Efficient High-Similarity String Comparison: The

Waterfall Algorithm

Alexander Tiskin

Department of Computer Science
University of Warwick
http://go.warwick.ac.uk/alextiskin

Alexander Tiskin (Warwick) The Waterfall Algorithm 1/38

http://go.warwick.ac.uk/alextiskin

@ Semi-local string comparison

© The transposition network
method

Alexander Tiskin (Warwick) The Waterfall Algorithm 2 /38

@ Semi-local string comparison

Alexander Tiskin (Warwick) The Waterfall Algorithm 3/38

Semi-local string comparison

Semi-local LCS and edit distance

Consider strings (= sequences) over an alphabet of size o

Distinguish contiguous substrings and not necessarily contiguous
subsequences

Special cases of substring: prefix, suffix

Notation: strings a, b of length m, n respectively
Assume where necessary: m < n; m, n reasonably close
The longest common subsequence (LCS) score:

@ length of longest string that is a subsequence of both a and b

@ equivalently, alignment score, where score(match) = 1 and
score(mismatch) = 0

In biological terms, “loss-free alignment” (unlike “lossy” BLAST)

Alexander Tiskin (Warwick) The Waterfall Algorithm 4 /38

Semi-local string comparison

Semi-local LCS and edit distance

The LCS problem
Give the LCS score for a vs b

LCS: running time

O(mn) [Wagner, Fischer: 1974]
O(Io’;’é’n) o= 0(1) [Masek, Paterson: 1980]
[Crochemore+: 2003]
O(mn(llc’g—W) [Paterson, Dantik: 1994]
og” n
[Bille, Farach-Colton: 2008]
Running time varies depending on the RAM model version
We assume word-RAM with word size log n (where it matters)
ES

Alexander Tiskin (Warwick) The Waterfall Algorithm

Semi-local string comparison

Semi-local LCS and edit distance

LCS computation by dynamic programming

les(a,™) =0) max(les(aa, b), lcs(a, bB)) if a # B
fes(™,b) =0 fes(ac, b) = {Ics(a, b) + 1 ifa =3

les("define”, “design") =4
LCS(a, b) can be “traced back” through
the table at no extra asymptotic cost

e el el e =]}

N NDNNDN R OIH
W W WNN H O
AP OWOLODNDNDROB
AW WNDN RO

B0/ H n 0 Q %
O O O O O O O %
NNDNDNDDDNDE=E OO

Alexander Tiskin (Warwick) The Waterfall Algorithm 6 /38

Semi-local string comparison
Semi-local LCS and edit distance

LCS on the alignment graph (directed, acyclic)
BAABCABCABACA blue =0

B\\ NEEN red = 1

score(“BAABCBCA”, "BAABCABCABACA") = len("BAABCBCA”) =8
LCS = highest-score path from top-left to bottom-right

Alexander Tiskin (Warwick) The Waterfall Algorithm

Semi-local string comparison
Semi-local LCS and edit distance

LCS: dynamic programming [WF: 1974]
Sweep cells in any <-compatible order

Cell update: time O(1)

Overall time O(mn)

Alexander Tiskin (Warwick) The Waterfall Algorithm 8 /38

Semi-local string comparison
Semi-local LCS and edit distance

LCS: micro-block dynamic programming [MP: 1980; BF: 2008]

Sweep cells in micro-blocks, in any <-compatible order

Micro-block size:

o t = O(log n) when o = O(1)

. logn .
°ot= O(J—Ioglogn) otherwise

Micro-block interface:

@ O(t) characters, each O(log o) bits, can be reduced to O(log t) bits
e O(t) small integers, each O(1) bits
Micro-block update: time O(1), by precomputing all possible interfaces

Overall time O(Io’g—”rn) when o = O(1), O(%bf'm) otherwise

Alexander Tiskin (Warwick) The Waterfall Algorithm 9 /38

Semi-local string comparison

Semi-local LCS and edit distance

‘Begin at the beginning,’ the King said
gravely, ‘and go on till you come to the end:
then stop.’

L. Carroll, Alice in Wonderland
Standard approach by dynamic programming

The Waterfall Algorithm

Semi-local string comparison
Semi-local LCS and edit distance

Sometimes dynamic programming can be run from both ends for extra
flexibility

Is there a better, fully flexible alternative (e.g. for comparing compressed
strings, comparing strings dynamically or in parallel, etc.)?

