Efficient High-Similarity String Comparison: The Waterfall Algorithm

Alexander Tiskin
Department of Computer Science
University of Warwick
http://go.warwick.ac.uk/alextiskin

(1) Semi-local string comparison
(2) The transposition network method
(1) Semi-local string comparison
(2) The transposition network method

Semi-local string comparison

Semi-local LCS and edit distance

Consider strings (= sequences) over an alphabet of size σ
Distinguish contiguous substrings and not necessarily contiguous subsequences

Special cases of substring: prefix, suffix
Notation: strings a, b of length m, n respectively
Assume where necessary: $m \leq n ; m, n$ reasonably close
The longest common subsequence (LCS) score:

- length of longest string that is a subsequence of both a and b
- equivalently, alignment score, where score(match) $=1$ and score $($ mismatch $)=0$

In biological terms, "loss-free alignment" (unlike "lossy" BLAST)

Semi-local string comparison

Semi-local LCS and edit distance

The LCS problem

Give the LCS score for a vs b

$$
\begin{aligned}
& \text { LCS: running time } \\
& O(m n) \\
& O\left(\frac{m n}{\log ^{2} n}\right) \quad \sigma=O(1) \\
& O\left(\frac{m n(\log \log n)^{2}}{\log ^{2} n}\right)
\end{aligned}
$$

[Wagner, Fischer: 1974]
[Masek, Paterson: 1980]
[Crochemore+: 2003]
[Paterson, Dančík: 1994]
[Bille, Farach-Colton: 2008]

Running time varies depending on the RAM model version We assume word-RAM with word size $\log n$ (where it matters)

Semi-local string comparison

Semi-local LCS and edit distance

LCS computation by dynamic programming

$$
\begin{aligned}
& \operatorname{lcs}\left(a,{ }^{\prime \prime \prime}\right)=0 \\
& \operatorname{lcs}\left({ }^{\prime \prime \prime}, b\right)=0
\end{aligned} \quad \operatorname{lcs}(a \alpha, b \beta)= \begin{cases}\max (\operatorname{lcs}(a \alpha, b), \operatorname{lcs}(a, b \beta)) & \text { if } \alpha \neq \beta \\
\operatorname{lcs}(a, b)+1 & \text { if } \alpha=\beta\end{cases}
$$

	$*$	d	e	f	i	n	e
$*$	0	0	0	0	0	0	0
d	0	1	1	1	1	1	1
e	0	1	2	2	2	2	2
s	0	1	2	2	2	2	2
i	0	1	2	2	3	3	3
g	0	1	2	2	3	3	3
n	0	1	2	2	3	4	4

Ics("define", "design") $=4$
$\operatorname{LCS}(a, b)$ can be "traced back" through the table at no extra asymptotic cost

Semi-local string comparison

Semi-local LCS and edit distance

LCS on the alignment graph (directed, acyclic)

blue $=0$
red $=1$ score("BAABCBCA", "BAABCABCABACA") $=\operatorname{len}($ "BAABCBCA" $)=8$
LCS $=$ highest-score path from top-left to bottom-right

Semi-local string comparison

Semi-local LCS and edit distance
LCS: dynamic programming [WF: 1974]

Sweep cells in any <<-compatible order
Cell update: time $O(1)$
Overall time $O(m n)$

Semi-local string comparison

Semi-local LCS and edit distance

LCS: micro-block dynamic programming [MP: 1980; BF: 2008]

Sweep cells in micro-blocks, in any <<-compatible order
Micro-block size:

- $t=O(\log n)$ when $\sigma=O(1)$
- $t=O\left(\frac{\log n}{\log \log n}\right)$ otherwise

Micro-block interface:

- $O(t)$ characters, each $O(\log \sigma)$ bits, can be reduced to $O(\log t)$ bits
- $O(t)$ small integers, each $O(1)$ bits

Micro-block update: time $O(1)$, by precomputing all possible interfaces Overall time $O\left(\frac{m n}{\log ^{2} n}\right)$ when $\sigma=O(1), O\left(\frac{m n(\log \log n)^{2}}{\log ^{2} n}\right)$ otherwise

Semi-local string comparison

Semi-local LCS and edit distance

'Begin at the beginning,' the King said gravely, 'and go on till you come to the end: then stop.'
L. Carroll, Alice in Wonderland Standard approach by dynamic programming

Semi-local string comparison

Semi-local LCS and edit distance

Sometimes dynamic programming can be run from both ends for extra flexibility

Is there a better, fully flexible alternative (e.g. for comparing compressed strings, comparing strings dynamically or in parallel, etc.)?

