
Approximate String Matching by
Position Restricted Alignment
Manish Patil

Xuanting Cai

Sharma V. Thankachan

Rahul Shah

Seung-Jong Park

David Foltz

 Louisiana State University,
USA

Problem Definition
 Given a non-negative integer τ, a string r and a collection of strings

S, an approximate string query finds all pairs (r,s) with s ∈ S such
that ed(r,s) ≤τ

Id String
s1 AAACTGTGC
s2 AACTGTC
s3 CTAATCT
s4 GCGTC
s5 GCGTCGT
s6 TCAACCGTACG
s7 TCCTATAAA
s8 TCCAATAAA

ed(r,s)
1
1
6
4
5
4
6
7

τ= 2
 r = AACTGTGC

 s8 = TCC AA TAAA

q-gram Based Approach
 If query r matches a string s withτerrors and if we split the pattern r in

τ+ t disjoint pieces arbitrarily, then at-least t pieces must be present in
s as its substring with no errors

 q = 2

τ= 2

 r = AA CT GT GC

✔

✗

 s2 = AA A CT GT GC

q-gram Based Approach
 Maintain inverted lists for all q-grams in given collection of strings S

 Given a query string r
 Partition the query string to obtain q-grams
 Retrieve the inverted lists corresponding to each of the q-gram
 Apply filtering techniques to prune strings and shrink inverted lists
 Merge the lists to obtain candidate strings
 Verify each of the candidate string for edit distance thresholdτ

Observations
 Dilemma of choosing q (fixed at the time of index construction)

 Maintain inverted lists of grams for all values of q

 Applying filters to prune out the candidate can be expensive in terms
of computational cost
 Integrate the inverted lists storage with filtering techniques enabling us to

auto-filter the inverted lists

Suffix Tree
 Suffix tree is a compact trie storing the suffixes of the input string

 O(n) words space
 Locate inverted list corresponding to the given query r, in O(|r|) time

A NA

NA$ NA $

$ NA$

$

BANANA$

Suffix tree for string
BANANA

 Generalized Suffix Tree (GST) is a compact trie which stores all suffixes of
all strings in a given collection S

∑={5}

 1 9 14 2 4
15

 0 7 10 5 11 13 16 3
12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Wavelet-Tree

3 1 2 6 2 5 7 3 7 1 4 5 6 5 1 2 5 7

0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1

1 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1

0 1 1 0 0 1 0 0 1 1 0 0 1 0 0

∑={1, 2, 3, 4} ∑={5, 6, 7}

∑={1, 2} ∑={3, 4} ∑={5, 6}

Input :

Report all occurrences of 5,6

1

0 1 0 1

0

0 0 0 1 1 1

∑={1} ∑={2}

0 0 1

∑={3} ∑={4}

 1 1 1

∑={7}

0 0 0 0 1 1

∑={6}
 6 8
17

∑={1, 2, 3, 4, 5, 6, 7
}

Wavelet-Tree
 WT is an ordered balanced binary tree where

 each leaf is labeled with a symbol in ∑

 leaves are sorted from left to right
 each internal node represents an alphabet set ∑’ , and is associated with

a bit-vector (along with its rank-select structure)
 each node partitions its alphabet set among the two children (almost)

equally, such that all symbols represented by the left child are
numerically smaller than those represented by the right child

 O(n) words space

 Query time for 2D range searching is O(log ∑) per output

Basic Framework for Query Answering

 Maintain GST for given collection of strings S

 Given a query string r
 Divide r into τ+ 1 segments each with length floor(|r|/(τ+ 1)) except the

last |r| mod (τ+ 1) segments which have length ceil(|r|/(τ+1))
 Search for each partition in the GST to retrieve its inverted list
 Apply Length and Position filtering to prune strings
 Merge the lists using scan-count algorithm to obtain candidate strings
 Verify each of the candidate string for edit distance thresholdτusing linear

time algorithm

Length
9
7
7
5
7
11
9
9

Length Filtering
 The length of a string s that is within edit distanceτfrom query string r

is bounded by the equation: ||r| − |s|| ≤τ

Id String
s1 AAACTGTGC
s2 AACTGTC
s3 CTAATCT
s4 GCGTC
s5 GCGTCGT
s6 TCAACCGTACG
s7 TCCTATAAA
s8 TCCAATAAA

τ= 2
 r = AACTGTGC

|r| = 8
6 <= |s| <= 10

 r = AA CTGTGC
 s3 = CT AA TCT

 r = AA CTGTGC
s7 = TCCTAT AA A

Position Filtering
 Let s contains a substring s’ that matches substring r’ of r

 Let s’ have starting position s’sp in s and substring r’ has starting
position r’sp in r

 If alignment of r and s produced by matching r’ and s’ gives edit
distance less than or equal to threshold τthen |r’sp − s’sp| ≤ τ