Alexander Tiskin (Warwick) The Waterfall Algorithm 11 / 38

Semi-local string comparison
Semi-local LCS and edit distance

The semi-local LCS problem

Give the (implicit) matrix of O((m + n)?) LCS scores:
@ string-substring LCS: string a vs every substring of b

o prefix-suffix LCS: every prefix of a vs every suffix of b

o suffix-prefix LCS: every suffix of a vs every prefix of b

@ substring-string LCS: every substring of a vs string b

Cf.: dynamic programming gives prefix-prefix LCS

Alexander Tiskin (Warwick) The Waterfall Algorithm 12 /38

Semi-local string comparison
Semi-local LCS and edit distance

Semi-local LCS on the alignment graph
BAABCABCABACA blue =0

BN LN N LN o

score(“BAABCBCA”, “CABCABA") = len("ABCBA") =5
String-substring LCS: all highest-score top-to-bottom paths
Semi-local LCS: all highest-score boundary-to-boundary paths

Alexander Tiskin (Warwick) The Waterfall Algorithm

Semi-local string comparison

Score matrices and seaweed matrices

The score matrix H

01
-1 0

N

a = "BAABCBCA"

b= "BAABCABCABACA"
H(i,j) = score(a, b{i : j))
H(4,11) = 5
H(ij)=j—iifi>]

Y
O = N W
O N N W »~ 01O

O N W W > 0o N
O N W > p OO N @

1
©
1
co
1
4
1
<)
|
o1
|
IS
|
w
1
N
1
un
O NN WP OO O N ©

109 -8 -7 6 -5 -4 -3
-11-10 -9 -8 -7 6 -5 -4
-12-11-10 -9 -8 -7 -6 -5
-13-12-11-10 -9 -8 -7 -6

1
N
1
[ay
OD—‘I\)U&)W-PU‘I@O\@\IOO

]
w
|
N
1
[ury
O H N W W W > 1 1 o0 O N

1
S
1
@
1
N
\
—
O = N WS DN OO O NN~ ®

1
o
1
IS
1
w
!
N
!
—

Alexander Tiskin (Warwick) The Waterfall Algorithm 14 / 38

Semi-local string comparison

Score matrices and seaweed matrices

Semi-local LCS: output representation and running time

size query time

0(n?) 0(1) trivial

O(mY2n) O(logn) string-substring [Alves+: 2003]

O(n) O(n) string-substring [Alves+: 2005]

O(nlogn) O(log? n) [T: 2006]
..or any 2D orthogonal range counting data structure

running time

O(mn?) naive
O(mn) string-substring [Schmidt: 1998; Alves+: 2005]

O(mn) [T: 2006]

O(I) [T: 2006]
mn Ioglog mn(log log n)? .

O(T =2t Ty) [T: 2007]/
Alexander Tiskin (Warwick) The Waterfall Algorithm 15 / 38

Semi-local string comparison

Score matrices and seaweed matrices

The score matrix H and the seaweed matrix P
H(i,j): the number of matched characters for a vs substring b(i : j)
J—i—H(i,j): the number of unmatched characters
Properties of matrix j — i — H(i,J):
@ simple unit-Monge
o therefore, = P>, where P = —HY is a permutation matrix
P is the seaweed matrix, giving an implicit representation of H

Range tree for P: memory O(nlog n), query time O(log? n)

Alexander Tiskin (Warwick) The Waterfall Algorithm 16 / 38

Semi-local string comparison

Score matrices and seaweed matrices

The score matrix H and the seaweed matrix P

0 1 2

-10 -9 -8 -7 -6 -5 -4
-11-10 -9 -8 -7 -6 -5
-12-11-10 -9 -8 -7 -6
-13-12-11-10 -9 -8 -7

Alexander Tiskin (Warwick)

6 7 8|ls|s]s]s
56 7|7|7]717
4 5 6|elele 7
3 4 5|5 6|6 7
2 3 4|4 (®|5 6
2 3 4|4 5|5 6
12 3|3 4|4 s
01 2|2 3|3 4
101 2 3|3 4
21012 3 &
32101 2 3
432-10 1 2
54 32-10 1
6 5-4-3-2-10

The Waterfall Algorithm

a = "BAABCBCA"

b= "BAABCABCABACA"
H(i,j) = score(a, b{i : j))
H(4,11) =5
H(i,j)=j—iifi>}j

blue: difference in H is 0
red: difference in H is 1
green: P(i,j) =1

H(ij) =) — i — PR(i,))

17 / 38

Semi-local string comparison

Score matrices and seaweed matrices

The score matrix H and the seaweed matrix P

L 2= “BAABCBCA”
b= “BAABCABCABACA"

H(4,11) =
....................... s b 11—4—Pz(i,_j):
: 11-4-2=5

Alexander Tiskin (Warwick) The Waterfall Algorithm 18 / 38

Semi-local string comparison

Score matrices and seaweed matrices

The seaweed braid in the alignment graph
B AA B:C ABCABACA __ “BAABCBCA”

3]
N N

b= "BAABCABCABACA"

_t
i H(4,11) =
u

11 —4— P>(i,j) =
11-4-2=5

I \ |
PEEN AT AR

P(i,j) = 1 corresponds to seaweed top i ~~ bottom j
Also define top ~~ right, left ~ right, left ~> bottom seaweeds

Gives bijection between top-left and bottom-right graph boundaries

Alexander Tiskin (Warwick) The Waterfall Algorithm

Semi-local string comparison

Score matrices and seaweed matrices

Seaweed braid: a highly symmetric object (element of the 0-Hecke monoid
of the symmetric group)

Can be built recursively by assembling subbraids from separate parts

Highly flexible: local alignment, compression, parallel computation. ..

