
State-of-the-art in String Similarity Search and Join

Sebastian Wandelt
Wissensmanagement in der

Bioinformatik, HU Berlin,
Berlin, Germany

Dong Deng
Tsinghua University

Beijing, China

Stefan Gerdjikov
IICT Bulgarian Academy of

Science, FMI Sofia University,
Sofia, Bulgaria

Shashwat Mishra
Special Interest Group in

Data, IIT Kanpur,
Kanpur, India

Petar Mitankin
IICT Bulgarian Academy of

Science, FMI Sofia University,
Sofia, Bulgaria

Manish Patil
Louisiana State University,

Louisiana, USA

Enrico Siragusa
Algorithmic Bioinformatics, FU

Berlin,
Berlin, Germany

Alexander Tiskin
Department of Computer

Science, University of
Warwick,

Coventry, United Kingdom

Wei Wang
University of New South Wales

New South Wales, Australia

Jiaying Wang
Northeastern University

Shenyang, China

Ulf Leser
Wissensmanagement in der

Bioinformatik, HU Berlin,
Berlin, Germany

ABSTRACT
String similarity search and its variants are fundamental
problems with many applications in areas such as data in-
tegration, data quality, computational linguistics, or bioin-
formatics. A plethora of methods have been developed over
the last decades. Obtaining an overview over the state-of-
the-art in this field is difficult, as results are published in
various domains without much cross-talk, published com-
parisons usually use different data sets and often study sub-
tle variations of the core problems, and the sheer number
of proposed methods exceeds the capacity of a single re-
search group. In this paper, we report on the results of the
probably largest benchmark ever performed in this field. To
overcome the resource bottleneck, we organized the bench-
mark as an international competition; this means that var-
ious teams from different fields and from all over the world
developed or tuned systems for two crisply defined prob-
lems which were afterwards compared by a single group on
the same machine using various settings. Altogether, we
compared 15 different systems on two string matching prob-
lems (k-approximate search and k-approximate join) using
data sets of increasing sizes and with different characteristics
from two different domains. We compare systems primar-

ily by wall clock time, but also provide results on memory
usage, indexing time, batch query effects and scalability in
terms of CPU cores. Results were averaged over several runs
and confirmed on a second, different hardware platform. A
particularly interesting observation is that disciplines can
and should learn more from each other, with the three best
teams rooting in computational linguistics, databases, and
bioinformatics, respectively.

Keywords
String search, String join, Scalability, Comparison

1. INTRODUCTION AND MOTIVATION
Approximate search and join operations over large collec-
tions of strings are fundamental problems with many ap-
plications. String similarity search is used, for instance, to
identify entities in natural language texts [37], to place DNA
sequences produced in modern DNA sequencing on a refer-
ence genome [16,17], or to perform pattern matching in time
series represented as sequences of symbols [7]. String simi-
larity joins are building blocks in the detection of duplicate
Web pages [12], in collaborative filtering [2], or in entity rec-
onciliation [5]. Accordingly, reseach in this field date back
to the early days of computer science and is still highly ac-
tive today. Over the years, literally hundreds of methods
have been proposed, the fastest being based on various in-
dex structures, such as (compressed) suffix trees [6], suffix
arrays [18], n-gram indexes [30], or prefix trees [25]. For
similarity search, fundamental techniques include dynamic
programming (to deal with indels), automata (especially
to represent sets of queries), and seed-and-extend meth-
ods (turning similarity search into an exact search problem

1



of smaller strings). Techniques for similarity joins include
filter-and-verify [10], prefix-filtering [26], and mismatching
analysis [39].
Research in the field was and is performed in various sci-
entific disciplines, the most important one probably being
algorithms on pattern matching, computational linguistics,
bioinformatics, and database / data integration. There are
also subtle differences between the problems being studied,
for instance varying in the concrete similarity measure (edit
distance, jaccard, hamming etc.), the type of string com-
parisons (global or local alignment, approximate substring
search etc.), the amount of indexing being allowed (online
in the queries and/or the database) etc. Methods often are
tuned for specific ranges of allowed error thresholds or query
lengths, specific hardware properties, specific alphabet sizes,
or specific distributions or errors. Though newly published
methods mostly compare to some prior works, selection of
these works is often suboptimal and comparisons are carried
out on different data sets; data sets which all too often are
not made publicly available which means that results are
not reproducible. As a consequence of the heterogeneity of
approaches and problems, the lack of common benchmarks,
and the dispersal of research in different communities, today
it is hardly possible to choose the best algorithm for a given
problem.
In this work, we report on the, to the best of our knowledge,
until today most comprehensive benchmark in two specific
string similarity match problems: k-approximate search and
k-approximate join (see below for exact definition). As the
number of published solutions is vast, our resources are lim-
ited, and systems are often not available for download, we or-
ganized this benchmark using a rather uncommon approach:
An International competition on Scalable String Similarity
Search and Join1. We made an open call for contributions
and provided crisp task definitions, a lose hardware specifi-
cation and example data. Nine teams from all over the world
and stemming from different communities participated, in-
cluding databases, natural language processing and bioin-
formatics. Thus, for the first time, we were able to evaluate
different highly-competitive implementations of search and
join algorithms on the same evaluation platform (hardware,
operating system, and datasets). In addition, organizing the
benchmark as as competition, where teams developed and
tuned their own systems independently, allowed us to com-
pare original and optimized programs instead of our own,
unverified and un-optimized re-implementations. The dif-
ferent phases of the workshop are shown in Figure 1.