Id String
s1 AAACTGTGC
s2 AACTGTC
s3 CTAATCT
s5 GCGTCGT
s7 TCCTATAAA
s8 TCCAATAAA

τ= 2

 r = AA CTG TGC

Basic Framework for Query Answering

A C

T

AA

Id s7 s8 s7 s8 s1 s6 s1 s2 s8 s3

Length 9 9 9 9 9 11 9 7 9 7

Starting
position

8 8 7 7 1 3 2 1 4 3

$

$

CTGTGC$

TGTGC$

CCGTACG$

AAA$

CT$

Position Restricted Alignment
 Consider alignment of r and s produced by matching r’ and s’

 s’ is a substring of s and r’ is substring of r
 s’ has starting position s’sp in s and r’sp be the same for r’

 Partition r in to rleft, r’, rright around r’ and similarly partition s as well

 r = rleft r’ rright

 s = sleft s’ sright

ed(r, s) ≤ τ

ed(rleft , sleft) + ed(rright, sright) ≤ τ

|r’sp-s’sp| + |(|r|-r’sp)-(|s|-s’sp)| ≤ τ

 r = AA CTGTGC
 s3 = CT AA TCT

✗

… 1 …

Level 1: Wavelet-Tree

… 8 8 7 7 1 3 2 1 4 3 …

(s7,9
)

(s8,9
)

(s7,9
)

(s1,9
)

(s1,9) (s6,11) (s1,9) (s2,7) (s8,9) (s3,7)

… 1 1 1 1 0 0 0 0 0 0 …

∑={1 … 6, 7 … 11}

τ= 2

 r = AA CTG TGC

|1-s’sp| <= 2

Starting
Position

... 0 0 …

∑={1}

(s1,9) (s2,7)

... 1 1 …

∑={3}

(s6,11) (s3,7)

∑={2}

(s1,,9)

…

Level 2: Wavelet-Tree
∑={3}

8 4

(s6,11) (s3,7)

… (Length –
Starting Position)

… 1 0 …

∑={2, 4, 6, 8}

… 1 …

∑={8}

s6

…

|r’sp-s’sp| + |(|r|-r’sp)-(|s|-s’sp)| ≤ τ
2 + |7-(|s|-s’sp)| ≤ 2

|s|-s’sp <= 0

… 1 …

∑={4}

s3

…

∑={8}

…

∑={2}

Performance Bottleneck
 Particular string s can have multiple possible alignments with r based

on partition r’

 Use of scan-count of merging inverted lists

 Results in artificial candidate strings increasing verification cost

 Special care has to be taken to increment count for a string s only
once for each of the partition of r
 easy to be taken care of theoretically
 practically it is an additional cost to ensure uniqueness

Selectively Enforcing Uniqueness
 Goal: To balance cost of ensuring uniquess vs increased cost of

verification due to artificial candidate strings

 Maintain a dictionary of GST nodes (strings) such that
 dist(u)/size(u) < UQmin ,where dist(u) is the number of distinct leaves

(string ids) in the subtree of node u and size(u) is the total number of
leaves in subtree of node u

 If r’ is in the dictionary filter out duplicate string ids

Other Practical Improvements
 Incorporating count filtering

 Partition query r intoτ+ t disjoint pieces where t depends on query string
length

 Variable length partitioning
 Greedy partitioning of query string r guided by the dictionary of GST

nodes

 Filtering based on frequency distance
 If two strings are similar, then the frequency of the alphabet symbols in

two strings should also be similar

Experimental Setup
 Public code libraries used

 http://www.un-iulm.de/in/theo/research/sdsl.html
 http://pizzachili.dcc.uchile.cl/indexes.html

 C++ Implementation (gcc 4.4 and above)

 Ubuntu machine with an Intel core i5 (quad core) 1.6GHz processor
and 8GB RAM

http://www.un-iulm.de/in/theo/research/sdsl.html
http://pizzachili.dcc.uchile.cl/indexes.html

Results

I-PRA: τ+ 1 partitioning
(No uniqueness check required)

I-CF(-): τ+ t partitioning with
mandatory uniqueness check

I-CF(+): τ+ t partitioning with
selective uniqueness check

Results

I-CF(+): τ+ t partitioning with
selective uniqueness check

I-FDF: I-CF(+) with frequency
distance filtering

Questions?

THANK YOU!

	Approximate String Matching by�Position Restricted Alignment
	Problem Definition
	q-gram Based Approach
	q-gram Based Approach
	Observations
	Suffix Tree
	Wavelet-Tree
	Wavelet-Tree
	Basic Framework for Query Answering
	Length Filtering
	Position Filtering
	Basic Framework for Query Answering
	Position Restricted Alignment
	Level 1: Wavelet-Tree
	Level 2: Wavelet-Tree
	Performance Bottleneck
	Selectively Enforcing Uniqueness
	Other Practical Improvements
	Experimental Setup
	Results
	Results
	Questions?