Semi-local string comparison

Semi-local LCS and edit distance

The semi-local LCS problem

Give the (implicit) matrix of $O\left((m+n)^{2}\right)$ LCS scores:

- string-substring LCS: string a vs every substring of b
- prefix-suffix LCS: every prefix of a vs every suffix of b
- suffix-prefix LCS: every suffix of a vs every prefix of b
- substring-string LCS: every substring of a vs string b

Cf.: dynamic programming gives prefix-prefix LCS

Semi-local string comparison

Semi-local LCS and edit distance

Semi-local LCS on the alignment graph

blue $=0$
red $=1$
score("BAABCBCA", "CABCABA") $=\operatorname{len}($ "ABCBA" $)=5$
String-substring LCS: all highest-score top-to-bottom paths
Semi-local LCS: all highest-score boundary-to-boundary paths

Semi-local string comparison

Score matrices and seaweed matrices

The score matrix H

0	1	2	3	4	5	6	6	7	8	8	8	8	8
-1	0	1	2	3	4	5	5	6	7	7	7	7	7
-2	-1	0	1	2	3	4	4	5	6	6	6	6	7
-3	-2	-1	0	1	2	3	3	4	5	5	6	6	7
-4	-3	-2	-1	0	1	2	2	3	4	4	5	5	6
-5	-4	-3	-2	-1	0	1	2	3	4	4	5	5	6
-6	-5	-4	-3	-2	-1	0	1	2	3	3	4	4	5
-7	-6	-5	-4	-3	-2	-1	0	1	2	2	3	3	4
-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	3	4
-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4
-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3
-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2
-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1
-13	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0

Semi-local string comparison

Score matrices and seaweed matrices

Semi-local LCS: output representation and running time

size	query time		
$O\left(n^{2}\right)$	$O(1)$		trivial
$O\left(m^{1 / 2} n\right)$	$O(\log n)$	string-substring	[Alves+: 2003]
$O(n)$	$O(n)$	string-substring	[Alves+: 2005]
$O(n \log n)$	$O\left(\log ^{2} n\right)$		[T: 2006]
\ldots or any 2D orthogonal range counting data structure			

running time
$O\left(m n^{2}\right)$
naive
$O(m n) \quad$ [Schmidt: 1998; Alves+: 2005]
$O(m n)$
[T: 2006]
$O\left(\frac{m n}{\log ^{0.5} n}\right)$
[T: 2006]
$O\left(\frac{m n(\log \log n)^{2}}{\log ^{2} n}\right)$
[T: 2007]

Semi-local string comparison

Score matrices and seaweed matrices

The score matrix H and the seaweed matrix P
$H(i, j)$: the number of matched characters for a vs substring $b\langle i: j\rangle$
$j-i-H(i, j)$: the number of unmatched characters
Properties of matrix $j-i-H(i, j)$:

- simple unit-Monge
- therefore, $=P^{\Sigma}$, where $P=-H^{\square}$ is a permutation matrix P is the seaweed matrix, giving an implicit representation of H Range tree for P : memory $O(n \log n)$, query time $O\left(\log ^{2} n\right)$

Semi-local string comparison

Score matrices and seaweed matrices

The score matrix H and the seaweed matrix P

0	1	2	3	4	5	6	6	7	8	8	8	8	8
-1	0	1	2	3	4	5	5	6	7	7	7	7	7
-2	-1	0	1	2	3	4	4	5	6	6	6	6	7
-3	-2	-1	0	1	2	3	3	4	5	5	6	6	7
-4	-3	-2	-1	0	1	2	2	3	4	4	5	5	6
-5	-4	-3	-2	-1	0	1	2	3	4	4	5	5	6
-6	-5	-4	-3	-2	-1	0	1	2	3	3	4	4	5
-7	-6	-5	-4	-3	-2	-1	0	1	2	2	3	3	4
-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	3	4
-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4
-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3
-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2
-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1
-13	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0