Alexander Tiskin (Warwick) The Waterfall Algorithm 20 / 38

Semi-local string comparison

Weighted alignment

The LCS problem is a special case of the weighted alignment score
problem with weighted matches (w,,), mismatches (wx) and gaps (w;)
@ LCS score: wy =1, wy=w; =0

@ Levenshtein score: wy, =2, wy =1, wg =0

Alignment score is rational, if wy,, wx, wg are rational numbers
Equivalent to LCS score on blown-up strings

Edit distance: minimum cost to transform a into b by weighted character
edits (insertion, deletion, substitution)

Corresponds to weighted alignment score with w,, = 0, insertion/deletion
weight —wg, substitution weight —wy

Alexander Tiskin (Warwick) The Waterfall Algorithm 21 /38

Semi-local string comparison

Weighted alignment

Weighted alignment graph
BAABCABCA A CA blue =0

B
BN \‘\\ N red (solid) = 2

red (dotted) =1

Levenshtein score("BAABCBCA”, “CABCABA") =11

Alexander Tiskin (Warwick) The Waterfall Algorithm 22 /38

Semi-local string comparison
Weighted alignment

Alignment graph for blown-up strings

$B $A A $B SCSA$SB SCSASBSA $C $A blue =0
$B\\ N \\‘\ \\ N \\ NN red =0.50r1
$AN NN \\\ NINCNTNCNTNC
$ANINSNNISON NN

$BNS N NS NN NN NRN
sCN N NNN N NNNNNRRN
$B NN N NS NNS N NN NN
SO N NNN N NNNNNRRN
$AN \\\\\\\\\\\\

Levenshtein score("BAABCBCA", “CABCABA") =2-55

Alexander Tiskin (Warwick) The Waterfall Algorithm

Semi-local string comparison
Weighted alignment

Rational-weighted semi-local alignment reduced to semi-local LCS
$B $A $A $B $C $A $B $C $ASBSA $C $A

SRR R R
$ATI NN N Y
$B--w—1§\ 3 \\\‘ N N 3
SO N \\¥: g
R f@ ¥

b SH RN
$ENO) *\\
SRy
RN

Let wy =1, wx =5, we =0
2

&+

(@)
v/
/P

Increase x v* in complexity (can be reduced to v)

Alexander Tiskin (Warwick) The Waterfall Algorithm 24 / 38

© The transposition network
method

Alexander Tiskin (Warwick) The Waterfall Algorithm 25 /38

The transposition network method

Transposition networks

Comparison network: a circuit of comparators
A comparator sorts two inputs and outputs them in prescribed order

Comparison networks traditionally used for non-branching merging/sorting

Classical comparison networks

comparators

merging O(nlog n) [Batcher: 1968]
sorting O(nlog? n) [Batcher: 1968]
O(nlog n) [Ajtai+: 1983]

Comparison networks are visualised by wire diagrams

Transposition network: all comparisons are between adjacent wires

Alexander Tiskin (Warwick) The Waterfall Algorithm 26 / 38

The transposition network method

Transposition networks

Seaweed combing as a transposition network

ABCA
ANSEEN
C NN
sEENR

CHEHRNT

Character mismatches correspond to comparators

Inputs anti-sorted (sorted in reverse); each value traces a seaweed

Alexander Tiskin (Warwick) The Waterfall Algorithm 27 / 38

The transposition network method

Transposition networks

Global LCS: transposition network with binary input

A BCA
ANFHERN
C..: |\\\

Inputs still anti-sorted, but may not be distinct

Comparison between equal values is indeterminate

Alexander Tiskin (Warwick) The Waterfall Algorithm 28 / 38

The transposition network method

Parameterised string comparison

Parameterised string comparison

String comparison sensitive e.g. to
@ low similarity: small A = LCS(a, b)
@ high similarity: small k = dist;cs(a, b) = m+ n— 2\

Can also use weighted alignment score or edit distance

Assume m = n, therefore Kk = 2(n — \)

Alexander Tiskin (Warwick) The Waterfall Algorithm 29 / 38

The transposition network method

Parameterised string comparison

Low-similarity comparison: small A

@ sparse set of matches, may need to look at them all

@ preprocess matches for fast searching, time O(nlogo)
High-similarity comparison: small s

