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ABSTRACT
String similarity search and its variants are fundamental
problems with many applications in areas such as data inte-
gration, data quality, computational linguistics, or bioinfor-
matics. A plethora of methods have been developed over the
last decades. Obtaining an overview of the state-of-the-art
in this field is difficult, as results are published in various
domains without much cross-talk, papers use different data
sets and often study subtle variations of the core problems,
and the sheer number of proposed methods exceeds the ca-
pacity of a single research group. In this paper, we report
on the results of the probably largest benchmark ever per-
formed in this field. To overcome the resource bottleneck,
we organized the benchmark as an international competi-
tion; this means that various teams from different fields and
from all over the world developed or tuned programs for two
crisply defined problems. All algorithms were evaluated by
a single group on the same machine. Altogether, we com-
pared 14 different programs on two string matching prob-
lems (k-approximate search and k-approximate join) using
data sets of increasing sizes and with different characteristics
from two different domains. We compare programs primar-
ily by wall clock time, but also provide results on memory
usage, indexing time, batch query effects and scalability in

terms of CPU cores. Results were averaged over several runs
and confirmed on a second, different hardware platform. A
particularly interesting observation is that disciplines can
and should learn more from each other, with the three best
teams rooting in computational linguistics, databases, and
bioinformatics, respectively.
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1. INTRODUCTION AND MOTIVATION
Approximate search and join operations over large collec-
tions of strings are fundamental problems with many ap-
plications. String similarity search is used, for instance, to
identify entities in natural language texts [39], to align DNA
sequences produced in modern DNA sequencing with sub-
strings of a reference genome [20,21], or to perform pattern
matching in time series represented as sequences of sym-
bols [11]. String similarity joins are building blocks in the
detection of duplicate Web pages [16], in collaborative fil-
tering [3], or in entity reconciliation [8]. Research in this
field dates back to the early days of computer science and
the area is still highly active today. Literally hundreds of
methods have been proposed.
For similarity search and join, fundamental techniques in-
clude dynamic programming, seed-and-extend methods (turn-
ing similarity search into an exact search problem of smaller
strings, e.g. All-Pairs [3], ED-Join [41], and PPJoin [42]),
partitioning techniques (e.g. NGPP [39] and PartEnum [1]),
prefix-filtering methods (e.g. Trie-Join [9] and PEARL [28]),
and other (e.g. M-Tree [6], LSH [14], SSI [10], and FASTSS [32]).
Research in the field has been carried out in various sci-
entific disciplines, the most important ones probably being
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Figure 1: Recent work on string similarity search and
join with edit distance constraints. An edge from
method M1 to M2 visualizes that M2 was found to be
superior to M1. Marked approaches are non-dominated,
i.e. not reported strictly slower than any other method.

algorithms for pattern matching, computational linguistics,
bioinformatics, and database / data integration. There are
also subtle differences between the problems being stud-
ied, for instance varying in the concrete similarity measure
(edit distance, Jaccard, Hamming etc.), the type of string
comparisons (global or local alignment, approximate sub-
string search etc.), the amount of indexing being allowed
(online in the queries and/or the database). Methods often
are tuned for specific ranges of allowed error thresholds or
query lengths, specific hardware properties, specific alpha-
bet sizes, or specific distributions of errors. Though newly
published methods mostly compare to some prior works, se-
lection of these works is often suboptimal and comparisons
are carried out on different data sets; data sets all too often
are not made publicly available, which means that results
are not reproducible. In Figure 1, we show existing evalua-
tion results for the most relevant work on string similarity
search/join with edit distance constraints. As a consequence
of the heterogeneity of approaches and problems, the lack of
common benchmarks, and the dispersal of research in dif-
ferent communities, today it is hardly possible to choose the
best algorithm for a given problem.
In this work, we report on the (to the best of our knowl-
edge) most comprehensive benchmark in two specific string
similarity match problems to date: k-approximate search
and k-approximate join (see below for exact definition). As
the number of published solutions is vast, our resources are
limited, and programs are often not available for down-
load, we organized this benchmark using a rather uncom-
mon approach: An International competition on Scalable
String Similarity Search and Join (S4)1. We made an open
call for contributions and provided crisp task definitions, a
loose hardware specification and example data. Nine teams
from different parts of the world and stemming from dif-
ferent communities participated, including databases, nat-
ural language processing and bioinformatics. Thus, for the
first time, we were able to evaluate different highly com-
petitive implementations of search and join algorithms on
the same evaluation platform (hardware, operating system,
and datasets). In addition, organizing the benchmark as
a competition, where teams developed and tuned their own
programs independently, allowed us to compare original and
optimized programs instead of our own, unverified and un-
optimized re-implementations.
All submitted programs were tested on different datasets
(DNA sequences and geographical names) of different sizes
(a few KB up to a few GB) with different error thresholds

1http://www2.informatik.hu-berlin.de/~wandelt/
searchjoincompetition2013/

(edit distance k between 0 and 16). We performed experi-
ments in two different hardware settings: a commodity PC
with 8 cores/64 GB RAM and a server with 80 cores/1
TB RAM. For the top performing programs we performed
additional analyses with different number of threads to in-
vestigate the possibility to parallelize algorithms. We also
performed experiments to analyze load balancing, batch-
processing capabilities, and main memory usage. Further-
more, we compared submissions with a number of publicly
available algorithms of groups that did not participate, show-
ing that the best ranked programs from our competition are
several orders of magnitude faster. Altogether, 14 different
programs or configurations were evaluated with differences
in runtime of factors of more than 1000 between the fastest
and slowest program. We are confident that our results
give a fairly representative picture of the state-of-the-art in
string similarity search. The evaluation of all programs and
datasets took more than three months of raw processing
time.
The wealth of experiments we performed and the significant
number of programs we compared allows us to draw several
interesting conclusions. For instance, the batch processing
effect is clearly visible for most implementations: while an-
swering a single query takes up to several dozen milliseconds,
for most programs the answering time per query is down to
a few microseconds in batch mode (up to 200.000 queries).
Two out of three top programs scale well with the number of
threads, e.g. increasing the number of threads by a factor of
10 decreases the search time by a factor of 4–6. Scalability
with the number of threads for the similarity join operation
is not as good: only a speed up factor of 2–4 is achieved.
We observed that larger data structures do not correlate
with shorter search times. Indeed, the fastest program for
searching our largest geographical names dataset (raw data
size is 17 MB) only needs 2 GB of main memory, which is
the second lowest main memory footprint among all teams.
On the other hand, the second fastest search program on
the same data uses 16 GB of memory.
The purpose of this paper is not only to report on efficiency
of algorithms in string similarity search, but also to pro-
mote competitions as an effective, joyful, and comprehensive
means to evaluate the state-of-the-art on a given problem.
Actually, competitions are quite common in many related
disciplines, such as information extraction, information re-
trieval, data analysis etc., but, to our knowledge, represent
a novel approach within the database community.
The only comparable effort we are aware of is the SIGMOD
programming contest. However, it only addresses graduates
and the focus is more on education (and probably recruit-
ment). In contrast, the main purpose of S4 was to identify
the fastest methods available.
Clearly, the most critical point for a competition like S4 is
the measurement of wall clock time, which is dependent on
the concrete implementation and the machine being used
for measurements, instead of quality metrics independent
of the concrete implementation and evaluation environment
(such as precision or recall). We will expand on this issue in
Section 6.
The remainder of this paper is organized as follows. We de-
scribe the concrete problems we benchmarked, the datasets,
and the benchmarking methodology in Section 2. All sub-
mitted methods are briefly presented in Section 3. Evalua-
tion results for approximate string searching are presented
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in Section 4 and for approximate string join in Section 5.
In Section 6, we discuss the results of the competition and
compare results to three external programs, Flamingo [4],
Pearl [28], and SSI [10], which were evaluated after our com-
petition was finished. The paper is concluded with Section 7.