1. Initial call for contributions (June 2012) 

2. Letter of intent (November 15th, 2012) 

3. Publication of test data (November 16th, 2012) 

4. Tuning phase (November 16th, 2012 - January 20th, 2013) 

5. Final submission (January 20th, 2013) 

6. Evaluation (January  2013 - March 2013) 

7. Workshop (March 22nd, 2013) 

8. Post-workshop analysis (March 2013 - May 2013) 

Figure 1: Phases of the workshop

1http://www2.informatik.hu-berlin.de/~wandelt/
searchjoincompetition2013/

All submitted programs were tested on different datasets
(DNA sequences and geographical names) of different size
(few KB up to few GB) with different error-thresholds (edit
distance k between 0 and 16). We performed experiments
in two different hardware settings: a commodity PC with 8
cores/48 GB RAM and a server with 80 cores/1 TB RAM.
For the top performing programs we performed additional
analyses with different number of threads in order to in-
vestigate the possibility to parallelize algorithms. We also
performed experiments to analyse load balancing, batch-
processing capabilities and main-memory usage of all com-
petitors. Furthermore, we compared submissions with a
number of publicly available algorithms of groups that did
not participate, showing that the best ranked programs from
our competition are several orders of magnitude faster. Al-
together, 14 different systems or configurations were eval-
uated with differences in runtime of factors of more than
1000 between best and worst systems. We are confident
that our results give a fairly representative picture of the
state-of-the-art in string similarity search. The evaluation
of all programs and datasets took almost three months pure
processing time.
We wealth of experiments we preformed and the number
of programs we compared allow to draw several interest-
ing conclusions. For instance, the batch processing effect is
clearly visible for most implementations: While answering
a single query takes up to several dozen milliseconds, for
most programs the per query answering time is down to few
microseconds in batch mode (up to 200.000 queries). Two
out of three of the top teams scale well with the number of
threads, e.g. increasing the number of threads by a factor
of ten, decreases search time by a factor of 4-6. Scalability
with the number of threads for the similarity join opera-
tion is not as good: Only a factor of 2-4 is achieved. We
also analysed peak main memory usage and observed that
larger data structures do not correlate with shorter search
times. Indeed, the fastest program for searching our largest
geographical names dataset (raw data size is 17 MB) only
needs 2 GB of main memory usage, which is the second
lowest main-memory footprint among all teams. On the
other hand, the second fastest search program on the same
data uses 16 GB. For searching our largest DNA sequences
dataset (raw data size is 1.5 GB), we obtained a wide range
of results as well.
However, the purpose of this paper is not only to report on
efficiency of algorithms in string similarity search, but also
to promote competitions as an effective, joyful, and com-
prehensive mean to obtain the state-of-the-art on a given
problem. Actually, competitions are quite common in many
related disciplines, such as information extraction, informa-
tion retrieval, data analysis etc., but, to our knowledge, a
novel approach within the database community. Clearly, the
most critical point here is the measurement of wall clock
time, which is dependent on the concrete implementation
and the machine being used for measurements, instead of
result quality metrics independent of the concrete imple-
mentation and evaluation environment. We will expand on
this issue in Section 6.
The remaining of this paper is organized as follows. We de-
scribe the concrete problems we benchmarked, the datasets,
and the benchmarking methodology in Section 2. All sub-
mitted methods are briefly presented in Section 3. Evalua-
tion results for approximate string searching are presented

2



in Section 4 and for approximate string join in Section 5.
We conclude in Section 6.

2. BACKGROUND
In the following section we define the problems of approx-
imate string searching and approximate string join. Our
competition and evaluation methodology is introduced to-
gether with a description of datasets and our evaluation en-
vironments.