@ set of matches may be dense, but only need to look at small subset

@ no need to preprocess, linear search is OK

Flexible comparison: sensitive to both high and low similarity, e.g. by both
comparison types running alongside each other

Alexander Tiskin (Warwick) The Waterfall Algorithm 30/ 38

The transposition network method

Parameterised string comparison

Parameterised string comparison: running time

Low-similarity, after preprocessing in O(nlogo)

O(n)) [Hirschberg: 1977]
[Apostolico, Guerra: 1985]
[Apostolico+: 1992]

High-similarity, no preprocessing
O(n- k) [Ukkonen: 1985]
[Myers: 1986]

Flexible
O(\ -k -logn) no preproc [Myers: 1986; Wu+: 1990]
O(\- k) after preproc [Rick: 1995]

Alexander Tiskin (Warwick) The Waterfall Algorithm 31/38

The transposition network method

Parameterised string comparison

Parameterised string comparison: the waterfall algorithm

Low-similarity: O(n- \) High-similarity: O(n - k)
0 0 00O OO 0O 0 0 0 0 0 0 0 O

1 0 1 0
1 \ 1 1 \ \ 0
1 0 1 AN AN 0
1 \ 1 1 0
1 \ 1 1 \ 1
1 \ 0 1 1
1 \ 1 1 1
1 1 1 0

0 0 1.1 0 O 1 O 1 1 1 0 1 1 0 O

Trace Os through network in contiguous blocks and gaps

Alexander Tiskin (Warwick) The Waterfall Algorithm 32 /38

The transposition network method

Dynamic string comparison

The dynamic LCS problem
Maintain current LCS score under updates to one or both input strings

Both input strings are streams, updated on-line:

@ appending characters at left or right

@ deleting characters at left or right

Assume for simplicity m ~ n, i.e. m = ©(n)

Goal: linear time per update

e O(n) per update of a (n = |b|)
e O(m) per update of b (m = |al|)

Alexander Tiskin (Warwick) The Waterfall Algorithm 33 /38

The transposition network method

Dynamic string comparison

Dynamic LCS in linear time: update models

left right

- app+del standard DP [Wagner, Fischer: 1974]
app app a fixed [Landau+: 1998], [Kim, Park: 2004]
app app [Ishida+: 2005]
app+del app+del [T: NEW]
Main idea:

o for append only, maintain seaweed matrix P, p

o for append-delete, maintain partial seaweed layout by tracing a
transposition network

Alexander Tiskin (Warwick) The Waterfall Algorithm 34 /38

The transposition network method

Bit-parallel string comparison

Bit-parallel string comparison

String comparison using standard instructions on words of size w

Bit-parallel string comparison: running time
O(mn/w) [Allison, Dix: 1986; Myers: 1999; Crochemore+: 2001]

Alexander Tiskin (Warwick) The Waterfall Algorithm 35 /38

The transposition network method

Bit-parallel string comparison

Bit-parallel string comparison: binary transposition network

In every cell: input bits s, c; output bits s’, ¢/; match/mismatch flag u

c s]o 1 0o 1 0 1 0 1
. | clo o 1 1 o0 0 1 1
\ o 0O 0 O 0 1 1 1 1
s N o 1 1 1 0 0 1 1
| 10 0 O 1 0 1 0 1
C/
c s]o I o 1 0 1 0 1
i VN | clo 0o 1 1 0 0 1 1
g0 0 0 0 1 1 1 1
s i s lo 1 1 0 0 0 1 1
| dlo 0o o 1 o0 1 0 1
C/
2c+s+(s+(sAu)+c)V(sA-pu)
S« (S+(SAM))V(SA-M), where S, M are words of bits s,
Alexander Tiskin (Warwick) The Waterfall Algorithm 36 / 38

The transposition network method

Bit-parallel string comparison

High-similarity bit-parallel string comparison

k = dist; cs(a, b) Assume k odd, m=n

Waterfall algorithm within diagonal band of width x + 1: time O(nk/w)

Band waterfall supported from below by separator matches

Alexander Tiskin (Warwick) The Waterfall Algorithm 37 /38

The transposition network method

Bit-parallel string comparison

High-similarity bit-parallel multi-string comparison: a vs by, ..., br—1

Ki = diSths(a, b,') <K 0<i<r

A
AN

Waterfalls within r diagonal bands of width x + 1: time O(nrx/w)

Each band’s waterfall supported from below by separator matches

Alexander Tiskin (Warwick) The Waterfall Algorithm 38 /38

	Semi-local string comparison
	Semi-local LCS and edit distance
	Score matrices and seaweed matrices
	Weighted alignment

	The transposition network method
	Transposition networks
	Parameterised string comparison
	Dynamic string comparison
	Bit-parallel string comparison