2. BACKGROUND
We define the problems of approximate string searching and
approximate string join. Our competition and evaluation
methodology is introduced together with a description of
datasets and evaluation environments.

2.1 Formal problem statement
Definition 1 (Strings). A string s is a finite sequence

over an alphabet Σ. The length of a string s is denoted by |s|
and the substring starting at position i with length n is de-
noted by s(i, n). We write s(i) as an abbreviation for s(i, 1).
All positions in a sequence are zero-based, i.e., the first char-
acter is accessed by s(0).
As a distance function between two strings we use unweighted
edit distance for different error thresholds k.

Definition 2 (Similarity of Strings). Given strings
s and t, s will be called k-approximately similar to t, denoted
s ∼k t, if s can be transformed into t by at most k edit oper-
ations. The edit operations are: replacing one symbol in s,
deleting one symbol from s, and inserting one symbol into s.
We investigate two problems: string similarity search and
string similarity join.

Definition 3 (Similarity search). Given a collection
of strings S = {s1, ..., sn}, a query string q, and an edit dis-
tance threshold k, the result of string similarity search of q
in S is defined as SEARCH(S, q, k) = {i | si ∈ S∧si ∼k q}.
For instance, given a collection S = {ACA, TGA,AC}, a
query string q = ACA, and k = 1, the result of string
similarity search is SEARCH(S, q, k) = {1, 3}.

Definition 4 (Similarity (self) join). Given a col-
lection of strings S = {s1, ..., sn} and an edit distance thresh-
old k, the result of string similarity self-join of S is defined
as JOIN(S, k) = {(i, j) | si ∈ S ∧ sj ∈ S ∧ si ∼k sj}.
For instance, the result of a string similarity self-join on data
set S from above with k = 1 is JOIN(S, 1) = {(1, 1), (1, 3),
(2, 2), (3, 1), (3, 3)}. Note that we explicitly include the re-
flexive and symmetric closure in our definition. We note
that a self-join is comparable to a join between two different
sets as we make no assumptions about the a priori average
level of similarity of the strings in a set. In the following we
will often use the term join instead of self-join.

2.2 Competition and methodology
This competition brought together researchers and practi-
tioners from database research, natural language process-
ing, and bioinformatics. The challenge for all participants
was to perform string similarity search and join over un-
seen data and query sets with varying error thresholds k as
fast as possible. The call for the competition was circulated
by email through various lists addressing the different areas
dealing with string matching, in particular databases, algo-
rithms, computational linguistics, and bioinformatics. We
also contacted directly a few dozen researchers known for
their contributions to the field. The different phases of the
competition are shown in Figure 3.
In total we received initial expressions of interest from 22
teams, out of which 11 teams officially submitted a program.

One team failed to hand in a complete paper describing
their approach on time, and another group withdrew shortly
before the final deadline. Thus, we eventually compared
programs from 9 teams (see Table 1).
We succeeded in reaching out to different research commu-
nities: two teams have their home in bioinformatics, two in
computational linguistics, one in algorithms/computational
complexity, and the remaining four are best described as
database groups. Contributions came from four continents
and seven countries. At least six teams published highly
influential papers on string matching problems before [19,
23, 30, 33, 37, 43], while three teams can be considered as
newcomers. As Table 1 shows, the techniques used cover
a broad range and thus subsume a large fraction of previ-
ous research in k-approximate string matching. Note that
at least one author from four out of the five non-dominated
methods in Figure 1 took part in our competition.
The competition consisted of two tracks:
Track 1: Given a collection of strings S, a query string q

and an error threshold k, compute SEARCH(S, q, k).
Track 2: Given a collection of strings S and an error thresh-

old k, compute JOIN(S, k).
Small subsets of the final evaluation datasets (around 5%)
were made available for the contestants for preparation of
their submissions. It was announced that these strings are
representative for the whole evaluation datasets. Further-
more, we announced a description of the evaluation hard-
ware and provided a virtual machine mirroring the software
environment used for evaluation. Thus, all teams could de-
velop and tune their programs before submission. Each pro-
gram was allowed to use any number of threads, with the
restriction that the official evaluation environment System 1
(see below) has 8 cores, and a maximum of 48 GB of main
memory. Details on CPU, clock rate, cache sizes, disks etc.
were not provided to prevent hardware specific tuning; note
that this implies that further improvements could be possi-
ble taking the specific hardware into account [24]. Programs
were allowed to have two phases, one for indexing the data
set, and one for evaluating a set of queries on the set (or the
index).
The main evaluation criterion was measured wall clock time.
In general, we ranked programs based on average runtime
over three independent runs; variations in runtime were very
low and are not reported here. If programs ran much longer
than most of the competitors, experiments were only per-
formed once. We also measured the indexing time and re-
port it here, but we did not take it into account for ranking.

2.3 Datasets
We used two different types of datasets for evaluation in
both tracks, to cover different alphabets and string lengths.
READS: These data sets contain reads obtained from a hu-

man genome. The data is characterized by a small al-
phabet (5 symbols) and quite uniform length of strings
(around 100 symbols per string).

CITIES: These data sets are based on geographical names
taken from World Gazetteer. The data is characterized
by a larger alphabet (around 200 symbols) and non-
uniform length of strings (5-64).

Considered values for k depend on the dataset. For READS,
we announced and used k ∈ {0, 4, 8, 12, 16}; for CITIES k ∈
{0, 1, 2, 3, 4}. The implied maximum error rate for READS
is around 1

6
and for CITIES around 4

5
. To better evalu-

3



Team Affiliation General approach Indexing? Indexing query set?
1 Tsinghua University, China Partitioning and pruning [18] yes no
2 Universitaet Magdeburg, Germany Sequential search [15] no no
3 University of Warwick, UK Bit-parallel LCS computation [34] no yes
4 Sofia University, Bulgaria Symmetric compact directed acyclic

word graph [13]
yes no

5 FU Berlin, Germany Approximate partitioning and bit-
parallel verification [31]

yes/no yes/no

6 IIT Kanpur, India Deletion neighborhoods / hashing [2] yes no
7 Louisiana State University, USA Q-gram indexing with filtering [26] yes no
8 University of New South Wales, Aus-

tralia
Trie-index with filtering [27] yes no

9 Northeastern University, China BWT, cache-aware implementa-
tion [38]

yes no

Table 1: Teams which participated in the competition
Dataset |dataset| |queries|

TINY 15,000 100

SMALL 150,000 1,000

MEDIUM 1,500,000 10,000

LARGE 5,000,000 20,000

HUGE 15,000,000 100,000

"Max" 20,000,000 200,000

Dataset |dataset| |queries|

TINY 10,000 1,000

SMALL 50,000 5,000

MEDIUM 100,000 10,000

LARGE 500,000 50,000

HUGE 1,000,000 100,000

"Max" 2,000,000 200,000

Reads
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Figure 2: Size of dataset and number of queries used for evaluation (READS and CITIES)

ate scalability of submissions, we created five datasets and
query sets of different sizes for each type of data (READS
and CITIES). The size of each dataset and the number of
queries for Track 1 are shown in Figure 2. For READS, the
number of reads starts with 15,000 (TINY) and ends with
15,000,000 (HUGE). For CITIES, the number of cities starts
with 10,000 (TINY) and ends with 1,000,000 (HUGE). For
READS and CITIES, the maximum number of queries in
HUGE is 100,000.

