANS) for each query prefix Q[1..i]
- ANS = {trie node n | $ed(n, Q[1..i]) \le t$ }

Improvements

- EVA
- LEVA
- Adaptations

LEVA

• Maintain only potentially feasible nodes

Step	Query	Active States & Their Edit Distances	3
$\begin{bmatrix} 1\\ 2\\ 3\\ 4 \end{bmatrix}$	Ø c ca cat	$ \begin{array}{l} \{n_0,0\},\{n_1,1\},\{n_4,1\},\{n_7,1\}\\ \{n_0,1\},\{n_1,1\},\{n_4,0\},\{n_5,1\},\{n_7,1\}\\ \{n_1,1\},\{n_4,1\},\{n_5,0\},\{n_6,1\},\{n_8,1\}\\ \{n_5,1\},\{n_6,1\},\{n_9,1\} \end{array} $	$\left. \begin{array}{c} n_{0} \otimes \\ n_{1} & n_{4} \end{array} \right) = n_{1} \\ n_{2} & n_{4} \end{array} $
Step	Quer	y Active States and Their Extents	$n_{2} r n_{5} a a a n_{8}$
$ \begin{array}{c} 1\\ 2\\ 3\\ 4 \end{array} $	Ø c ca	$S_{0}: \{ n_{0} \}$ $S_{0}: \{ n_{0} \}$ $S_{2}: \{ n_{1} \}, S_{1}: \{ n_{4} \}, S_{5}: \{ n_{7} \}$	$\begin{bmatrix} n_3 \\ t \\ n_6 \\ b \\ n_{11} \\ n_{11}$
11-	Cat	$S_1 : \{n_5\}, S_6 : \{n_8\}$	$Q = \operatorname{cat}, t = 1$

Adaptation to Ed Search

- To ed search
 - DFSinstead of BFS
 - Result fetching: only retrieve leaf nodes

 n_1

 n_{2}

а

r

- Extended length filtering
- To ed join
 - More involved

$$EV(n_9) = S_7$$
 (aka. $[\#, \#, 1]^T$)
ELenFilter $(S_7, 1) = S_\perp$

prune n₉

b n_6 n_{3} D n_{11} е n_{10}

 n_o

 n_4

 n_5

Ø

С

а

Q = cat, t = 1

 n_7

 n_8

+

 n_{9} [4,5]

S

 $n_{12}^{[5,5]}$

 n_{13}

m

а

Parallelization

- Few published results AFAIK
- A poor man's approach
 - Ed-search:
 - partition the queries into fixed-size job block; each worker gets the next job block
 - Ed-join:
 - treated as batch edit similarity search

Conclusions

- Ed search/join is a HARD problem, yet still have very efficient methods for many practical settings
- Our preliminary study of trie-based methods for edit similarity queries
 - Small index size and pretty fast query processing speed for short string collections
- Lessons learned
 - Many open problems identified for (our) trie-based approach (e.g., long strings? large t?)
 - No one-size-fits-all solution (e.g., $|\Sigma|$ size, distributions)
 - Implementation details matter (e.g., parameter tuning?)

More info @ our project Homepage: http://www.cse.unsw.edu.au/~weiw/project/simjoin.html

Advertisement: ICDE2014 "Strings, Texts and Keyword Search" track