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Introduction

Main Task

• Given a dictionary of strings, perform fast lookups/joins of similar
strings in the dictionary.

• Use edit distance to quantify the notion of similarity between
strings.

• Two tracks:

1. Join: Perform self-join of strings. Given a threshold τ , list all string
pairs in the dictionary with edit-distance ≤ τ .

2. Search: Process range queries as specified in a supplied query file.
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Introduction

Search Track: Problem Statement

Given a set of strings, D, and a query tuple containing a query string,
q, and an edit distance threshold τ , identify all pairs < q, s > s.t.
s ∈ D and EditDistance(q, s) ≤ τ .

• Generate and maintain an index structure for the dictionary
respecting certain time and memory constraints.

• Use the index structure to process a list of queries (2-tuples). List
all answers in the specified format.

• Evaluation Parameter: Minimize total time taken to process all
queries.
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Problem Statement: Further Details

• Index construction time not counted towards the score, but must
be less than 3 hrs.

• Peak memory consumption must be less than 48 GB.

• Score dependent solely on Teffective where

Teffective = tend − tbegin

where tbegin and tend are time instances marking the beginning and
the end of the processing of the query file, respectively.

• Evaluation environment: 8 cores, 64 GB RAM, FC 17.
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The Dictionary

• Dictionary 1: Geographical
names
◦ Names of places from

across the globe.
◦ Character-set |Σ|=255
◦ Mean string length µ=10
◦ Dictionary size |D|=400K

• Dictionary 2: Human
genome read data
◦ Strings containing human

genomic data.
◦ Character-set |Σ|=4
◦ Mean string length
µ=100.3

◦ Dictionary size |D|=750K
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Typical Methodology

• Observation: Modern methods follow a general scheme.

◦ Generate a signature for each string in the dictionary.
◦ Maintain an inverted index for generated signatures.
◦ Signature must result in a (tight) filtering criteria.
◦ Given a query string, q, use the filter and query signature to generate

a candidate list.
◦ For each string s ′ in the candidate list, verify if s ′ is answer.

• Signature results in a filtering criteria. ?
◦ Signature Function SF (s) maps string s to a signature space.
◦ Filtering condition is specific to the choice of the signature function.
◦ In general, for string s, query string q, threshold τ , filtering condition

is an inequality.
F (s, q, τ, SF ) <> 6= 0
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Signature

• Completeness of solution required → No False Dismissals.

• Filter condition must ensure no false dismissals.

• For query < q, τ >, if ED(s, q) ≤ τ then F (s, q, τ, SF ) must hold.

• Computation of signature should be computationally
non-expensive.

• Filter condition should be tight. Resultant candidate list should be
small.

• Popular signature schemes in literature:
◦ Q-Gram
◦ Deletion Neighborhood
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Signature: Deletion Neighborhood

• Defined w.r.t. a specified edit distance threshold.

• For a string s and edit distance τ , deletion neighborhood signature
of s, SFτ (s) is the set of all strings that can be generated by
deleting at-most τ characters from s.

• Ex. s = ”SIGDATA”
◦ SF1(s) ={”IGDATA”,”SGDATA”,”SIDATA”,”SIGATA”,”SIGDTA”,

”SIGDAA”,”SIGDAT”, ”SIGDATA”}
• Filtering Condition: -

If ED(s1,s2) ≤ τ , then |SFτ (s1) ∩ SFτ (s2)| > 0

• Intuition: Both strings s1, s2 should be reducible to a common
form after at-most τ deletion operations.
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Signature: Q-Gram

• For a string s, Q-Gram signature of s, SF (s) is the set of all strings
that can be generated by taking q contiguous characters from s.

• Ex. s = ”SIGDATA”, Q = 3
◦ SF (s) ={”SIG”,”IGD”,”GDA”,”DAT”,”ATA”}

• Filtering Condition: -

If ED(s1,s2) ≤ τ , then |SF (s1)∩SF (s2)| ≥ max(|s1|, |s2|)+1−(τ+1).Q

• In practice, RHS = |q|+ 1− (τ + 1).Q, where q is the query string.

• For filter to be tight, RHS > 0 → |q| > (τ + 1).Q − 1.
◦ Serious limitation ! For Q = 2, τ = 2, only queries with |q| ≥ 6 can

be processed, for τ = 3, |q| ≥ 8.
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Choice of Signature

• Deletion Neighborhood seems to be better than Q-Gram.
◦ No restriction on query size.
◦ Every inverted list should (expectedly) be more selective.