2.4 Evaluation Environments
After the development phase of the competition, partici-
pants submitted their final programs which were evaluated
on two different platforms.
System 1: A computer with 8 cores (processor: AMD FX-

8320) and 64 GB RAM. The operating system (Fedora
Scientific 17 x86 64) was installed on a SSD with 128
GB. The SSD contained the datasets as well as the

1. Initial call for contributions (June 2012) 

2. Letter of intent (November 15th, 2012) 

3. Publication of test data (November 16th, 2012) 

4. Tuning phase (November 16th, 2012 - January 20th, 2013) 

5. Final submission of executables (January 20th, 2013) 

6. Evaluation (January  2013 - March 2013) 

7. Workshop (March 22nd, 2013) 

8. Post-workshop analysis (March 2013 - July 2013) 

Figure 3: Phases of the competition

programs. Each program serialized its results to an
external USB 3.0 hard disk with 3 TB. This system
was announced beforehand and results for this system
were used for ranking.

System 2: A server with 80 cores (processors: Intel Xeon
CPU E7 - 4870) and 1 TB RAM. The operating sys-
tem was openSUSE 12.1 x86 64. All datasets, pro-
grams, and serialized results were put on a local hard
disk with a total storage capacity of 10 TB. This sys-
tem was introduced only during evaluation for (a) per-
forming experiments with more cores / memories and
for (b) confirming results on a separate hardware with
different architecture and CPUs.

Most of the experiments were run on System 1. We have
used System 2 only for an extended evaluation, investigat-
ing the scalability with the number of threads (for top per-
forming methods on System 1). In our evaluation below, we
will mention explicitly if System 2 was used. Note that the
executables and configuration for both systems was exactly
the same, besides the parameter for the number of threads.

3. METHODS
This section describes the methods used by each team in
their submissions to the competition.

3.1 Team 1
PassJoin [18] adopts a partition-based framework for string
similarity search and joins. The basic idea is that given
two datasets R and S, and an edit distance threshold k,
each string in R is split into k + 1 disjoint segments. For
each string in S, PassJoin checks if it contains any sub-
string matching the segments of R. If no, PassJoin prunes
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the string; otherwise the string and those strings whose seg-
ments match the substrings of the string are verified. There
are two challenges in the partition-based method. The first
one is how to select the substrings. A position-aware sub-
string selection method and a multi-match-aware substring
selection method have been proposed. It has been proven
the multi-match-aware substring selection method selects
the minimum number of substrings. And it is the only way
to select the minimum number of substrings when the string
length is longer than 2 ∗ k + 1. The second one is how to
verify each candidate pair. PassJoin uses a length-based ver-
ification method, an improved early termination technique,
and an extension-based verification method.
Team 1 submitted two programs: Program 1 A and Pro-
gram 1 B. Both programs of Team 1 were evaluated for
both tracks and both datasets.

3.2 Team 2
Team 2 tries to outperform conventional index-based searches
by a sequential search algorithm, i.e., strings from the database
are compared sequentially to every query string. Starting
from a naive algorithm for computing edit distances, sev-
eral optimizations are introduced [15]. Calculation of the
edit distance is improved by using length-heuristics, i.e. if
the difference in length between two strings is larger than
the edit distances, then the pair is rejected and no further
tests performed. If the computation of a dot matrix cannot
be avoided, the program applies several heuristics to prune
the search space early. The case k = 0 is implemented as a
special case by just using highly-optimized strcmp available
in C++. Further optimizations include the use of reference-
based semantics over value-based semantics and the use of
simple data types. Finally, several possibilities to design
and implement parallelism are analyzed. They devise sim-
ple scheduling strategies depending on the current workload.
Team 2 submitted only one program: Program 2 A, which
was evaluated for Track 1 only.

3.3 Team 3
The Waterfall algorithm [34] solves the competition chal-
lenge without indexing or any other preprocessing of the
database strings. First, a reduction of the edit distance
problem to the longest common subsequence (LCS) prob-
lem between the database string and the query string, both
suitably modified, is applied. The strings’ LCS score is
then computed by a bit-parallel algorithm, based on [7].
This technique is extended so that a database string can
be tested simultaneously against multiple query strings, by a
subword-parallel technique similar to that of [17], which was
further developed in the waterfall algorithm. Due to the self-
imposed restriction of not preprocessing the database, the
algorithm runs significantly slower than other competitors,
which do index the database strings before answering the
queries. However, the approach chosen by Team 3 can prove
useful in a situation where input preprocessing is not possi-
ble. Such a situation occurs e.g. when the string database
is replaced by a continuous stream of input strings, each
of which needs to be matched against a small set of query
strings in real time.
Team 3 submitted only one program: Program 3 A, which
was evaluated for both tracks and both datasets.

3.4 Team 4
The WallBreaker [13] is a new sequential algorithm for the
similarity search problem in a finite set of words. It reduces
and essentially overcomes the wall-effect caused by the re-
dundantly generated false candidates. To achieve this the
query is split into smaller subqueries with smaller thresh-
old. This allows to start with an exact match and then
extend these exact matches to longer candidates whereas
the threshold increases slowly in a stepwise manner. In or-
der to implement this idea in practice two kind of resources
are used: (i) a linear space representation of the infixes in
the finite set of words that enables a left/right extension
of an infix in constant time per character; and (ii) efficient
filters, universal Levenshtein automata [22, 29], sychnorised
Levenshtein automata [23] and standard Ukkonen filter [35],
that prune the unsuccessful candidates as soon as a clear
evidence for this occurs. In the index structure information
about the possible lengths of longest/shortest left/right pos-
sible extensions are encoded. This information is then used
as an additional length-filter.
As a result the following breaking-the-wall-effect is achieved.
In the beginning the WallBreaker considers only small neigh-
borhoods of short words which keeps the searching space
modest. Afterwards, while increasing the potential size of
the neighborhoods, longer infixes are generated that are
much more informative than shorter ones and suppress the
searching space for their own sake. For further details the
reader is refered to [12], where besides the standard Lev-
enshtein edit-distance also the generalized Levenshtein edit-
distance is handled.
Team 4 submitted two programs:
Program 4 A: It uses 16 threads, the additional length-
filter, and applies universal Levenshtein automata for thresh-
olds≤ 5, and synchronised Levenshtein automata for thresh-
olds ≤ 3.
Program 4 B: It uses 16 threads, ignores the additional
length-filter, and applies universal Levenshtein automata for
thresholds ≤ 5, and synchronised Levenshtein automata for
thresholds ≤ 3.
Both programs of Team 4 were evaluated for both tracks
and both datasets.