$a=$ "BAABCBCA"
$b=$ "BAABCABCABACA"
$H(i, j)=\operatorname{score}(a, b\langle i: j\rangle)$
$H(4,11)=5$
$H(i, j)=j-i$ if $i>j$
blue: difference in H is 0 red: difference in H is 1
green: $P(i, j)=1$
$H(i, j)=j-i-P^{\Sigma}(i, j)$

Semi-local string comparison

Score matrices and seaweed matrices

The score matrix H and the seaweed matrix P

$$
\begin{aligned}
& a=\text { "BAABCBCA" } \\
& b=\text { "BAABCABCABACA" } \\
& H(4,11)= \\
& 11-4-P^{\Sigma}(i, j)= \\
& 11-4-2=5
\end{aligned}
$$

Semi-local string comparison

Score matrices and seaweed matrices

The seaweed braid in the alignment graph

$$
\begin{aligned}
& a=\text { "BAABCBCA" } \\
& b=\text { "BAABCABCABACA" } \\
& H(4,11)= \\
& 11-4-P^{\Sigma}(i, j)= \\
& 11-4-2=5
\end{aligned}
$$

$P(i, j)=1$ corresponds to seaweed top $i \rightsquigarrow$ bottom j
Also define top \rightsquigarrow right, left \rightsquigarrow right, left \rightsquigarrow bottom seaweeds
Gives bijection between top-left and bottom-right graph boundaries

Semi-local string comparison

Score matrices and seaweed matrices

Seaweed braid: a highly symmetric object (element of the 0-Hecke monoid of the symmetric group)
Can be built recursively by assembling subbraids from separate parts Highly flexible: local alignment, compression, parallel computation...

Semi-local string comparison

Weighted alignment

The LCS problem is a special case of the weighted alignment score problem with weighted matches $\left(w_{M}\right)$, mismatches $\left(w_{X}\right)$ and gaps $\left(w_{G}\right)$

- LCS score: $w_{M}=1, w_{x}=w_{G}=0$
- Levenshtein score: $w_{M}=2, w_{X}=1, w_{G}=0$

Alignment score is rational, if w_{M}, w_{X}, w_{G} are rational numbers
Equivalent to LCS score on blown-up strings
Edit distance: minimum cost to transform a into b by weighted character edits (insertion, deletion, substitution)
Corresponds to weighted alignment score with $w_{M}=0$, insertion/deletion weight $-w_{G}$, substitution weight $-w_{X}$

Semi-local string comparison

Weighted alignment

Weighted alignment graph

Levenshtein score("BAABCBCA", "CABCABA") $=11$

Semi-local string comparison

Weighted alignment

Alignment graph for blown-up strings

$$
\text { red }=0.5 \text { or } 1
$$

Levenshtein score("BAABCBCA", "CABCABA") $=2 \cdot 5.5$

Semi-local string comparison

Weighted alignment

Rational-weighted semi-local alignment reduced to semi-local LCS

Let $w_{M}=1, w_{X}=\frac{\mu}{\nu}, w_{G}=0$
Increase $\times \nu^{2}$ in complexity (can be reduced to ν)

(1) Semi-local string comparison

(2) The transposition network method

The transposition network method

Transposition networks

Comparison network: a circuit of comparators

A comparator sorts two inputs and outputs them in prescribed order
Comparison networks traditionally used for non-branching merging/sorting

Classical comparison networks

\# comparators

merging	$O(n \log n)$	[Batcher: 1968$]$
sorting	$O\left(n \log ^{2} n\right)$	[Batcher: 1968$]$
	$O(n \log n)$	[Ajtai+: 1983]

Comparison networks are visualised by wire diagrams
Transposition network: all comparisons are between adjacent wires

The transposition network method

Transposition networks

Seaweed combing as a transposition network

Character mismatches correspond to comparators Inputs anti-sorted (sorted in reverse); each value traces a seaweed

The transposition network method

Transposition networks

Global LCS: transposition network with binary input

Inputs still anti-sorted, but may not be distinct
Comparison between equal values is indeterminate

The transposition network method

Parameterised string comparison

Parameterised string comparison

String comparison sensitive e.g. to

- low similarity: small $\lambda=\operatorname{LCS}(a, b)$
- high similarity: small $\kappa=\operatorname{dist}_{\text {LCS }}(a, b)=m+n-2 \lambda$