• However, they have high space requirement.

• For |s| = 14, τ = 2,
◦ |SF3−Gram| = |s| − Q + 1 = 12 O(|s|)
◦ |SFDeletion| =

(|s|
τ

)
= 91 O(|s|τ )
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Our System

Design Decision

Decided to implement a system following the generic scheme and
using deletion neighborhood as the signature scheme.
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Reducing Space Requirement

• Key Idea: Introduce collisions among objects in SFτ (s).

O1

O2

O3

O4

O ′1

O ′2

O ′3

• Possible Solution ? Hashing !
• For O ∈ SFτ (s), h(O) = suffixL(O).
◦ Hashing results in a reduced set representation of SFτ (s).
◦ Ex. for s =”SIGDATA”, τ = 1, L = 3,

• h(SF (s)) = {”ATA”, ”DTA”, ”DAA”, ”DAT”}
• |h(SFτ (s))| = 4 < |SFτ (s)| = 8

• Added Benefit: Need not generate all elements in SFτ (s).
|h(SFτ (s))| = O(

(L+τ
τ

)
).
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Our System

Design Decision

To implement a system following the generic scheme and using
deletion neighborhood as the signature.

Reduction of Space Requirement

To hash generated signature and index the resultant strings.
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Hashing: Completeness Guarantee ?

• Any hashing scheme guarantees the completeness of solution.

◦ If s is an answer for a query < q, τ >, then ∃ o s.t. o ∈ SFτ (s) and
o ∈ SFτ (q).

◦ Thus, h(o) ∈ h(SFτ (s)), h(SFτ (q)), and hence s is in the candidate
list.

• Why suffix ?
◦ No real reason. Initial design decision.
◦ Performed well, stuck around.

• Possibly lucrative to try other hash functions/schemes.
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Hashing: Layout

• So what does Iτ look like ?

• Hash Table !

h1 h2 h|HK |

i1
i2

ip

.....

◦ Keys consist of string resulting from hash (suffix operation).
◦ List consists of ids of strings in D that generate the key.
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Bucketing

• Should Iτ be a single structure (hash-table) for all strings ?

• No reason why !
• Infact it helps to partitions strings on the basis of length.
◦ Iτ consists of buckets.
◦ Every bucket responsible for indexing strings within a particular length

range.

Iτ

B1 B2 B3

3 10

7 16

13 25

2τ 2τ
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Bucketing: Why ?

• Ex. Let s =”PLACATING”, |s| = 9.

• Query < BATING , 2 >. |q| = 6.

• For I2, if L = 4, s will be in the candidate list.
◦ ”TING” common hash-key.

• abs(|s| − |q|) > τ . s is ruled out.

• Apply length filter higher up in the pipeline.

• Say Iτ had B1 s.t. the bucket was responsible for range [1 : 8].
◦ Query could be answered by B1 alone.
◦ B1 would not index ”PLACATING”.

• 25% reduction in average search time for τ = 2.
150µs → 110µs .
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Our System

Design Decision

To implement a system following the generic scheme and using
deletion neighborhood as the signature.

Reduction of Space Requirement

To hash generated signature and index the resultant strings.

Bucketing: Reducing collisions in Hash-Table

Partition strings on basis of length. Apply early length filtering.
Results in smaller individual hash-tables. Increases space requirement.
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Verification

• How to verify if s ∈ Candidate-List is an answer ? Check if
ED(s, q) ≤ τ

• Naive Method: Explicitly compute ED(s, q).

• Not interested in value of ED(s, q).

S1

S2

• For each row i , only need to examine j s.t.
i −

⌊
τ−δ
2

⌋
< j < i +

⌊
τ+δ
2

⌋
. δ = abs(|s1| − |s2|).

• Li et al., VLDB 2012.
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Execution

• Generate dedicated index structures, Iτ for each τ .

• Read and group all queries depending on threshold τ .

• Sequentially process queries for each τ = [0 : 4].
◦ Multiple threads read their own queries.
◦ Thread j responsible for all queries s.t. idq % 8 = j .
◦ Result of each query written to a global buffer in memory.

Contention between threads on memory write.

• Flush the buffer to the disk.
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Results

• So how do we fare against a state-of-the-art ?
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τ Avg. query time (ms)
Flamingo Proposed

0 0.015 0.004
1 0.146 0.019
2 0.901 0.108
3 7.245 0.736
4 30.906 4.801
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The Team
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Thank You !
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