3.5 Team 5
The methods of Team 5 [31] are variations of those applied
in Masai [30], a tool for mapping high-throughput DNA se-
quencing data. First an online solution for computing edit
distances using a banded version of the Myers bit-vector al-
gorithm [21] is proposed. Team 5 is able to check in time

O
( (k+1)(n+|Σ|)

w

)
, where w is the CPU word size and Σ the

string alphabet, if two strings of length m and n (w.l.o.g.
m < n) are within edit distance k. Then they propose to in-
dex multiple queries in a radix tree and backtrack them into
the radix (or suffix) tree of the database. In practice, radix
(and suffix) trees are replaced by simpler radix (and suf-
fix) arrays. Multiple backtracking is parallelized with static
load balancing and work queues. Finally, as proposed by
Navarro and Baeza-Yates [25], a filtering method partition-
ing queries into approximate seeds is implemented. Such
a filtering method combines the previous two methods and
works well up to moderate error rates. The programs are
implemented in C++ and OpenMP using the SeqAn library.
Team 5 submitted four programs:
Program 5 A: An online algorithm.
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Program 5 B: Partitioning with minimum seed length (10
for READS, 4 for CITIES)
Program 5 C: Partitioning with minimum seed length (13
for READS, 5 for CITIES)
Program 5 D: Partitioning with minimum seed length (15
for READS, 6 for CITIES)

3.6 Team 6
Team 6’s submission [2] uses deletion neighborhoods [32] to
map strings in S into a signature space. A k-neighborhood
is generated for every string s ∈ S. Every string in the
k-neighborhood is referred to as a key. The underlying in-
dex structure is a hash-table which is maintains an inverted
index on the keys. In order to circumvent the large space
requirement, the program only indexes an Ls-length suffix
for each key. Given a query string q and an edit distance
threshold k, first the k-neighborhood of q, Nq, is generated.
The list corresponding to every key in Nq is obtained from
the index structure. A union of these lists is guaranteed to
be a superset of the answer set SEARCH(S, q, k). For each
string s in the generated candidate list, the program uses a
length-threshold aware distance computation [18] to verify
s. In a multi-core environment, the program partitions the
entire workload into k equal parts and each part is handled
by a single, dedicated thread. Team 6’s idea is that deletion
neighborhoods offer a powerful, selective signature scheme
to process edit distance queries. Team 6 only participated
in Track 1 of the competition. Further, since deletion neigh-
borhoods are only suited for scenarios with larger alphabet
size, Team 6’s submission Program 6 A was only evaluated
on CITIES dataset.

3.7 Team 7
The index structure of Team 7 [26] consists of a generalized
suffix tree (GST) and a two-level wavelet tree (WT) on its
leaves. The first level WT maintains an array of starting
positions of all suffixes of GST. For each leaf of this WT,
another WT for the difference between the starting position
of the suffix and the string length to which it belongs to
is maintained. Given τ , r, Team 7 obtains τ + k disjoint
partitions of r aiming to balance selectivity of count filtering
and frequency of partitioned segments. Then GST and WT
are used to obtain inverted list of each partition pre-filtered
by “Position Restricted Alignment” that combines the well-
know length and position filters. All inverted lists are then
merged to retrieve the strings similar to r.
Team 7 submitted only one program: Program 7 A, which
was evaluated for Track 1 with READS only.

3.8 Team 8
Team 8 presents [27] a solution based on tries, which have
the advantages of small indexing space, freeness of verifica-
tion, and computation sharing among strings with common
prefixes. The method proposed is a simple adaptation of
trie-based error-tolerant prefix matching [40]. Existing trie-
based methods process a query by incrementally traversing
the trie and maintaining a set of trie nodes (called active
nodes) for each prefix of the query. One common drawback
is that they have to maintain a large number of active nodes.
Instead, Team 8 record only a small number of potentially
feasible nodes as ”active nodes” during query processing,
which reduces the overhead of maintaining nodes and report-
ing results. In addition, Team 8 characterizes the essence of

Prog. I S I S I S I S I S

1_A 0.4 0.2 1.1 0.4 10.3 4.3 34.0 24.5 108.0 312.1

1_B 0.4 0.2 1.2 0.4 10.5 9.5 33.6 64.9 100.9 924.7

2_A 0.1 2.4 1.3 185.7 - - - - - -

3_A 0.0 1.5 0.0 4.5 0.3 289.8 0.7 1,979.8 2.0 30,898.0

4_A 2.5 0.5 29.3 0.2 291.0 4.6 872.5 24.6 2,251.8 232.5

4_B 1.7 0.3 23.0 0.5 235.2 5.4 710.3 27.8 1,754.5 249.0

5_A 0.0 0.5 0.1 23.9 0.9 2,802.1 - - - -

5_B 1.4 0.1 2.4 0.7 15.8 8.7 55.4 51.6 192.2 580.8

5_C 1.4 0.1 2.4 1.7 15.7 31.4 55.3 95.8 193.9 761.2

5_D 1.4 0.1 2.3 2.7 15.5 52.5 55.7 138.9 193.7 900.3

7_A 0.5 0.5 1.1 0.4 168.4 13.2 567.8 62.9 2,710.9 1,587.8

9_A 0.3 0.2 2.4 9.2 26.5 532.5 85.6 3,269.4 465.6 42,866.6

TINY SMALL MEDIUM LARGE HUGE

Figure 4: Indexing (I) and search (S) times for different
READS datasets [time in seconds].

edit distance computation by a novel data structure named
edit vector automaton, which substantially accelerates the
state transition of active nodes, and therefore, improves the
total query performance. Naive parallelization is added to
exploit multi-core CPUs.
Team 8 submitted only one program: Program 8 A, which
was evaluated for Track 1 with CITIES only.

3.9 Team 9
BWTSearcher [38] of Team 9 takes advantage of a cache-
aware multicore framework using BWT (Burrows-Wheeler-
Transform, see [5]). BWTSearcher segments the whole col-
lection of database sequences to fit to the CPU cache lines.
The approximate string search algorithm is based on a parti-
tion approach. The query is decomposed into τ + 1 chunks.
If P matches the text with at most τ errors, at least one
of the parts will match a substring of the text exactly. A
new data structure called BWTPA is proposed to find the
matching candidates. Length filter and position filter are
used to prune the candidates. Team 9 proposed a reversed
segment trie to merge the identical segments, which can save
much duplicated computation. In addition, a look ahead al-
gorithm is developed to support bounded edit distance and
improve the verification of the candidate strings. BWT-
searcher can search on any dataset, but is not optimized on
DNA data, yet.
Team 9 has only one participating program: Program 9 A,
which was evaluated on all datasets for Track 1.

4. EVALUATING APPROXIMATE STRING
SEARCH METHODS

In the following section we report results for all submissions
for Track 1: approximate string search. We present results
for READS datasets first and then for CITIES.