Can also use weighted alignment score or edit distance

Assume $m=n$, therefore $\kappa=2(n-\lambda)$

The transposition network method
 Parameterised string comparison

Low-similarity comparison: small λ

- sparse set of matches, may need to look at them all
- preprocess matches for fast searching, time $O(n \log \sigma)$

High-similarity comparison: small κ

- set of matches may be dense, but only need to look at small subset
- no need to preprocess, linear search is OK

Flexible comparison: sensitive to both high and low similarity, e.g. by both comparison types running alongside each other

The transposition network method

Parameterised string comparison

Parameterised string comparison: running time
Low-similarity, after preprocessing in $O(n \log \sigma)$
$O(n \lambda)$
[Hirschberg: 1977] [Apostolico, Guerra: 1985] [Apostolico+: 1992]
High-similarity, no preprocessing
$O(n \cdot \kappa)$
[Ukkonen: 1985]
[Myers: 1986]
Flexible
$O(\lambda \cdot \kappa \cdot \log n) \quad$ no preproc
$O(\lambda \cdot \kappa)$
after preproc
[Myers: 1986; Wu+: 1990]
[Rick: 1995]

The transposition network method

Parameterised string comparison

Parameterised string comparison: the waterfall algorithm

Low-similarity: $O(n \cdot \lambda)$

$\begin{array}{llllllll}0 & 0 & 1 & 1 & 0 & 0 & 1 & 0\end{array}$

High-similarity: $O(n \cdot \kappa)$

Trace 0s through network in contiguous blocks and gaps

The transposition network method

Dynamic string comparison

The dynamic LCS problem

Maintain current LCS score under updates to one or both input strings

Both input strings are streams, updated on-line:

- appending characters at left or right
- deleting characters at left or right

Assume for simplicity $m \approx n$, i.e. $m=\Theta(n)$
Goal: linear time per update

- $O(n)$ per update of $a(n=|b|)$
- $O(m)$ per update of $b(m=|a|)$

The transposition network method

Dynamic string comparison

Dynamic LCS in linear time: update models

left	right		
-	app+del		
app	app	a fixed	[Landau+: 1998], [Kim, Park: 2004]
app	app		
app+del	app+del		

Main idea:

- for append only, maintain seaweed matrix $P_{a, b}$
- for append+delete, maintain partial seaweed layout by tracing a transposition network

The transposition network method

Bit-parallel string comparison

Bit-parallel string comparison

String comparison using standard instructions on words of size w

Bit-parallel string comparison: running time
$O(m n / w) \quad[A l l i s o n$, Dix: 1986; Myers: 1999; Crochemore+: 2001]

The transposition network method

Bit-parallel string comparison

Bit-parallel string comparison: binary transposition network In every cell: input bits s, c; output bits s^{\prime}, c^{\prime}; match/mismatch flag μ

s	0	1	0	1	0	1	0	1
c	0	0	1	1	0	0	1	1
μ	0	0	0	0	1	1	1	1
s^{\prime}	0	1	1	1	0	0	1	1
c^{\prime}	0	0	0	1	0	1	0	1

s	0	1	0	1	0	1	0	1
c	0	0	1	1	0	0	1	1
μ	0	0	0	0	1	1	1	1
s^{\prime}	0	1	1	0	0	0	1	1
c^{\prime}	0	0	0	1	0	1	0	1

$2 c+s \leftarrow(s+(s \wedge \mu)+c) \vee(s \wedge \neg \mu)$
$S \leftarrow(S+(S \wedge M)) \vee(S \wedge \neg M)$, where S, M are words of bits s, μ

The transposition network method

Bit-parallel string comparison

High-similarity bit-parallel string comparison
$\kappa=\operatorname{dist}_{\text {LCS }}(a, b) \quad$ Assume κ odd, $m=n$

Waterfall algorithm within diagonal band of width $\kappa+1$: time $O(n \kappa / w)$
Band waterfall supported from below by separator matches

The transposition network method

Bit-parallel string comparison

High-similarity bit-parallel multi-string comparison: a vs b_{0}, \ldots, b_{r-1} $\kappa_{i}=\operatorname{dist}_{L C S}\left(a, b_{i}\right) \leq \kappa \quad 0 \leq i<r$

Waterfalls within r diagonal bands of width $\kappa+1$: time $O(n r \kappa / w)$
Each band's waterfall supported from below by separator matches