4.1 Similarity Search for READS
In Figure 4, we show the indexing and search times for the
READS dataset and random values for k (for each query
in the dataset we have assigned a random number out of
{0, 4, 8, 12, 16}). For READS-TINY and READS-SMALL
most of the programs compute the results within a few sec-
onds, with two exceptions. 2 A, the index-less approach,
needs already 185 seconds for answering READS-SMALL.
For READS-MEDIUM, 2 A did not compute a result within
several hours, so it was not evaluated on the larger datasets.
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Prog. k=0 k=4 k=8 k=12 k=16

1_A 0.2 0.2 0.3 1.5 25.4

1_B 0.2 0.2 0.4 3.1 42.1

2_A - - - - -

3_A 2.9 30.9 136.2 335.8 972.6

4_A 0.1 0.1 0.4 3.3 17.8

4_B 0.1 0.1 0.4 3.5 20.1

5_A - - - - -

5_B 0.1 0.2 0.9 19.5 56.4

5_C 0.1 0.2 3.9 9.1 108.4

5_D 0.1 0.2 5.2 44.7 160.8

7_A 0.4 5.6 6.4 20.5 30.5

9_A 117.3 242.0 242.5 311.2 1,749.3

MEDIUM

Figure 5: Search times for READS-MEDIUM and dif-
ferent values of k [time in seconds].

Prog. 1 100 10,000 100,000 200,000

1_A 199.0000 1.9900 0.0225 0.0042 0.0031

1_B 205.0000 2.0100 0.0220 0.0048 0.0032

2_A - - - - -

3_A 1,625.0000 18.3100 3.0682 4.2107 3.8523

4_A 83.0000 0.7800 0.0101 0.0041 0.0035

4_B 107.0000 0.8700 0.0101 0.0043 0.0030

5_A 50.0000 234.5200 - - -

5_B 52.0000 0.2200 0.0211 0.0160 0.0142

5_C 38.0000 0.1800 0.0228 0.0174 0.0138

5_D 44.0000 0.2100 0.0214 0.0155 0.0144

7_A 116.0000 1.5600 0.5538 0.5519 0.5423

9_A 279.0000 25.7800 24.0174 25.8930 24.8394

READS-MEDIUM - Number of queries

Figure 6: Batch effect for READS-MEDIUM: Time per
query for a different number of total queries (1-200,000
queries) [time in milliseconds].

Program 5 A, another index-less approach, needs 23.9 sec-
onds for READS-SMALL and around 45 minutes for READS-
MEDIUM. Therefore, 5 A was not tested on READS-LARGE
and READS-HUGE.
The fastest programs for READS-HUGE are 4 A and 4 B,
taking 232.5 and 249.0 seconds, respectively. The third pro-
gram is 1 A, which needs 312.1 seconds. However, the index-
ing time of 1 A is around 20 times shorter than the indexing
time for 4 A and 4 B. Programs 1 B, 5 B, 5 C, and 5 D need
10 to 15 minutes for READS-HUGE. Program 3 A, which
does not use an index structure, already needs 8 hours to
compute all solutions for READS-HUGE.
In Figure 5, we show search times for different values of
k and the dataset READS-MEDIUM. Note that for all the
programs the indexing time is independent of the value of k,
and is shown in Figure 4. Except 3 A and 9 A, all programs
can compute the results set for k ≤ 8 within few seconds.
The best program for k = 16 is 4 A, needing only 17.8 sec-
onds, followed by 4 B and 1 A. For all values of k, 4 A is
among the fastest programs, only clearly outperformed by
1 A for k = 12.
We have further analyzed the effect of batch-processing for
all programs for READS-MEDIUM and k = 4, except 2 A.
In Figure 6, the average time per query for different number
of queries is shown. It can be seen that for most programs,
the average query answering time per query is reduced, if
the number of queries is increased. For a large number of

READS- Prog. I S I S I S

1_A 16.6 4.1 15.8 1.8 14.6 1.2

4_A 510.6 4.9 527.2 2.0 639.4 1.5

5_B 25.0 14.7 24.9 17.4 18.1 16.6

1_A 47.4 26.3 48.3 10.9 47.8 7.0

4_A 1,851.3 27.0 1,518.6 12.8 1,740.8 8.1

5_B 93.7 80.0 66.1 81.8 66.0 91.2

1_A 131.8 371.7 134.9 137.7 131.1 82.1

4_A 4,290.4 245.3 3,718.7 87.2 4,096.2 42.8

5_B 301.2 1,237.5 240.3 1,186.4 2,172.2 1,403.7

LARGE

HUGE

8 threads 24 threads 80 threads

MEDIUM

Figure 7: Search times for READS-MEDIUM, READS-
LARGE, and READS-HUGE on System 2 [time in sec-
onds].

Prog. I S I S I S I S I S

1_A 0.1 0.5 0.1 0.4 0.2 0.9 0.9 18.2 1.9 59.9

1_B 0.1 0.4 0.1 0.4 0.2 0.9 0.9 17.7 1.7 46.8

2_A 0.0 0.5 0.0 4.0 0.1 23.6 0.2 228.3 - -

3_A 0.0 1.5 0.0 3.0 0.0 6.1 0.1 41.2 0.2 109.6

4_A 2.3 0.2 3.9 0.7 7.0 1.6 25.0 28.5 39.7 69.2

4_B 1.1 0.5 3.9 0.7 7.0 1.6 24.5 28.4 39.9 67.3

5_A 0.0 2.0 0.0 39.0 0.0 176.5 0.1 3,623.9 - -

5_B 2.4 1.1 2.4 14.6 2.5 53.8 2.7 1,018.9 3.1 4,903.0

5_C 2.4 1.1 2.4 13.6 2.4 44.7 2.7 1,088.8 3.2 4,387.4

5_D 2.4 1.6 2.4 14.6 2.5 43.2 2.7 1,062.3 3.1 3,097.0

6_A 13.0 0.5 63.2 1.3 126.3 2.8 562.4 16.0 1,206.3 248.3

8_A 0.0 0.5 0.1 1.4 0.2 5.4 1.0 107.9 2.0 445.5

9_A 0.1 0.5 0.1 0.9 0.2 2.5 1.1 15.2 1.6 137.5

TINY SMALL MEDIUM LARGE HUGE

Figure 8: Indexing (I) and search (S) times for different
CITIES datasets [time in seconds].

queries, the programs of Team 1 and Team 4 have the short-
est time per query.
We have further evaluated the three top-performing pro-
grams on our second evaluation environment System 2 with
a different number of threads. In Figure 7, the results of
the evaluation are shown. It can be seen that 1 A and 4 A
scale quite well with the number of threads: if the number
of threads is increased by 3 (8 to 24), the search time is re-
duced by a factor larger than 2. The improvement from 24
threads to 80 threads is not as big any more. For 5 B there
is almost no effect when increasing the number of threads.
Their multiple backtracking algorithm is not straightforward
to parallelize and the static load-balancing approach doesn’t
scale well. In this scenario it is probably easier to aban-
don multiple backtracking and go back to ”standard” single
backtracking, to allow a query-by-query parallelization.

4.2 Similarity Search for CITIES
In Figure 8, we show the indexing and search times for the
CITIES dataset and random values for k. For CITIES-TINY
and CITIES-SMALL most of the programs compute the re-
sults within a few seconds. The only exception are the pro-
grams of Team 5, which need already 13.6 -39.0 seconds for
CITIES-SMALL. All programs were tested on all datasets,
with two exceptions. Programs 2 A and 5 A did not return
a result for CITIES-HUGE within several hours. Indexing
times are quite short for all programs, except 6 A, which
almost spends 20 minutes on indexing CITIES-HUGE.
The fastest program for CITIES-HUGE is 1 B, needing 46.8

7



Prog. k=0 k=1 k=2 k=3 k=4

1_A 0.0 0.0 0.1 0.5 3.5

1_B 0.0 0.0 0.1 0.6 3.0

2_A 8.0 7.0 7.2 16.7 21.3

3_A 5.3 5.2 5.5 6.0 8.0

4_A 0.0 0.0 0.1 0.9 6.2

4_B 0.0 0.0 0.2 0.9 5.9

5_A 178.4 172.8 154.3 159.9 194.7

5_B 0.0 0.6 6.2 63.3 206.1

5_C 0.0 0.7 9.2 39.1 199.1

5_D 13.6 11.9 24.6 58.4 119.0

6_A 0.3 2.3 5.4 7.8 15.4

8_A 0.1 0.1 0.6 4.0 18.4

9_A 0.0 0.1 0.3 2.5 9.1

MEDIUM

Figure 9: Search times for CITIES-MEDIUM [time in
seconds].

CITIES- Progr. I S I S I S

1_A 0.21 0.57 0.22 0.24 0.27 0.19

4_A 10.25 0.95 10.26 0.38 10.31 0.23

5_B 0.77 158.15 1.20 133.68 1.36 103.95

1_A 1.123 12.84 1.042 5.341 1.143 3.222

4_A 33.283 17.68 33.353 7.297 33.686 4.377

1_A 2.225 43.615 2.226 19.679 2.247 11.529

4_A 52.903 57.473 53.53 28.283 53.175 21.057
HUGE

LARGE

8 threads 24 threads 80 threads

MEDIUM

Figure 10: Search times for CITIES on System 2 [time
in seconds].

seconds. It is closely followed by 1 A, 4 A, and 4 B. The pro-
grams of Team 5 are the slowest for CITIES, which proba-
bly means that their approach is better suited to deal with
small-alphabets.
In Figure 9, the search times for CITIES-MEDIUM and dif-
ferent values of k are shown. Programs 1 A and 1 B are
always among the fastest.
We have further evaluated the three top-performing pro-
grams on our second evaluation environment System 2 with
a different number of threads. In Figure 10, the results are
shown. The results are very similar to the results of READS:
Program 1 A and 4 A scale well from 8 to 24 threads and
quite good for 24 threads to 80 threads. Program 5 B does
not scale as well as the other two (and was not tested for
CITIES-LARGE and CITIES-HUGE).

5. EVALUATING APPROXIMATE STRING
JOIN METHODS

In the following section we report on results of all sub-
missions for Track 2: approximate string join. Again, we
present results for READS datasets first and then for CITIES.

5.1 Similarity Join for READS
In Figure 11 and Figure 12, we show the join times for the
READS dataset, for k = 0 (a) and k = 16 (b), respectively.
For k = 0, all programs have been tested for all datasets,
except from 5 A. Program 5 A already needs around 30
minutes to perform a join on READS-SMALL. The fastest
programs need less than 10 seconds to perform a self-join
on READS-HUGE: 1 A and 1 B. For k=16, most programs
could only be tested until READS-SMALL. Two programs

Prog. TINY SMALL MEDIUM LARGE HUGE

1_A 0.5 1.1 1.6 4.4 9.6

1_B 0.5 0.6 1.8 4.6 9.9

3_A 2.0 8.3 200.3 1,836.1 15,531.2

4_A 2.5 29.8 288.5 870.0 2,258.0

4_B 2.0 23.8 234.5 709.9 1,764.5

5_A 19.5 1,813.8 - - -

5_B 2.5 3.3 5.2 9.5 30.8

5_C 2.5 3.3 4.7 9.2 30.9

5_D 2.5 4.0 5.1 9.2 30.6

9_A 0.5 1.2 7.0 9.1 328.7

READS k=0

Figure 11: Join times for READS and k = 0 [time in
seconds].

Prog. TINY SMALL MEDIUM LARGE HUGE

1_A 0.5 9.8 1,028.3 11,283.9 82,636.5

1_B 0.5 26.0 2,941.0 33,055.5 -

3_A 26.0 1,732.3 - - -

4_A 33.1 362.8 4,048.4 25,823.9 149,344.1

4_B 32.5 361.7 - - -

5_A 19.8 2,217.3 - - -

5_B 4.1 50.8 4,200.9 - -

5_C 31.0 431.0 - - -

5_D 40.0 625.0 - - -

9_A 159.7 9,327.3 - - -

READS k=16

Figure 12: Join times for READS and k = 16 [time in
seconds].

Prog. k=0 k=4 k=8 k=12 k=16

1_A 0.2 1.0 3.7 84.4 1,377.3

1_B 0.2 0.9 8.9 231.0 -

3_A 258.8 5,760.0 - - -

4_A 37.6 41.3 81.2 220.8 2,489.1

4_B 29.4 31.4 75.7 214.1 -

5_A - - - - -

5_B 0.5 12.4 126.7 2,590.4 -

5_C 0.5 12.1 111.9 - -

5_D 0.5 12.3 74.9 - -

9_A 5.5 1,197.5 - - -

READS-HUGE (time in minutes!)

Figure 13: Join times for READS-HUGE and different
k [time in minutes].

were evaluated in READS-HUGE: Program 1 A needed 22.9
hours and Program 4 A needed 41.5 hours.
We report the join times for READS-HUGE and different
values for k in Figure 13. Programs 3 A and 9 A already
need more than 20 hours to perform a 4-approximate self-
join on READ-HUGE. The best performing method is im-
plemented in Program 1 A.
We have further evaluated the three top-performing pro-
grams on our second evaluation environment System 2 with
a different number of threads. In Figure 14, the results are
shown. For all programs a higher number of threads reduces
the runtime. It is interesting to see that with an increasing
value of k, the effect is bigger than with small numbers. We
conjecture that the overhead of setting up the threads and
synchronization is dominating for smaller k.
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Threads Progr. k=0 k=4 k=8 k=12 k=16

1_A 1.22 8.51 16.22 87.95 1,000.14

4_A 460.37 470.45 633.01 1,724.68 6,077.06

5_B 3.04 80.29 213.45 3,538.78 10,230.97

1_A 1.23 6.76 10.76 33.96 381.07

4_A 460.26 462.56 576.99 869.19 2,354.78

5_B 5.63 55.41 162.01 3,679.70 9,808.58

1_A 1.22 6.64 9.57 23.61 335.73

4_A 469.87 460.93 486.23 645.42 1,318.72

5_B 3.76 52.55 188.61 3,437.48 5,157.10

8

24

80

READS-MEDIUM

Figure 14: Join times for READS-MEDIUM on Sys-
tem 2 [time in seconds].

Prog. TINY SMALL MEDIUM LARGE HUGE

1_A 0.6 0.6 0.6 0.6 1.0

1_B 0.8 0.7 0.7 0.6 1.1

3_A 5.8 28.4 56.7 287.2 588.1

4_A 1.9 4.2 7.0 24.9 40.9

4_B 1.7 4.3 7.2 25.0 39.7

5_A 7.7 175.1 850.1 - -

5_B 4.7 4.6 4.5 6.7 11.3

5_C 4.6 4.7 4.8 6.3 11.3

5_D 4.9 4.8 4.8 6.2 11.4

8_A 1.0 0.6 0.9 1.4 3.3

9_A 0.7 1.0 0.6 3.4 10.9

CITIES k=0

Figure 15: Join times for CITIES and k=0 [time in sec-
onds].

Prog. TINY SMALL MEDIUM LARGE HUGE

1_A 0.7 3.0 10.5 117.0 345.5

1_B 0.9 3.0 11.0 119.5 353.0

3_A 6.5 31.0 68.5 577.0 1,700.0

4_A 2.0 17.0 54.0 807.0 945.0

4_B 2.5 17.0 57.5 810.0 942.0

5_A 10.4 205.5 982.5 - -

5_B 13.8 241.0 920.5 - -

5_C 15.0 226.5 926.0 - -

5_D 22.6 266.0 838.5 2,401.0 -

8_A 6.0 141.5 532.5 3,585.0 21,230.0

9_A 16.1 193.5 578.5 - -

CITIES k=4

Figure 16: Join times for CITIES and k=4 [time in sec-
onds].

5.2 Similarity Join for CITIES
Join times for the CITIES dataset and are reported in Fig-
ure 15 for k = 0 and in Figure 16 for k = 4. Apart from
Program 5 A, all programs finished to compute an exact
self-join on all CITIES datasets. Program 1 A is the fastest
program in each case. Team 4’s programs are ranked sec-
ond. Program 3 A finishes third, which is quite remarkable
for an index-less approach.
The join times for CITIES-HUGE and different values of
k are reported in Figure 17. Program 1 A is the best for
all values of k, except for k = 1, where it is outperformed
slightly by 1 B. We did not test the index-less approach 5 A.
We have further evaluated the three top-performing pro-
grams on our second evaluation environment with a differ-
ent number of threads. In Figure 18, the results are shown.
For all programs a higher number of threads reduces the
runtime. The results show a similar behavior as when join-

Prog. k=0 k=1 k=2 k=3 k=4

1_A 1.0 1.9 6.1 50.1 345.5

1_B 1.1 1.8 6.8 53.8 353.0

3_A 588.1 564.1 655.8 847.6 1,700.0

4_A 40.9 45.5 81.2 440.6 945.0

4_B 39.7 42.2 78.8 418.3 942.0

5_B 11.3 78.3 1,719.2 - -

5_C 11.3 37.1 726.2 11,462.5 -

5_D 11.4 32.8 785.9 - -

8_A 3.3 21.2 218.2 3,339.2 21,230.0

9_A 10.9 28.9 198.7 1,912.9 -

CITIES-HUGE

Figure 17: Join times for CITIES-HUGE and different
k [time in seconds].

Threads Progr. k=0 k=1 k=2 k=3 k=4

1_A 0.06 0.30 0.53 1.83 8.12

4_A 10.40 10.35 11.15 17.06 46.00

5_B 1.45 4.17 56.12 376.39 2,513.64

1_A 0.08 0.27 0.38 0.94 3.14

4_A 10.42 10.37 10.69 12.60 22.76

5_B 5.76 4.07 65.28 760.71 2,353.97

1_A 0.11 0.31 0.39 0.85 2.42

4_A 10.47 10.46 10.48 11.37 16.76

5_B 2.38 3.92 42.47 532.91 2,051.15

24

80

CITIES-MEDIUM

8

Figure 18: Join times for CITIES-MEDIUM on Sys-
tem 2 [time in seconds].

ing READS: it seems that performing a join with a small k
usually is better with a small number of threads, while for
larger k it makes indeed sense to make use of parallelism.

place READS CITIES

1 4_A (acyclic word graph) 1_A (partitioning and pruning)

2 1_A (partitioning and pruning) 4_A (acyclic word graph)

3 5_B (radix/Suffix trees) 3_A (bit-parallel LCS computation)

1 1_A (partitioning and pruning) 1_A (partitioning and pruning)

2 4_A (acyclic word graph) 4_B (acyclic word graph)

3 5_B (radix/Suffix trees) 3_A (bit-parallel LCS computation)

se
ar

ch
jo

in

Figure 19: Overall ranking for search and join.

6. DISCUSSION
The main results of our competition are shown in Figure 19.
For each task and dataset we list the techniques used by
the three top performing teams. The partitioning and prun-
ing techniques of Team 1 show the best performance for
three out of four problems. Only for searching our READS
dataset, the acyclic word graph of Team 4 slightly outper-
forms Team 1’s techniques.
In the following we discuss our results and related it to ex-
isting work not covered by the competition.

6.1 Additional algorithms
We compare the results of the competition to existing tools
for approximate string search. We only take into account
non-dominated methods from Figure 1, for which no par-
ticipant of our competition had a direct contribution. The
only such non-dominated method is SSI [10]. In addition,
we test two other methods: Flamingo [4], which is often
used as baseline for evaluation, and Pearl [28], a prefix tree
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CITIES:
Prog. Index Search Index Search Index Search

Flamingo |q|=2 0.1 4.7 0.2 26.6 - -
Flamingo |q|=3 0.2 7.6 0.4 42.8 - -
Flamingo |q|=4 0.2 9.7 0.5 55.4 - -

Pearl 2.9 33.5 6.4 74.9 99.4 2,541.1
SSI
1_B 0.1 0.4 0.2 0.9 1.7 46.8
4_B 3.9 0.7 7.0 1.6 39.9 67.3
3_A 0.0 3.0 0.0 6.1 0.2 109.6

READS:
Prog. Index Search Index Search Index Search

Flamingo |q|=5 2.1 45.9 - - - -
Flamingo |q|=6 2.3 44.1 36.8 6,052.2 - -
Flamingo |q|=7 3.0 443.7 - - - -

Pearl 10.1 3,567.0 - - - -
SSI 0.4 27.7 1.2 5,032.1 - -
4_A 29.3 0.2 291.0 4.6 2,251.8 232.5
1_A 1.1 0.4 10.3 4.3 108.0 312.1
5_B 2.4 0.7 15.8 8.7 192.2 580.8

SMALL MEDIUM HUGE

SMALL MEDIUM HUGE

Figure 20: Indexing and Search times for Flamingo,
Pearl, and SSI [time in seconds].
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Figure 21: Peak main memory usage for READS-HUGE
[memory in GB].

index. The results are shown in Figure 20, together with
the comparison of the best three ranked programs from our
competition.
Unfortunately, Flamingo has only implemented approximate
search, no approximate join. We run Flamingo with the
standard configuration (filters as set by the GettingStarted-
example) and different length of q-grams. Index and search
times are considerably longer than many of the competitors
in our competition. However, note that Flamingo makes
only use of one thread and the memory footprint seems to
be very small. Possibly, performance of Flamingo can be
further improved by additional filters. We have tested SSI
only on the READS datasets. For each CITIES dataset, SSI
stopped with a insufficient memory exception. This might
be a bug affecting the handling of large alphabets.
The best programs from our competition outperform these
tools by a factor of 1000 and more for READS-MEDIUM
and a factor of 50 and more for CITIES-HUGE. In addition,
we have evaluated Pearl for joining GEONAMES datasets:
Even for GEONAMES-MEDIUM and k = 4, Pearl needs
more than 1 hour to compute the self-join, while 1 A needs
less than 2 minutes. Given the existing evaluation results
from Figure 1, for each non-dominated method either one of
its authors has contributed to our competition (Pass-Join,
Trie-Join, PPJoin, NGPP) or the method (SSI) was shown
to be way less scalable than our best programs. Therefore,
we believe that our analysis represents the state-of-the-art
in string similarity search and join.
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Figure 22: Peak main memory usage for CITIES-HUGE
[memory in GB].
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Figure 23: Searching CITIES-LARGE: number of active
threads from the beginning of the program until its ter-
mination. Note that all the programs had a different run
time, the x-axis has a different scale for each program.

6.2 Memory usage
We show the peak main memory usage for all programs with
respect to READS-Huge in Figure 21. Programs 5 B, 5 C,
and 5 D only use around 13.6 GB of main memory, followed
by 3 A with 15.6 GB. The maximum amount of main mem-
ory is used by 9 A with 40.6 GB. The average main memory
is 24.2 GB, which means that all the programs make use of
roughly half of the main memory available..
In Figure 22, the peak main memory usage for the dataset
CITIES-HUGE is shown. Most of the programs show mod-
est memory usage; the average is only 6 GB. The most main
memory is used by Program 6 A: 24.7 GB, followed by 4 A
and 4 B with 12-13 GB. Program 9 A only uses 0.6 GB of
main memory. Thus, most of the main memory is left un-
used. We conjecture that it should be possible to further
improve query answering times by pre-computation of more
sophisticated index structures.

6.3 CPU utilization
In Figure 23, the number of active threads is shown over time
when searching CITIES-LARGE. The graphs of 1 A, 4 B,
5 C, and 5 D are not shown since they are very similar to
1 B, 4 A, 5 B, and 5 B, respectively. Most of the programs
start preprocessing with one thread and then increase the
number of threads. Program 3 A is the only program which
does not follow this pattern. Load scheduling of programs
1 B and 4 A can possibly be improved, since these programs
do not make constant use of the full number of available
cores. Program 4 A has a long single-thread preprocessing
phase; queries are answered using 16 threads.
In Figure 24, the number of active threads is shown over time
when joining READS-MEDIUM with k = 4. The graphs
of 1 A, 4 B, 5 C, and 5 D are not shown since they are
very similar to 1 B, 4 A, 5 B, and 5 B, respectively. The
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GEONAMES

1_A 1_B 3_A 4_A 4_B 5_A 5_B 5_C 5_D 9_A

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 8 1 8 8 1

1 1 1 1 1 8 1 8 8 1

9 9 1 1 1 8 1 8 8 1

9 5 1 1 1 8 1 8 8 1

3 9 1 1 1 8 1 8 8 1

9 9 1 1 1 8 1 8 8 1

9 9 1 1 1 8 1 8 8 8

9 1 1 1 1 8 1 8 8 8

1 1 1 1 1 8 1 8 8 8

1 1 1 1 8 1 8 8 8

1 1 1 8 1 8 8 8

1 1 1 8 1 9 8 8

1 1 1 8 1 9 8 8

1 1 1 8 8 9 8 8

1 1 1 8 8 9 8 8
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Figure 24: Joining READS-Medium with k=4: number
of active threads from the beginning of the program un-
til its termination. Note that all the programs had a
different run time, the x-axis has a different scale for
each program.

Prog. 1 100 10,000 100,000 200,000

1_A 100.0% 100.0% 100.0% 100.0% 100.0%

1_B 100.0% 100.0% 100.0% 100.0% 100.0%

2_A - - - - -

3_A 100.0% 100.0% 100.0% 100.0% 100.0%

4_A 100.0% 200.0% 645.8% 479.2% 609.1%

4_B 100.0% 200.0% 645.8% 479.2% 609.1%

5_A 100.0% 200.0% 445.8% 479.8% 465.7%

5_B 100.0% 200.0% 445.8% 479.8% 465.7%

5_C 100.0% 200.0% 445.8% 479.8% 465.7%

5_D 100.0% 200.0% 445.8% 479.8% 465.7%

7_A 100.0% 100.0% 100.0% 100.0% 100.0%

9_A 100.0% 100.0% 100.0% 100.0% 100.0%

READS-MEDIUM - Number of queries

Figure 25: Result redundancy: Searching READS-
MEDIUM with k=4 for different number of queries (1-
200,000) [redundancy in percent; 100% stands for no re-
dundant results; 200% means that in average each result
is reported twice].

overall join time for 1 B is only few seconds, so the graph
is not as stable as the other ones. For Program 4 A and
5 B the preprocessing phase can be clearly identified (with
only one thread). Program 3 A yields again a kind of heart-
beat curve. Program 4 A makes use of 16 threads again
instead of only 8. Program 9 A uses 8 threads for most of
the time (only the first few seconds are run with only one
thread; hard to see because the overall join time is around
90 minutes).

6.4 Redundancy
The official rules allowed to serialize the same answer several
times: sometimes the same result is found by different com-
ponents of a search algorithm independently. In Figure 25,
we analyze the redundancy in the results. The programs of
Team 4 and Team 5 report answers several times (in average
4-6 times). All other programs report each answer only once
(baseline 100 percent).

7. CONCLUSION
We believe that our evaluation gives a fairly representa-
tive picture of the state-of-the-art in string similarity search
and join. Based on our datasets and competing programs,
we conclude that an error rate of 20-25% pushes today’s
techniques to the limit. For instance, self-joining a set of
15.000.000 sequence reads of length 100 with an edit dis-
tance threshold k = 16 takes almost one day even for the
best participant.
Our experiments showed that many participants used less
main memory than available. The effect is perspicuous for

our CITIES dataset: more than half of the competitors used
less than 10 percent of the main memory. An interesting
lead for future research are indexing strategies that make
full use of existing main memory. Even for smaller datasets,
query answering times might be further reduced by more
precomputation at indexing time.
Although we have ranked programs based on search time,
we have also measured indexing time separately. We found
that indexing times vary a lot between implementations; in
addition many programs use only one thread for indexing.
One interesting direction of research is to investigate paral-
lelization of indexing algorithms. One future direction for
research is the better utilization of CPUs; especially on sys-
tems with a large number of cores.
It is interesting to note that the three top performing teams
use difference techniques for each task. Combining these
techniques, e.g. the bit-parallel LCS computation from Team
3 with the pruning techniques of Team 1, will probably re-
duce search and join times beyond the state-of-the-art.
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