2.1 Formal problem statement
Definition 1 (Strings). A string s is a finite sequence

over an alphabet Σ. The length of a string s is denoted with
|s| and the substring starting at position i with length n is
denoted s(i, n). s(i) is an abbreviation for s(i, 1). All posi-
tions in a sequence are zero-based, i.e., the first character is
accessed by s(0).
As a distance function between two strings we use un-weighted
edit-distance for different error thresholds k.

Definition 2 (Similarity of two Strings). Given a
string s and a string t, s is called k-approximate similar to
t, denoted s ∼k t, if s can be transformed into t by at most
k edit operations. Edit operations are: replacing one symbol
in s, deleting one symbol from s, and adding a symbol to s.
We investigate two problems: string similarity search and
string similarity join.

Definition 3 (Similarity search). Given a collection
of strings S = {s1, ..., sn}, a query string q, and an edit-
distance threshold k, the result of string similarity search of q
in S is defined as SEARCH(S, q, k) = {i | si ∈ S∧si ∼k q}.
For instance, given a collection S = {ACA, TGA,AGA},
a query string q = ACA, and k = 1, the result of string
similarity search is SEARCH(S, q, k) = {1, 3}.

Definition 4 (Similarity (self) join). Given a col-
lection of strings S = {s1, ..., sn} and an edit-distance thresh-
old k, the result of string similarity self join of S is defined
as JOIN(S, k) = {(i, j) | si ∈ S ∧ sj ∈ S ∧ si ∼k sj}.
For instance, the result of a string similarity self join on data
sets S from above is JOIN(S, k) = {(1, 1), (1, 3), (3, 1), (3, 3)}.
Note that we explicitly include the reflexive and symmetric
closure in our definition of a self join. Furthermore, we note
that, for the purpose of our benchmark, a self-join is equally
valid as a join between two different sets as we make no as-
sumptions about the a-priori average level of similarity of
the strings in a set. In the following we will often use the
term join instead of self join.

2.2 Competition and methodology
This competition brought together researchers and practi-
tioners from database research, natural language process-
ing, and bioinformatics, addressing zwo specific challenges
in the area of approximate string matching over very large
datasets. The challenge for all participants was to perform
string similarity search and join over unknown data and
query sets with varying error thresholds k as fast as pos-
sible. The call for the competition was circulated by mail
through various lists addressing the different areas dealing
with string matching, in particular databases, algorithms,
computational linguistics, and bioinformatics, and we also
directly contacted a few dozen researchers known for their
contributions to the field. In total we received initial ex-
pressions of interest from 22 teams, out of which 11 teams
officially submitted a program. One team failed to hand in

a complete paper describing their approach on time, and an-
other group withdrew short before the final deadline. Thus,
we eventually compared programs from 9 teams, see Table 1.
We succeeded in reaching out to different areas of research:
Two teams have their home in bioinformatics, two in com-
putational linguistics, and the remaining five are best de-
scribed as database groups. Contributions came from four
continents and seven countries. At least six teams published
highly influential papers on string matching problems be-
fore [15,19,27,32,35,40], while three teams can be considered
as newcomers. As Table 1 shows, the techniques used cover
a broad range and thus probably subsume a large fraction of
previous research in k-approximate string matching. Note
that we, after the competition, also evaluated a number of
further, publicly available systems on the same problem (see
Section6).
The competition consisted of two tracks:
Track 1: Given a collection of strings S, a query string q

and an error threshold k, compute SEARCH(S, q, k).
Track 2: Given a collection of strings S and an error thresh-

old k, compute JOIN(S, k).
Small subsets of the final evaluation datasets (around 5%)
were made available for the contestants for preparation of
their submissions. It was announced that these strings are
roughly representative for the whole evaluation datasets.
Furthermore, we announced a rough description of the eval-
uation hardware and provided a virtual machine mirroring
the software environment used for evaluation. Thus, all
teams could develop and tune their systems before submis-
sion. Each program was allowed to any number of threads
(given that the official evaluation environment System 1 (see
below) has 8 cores, and a maximum of 48 GB of main mem-
ory. Details on CPU, clock rate, cache sizes, disks etc. were
not provided to prevent hardware specific tuning; note that
this implies that further improvements could be possible tak-
ing the specific hardware into account [20]. Programs were
allowed to have two phases, one for indexing a database, and
one for evaluating a set of queries on the database (or the
index).
The main evaluation criterion was measured wall clock time.
In general, we ranked systems based on average runtime over
three independent runs; variations in runtime were very low
and are not reported here. If programs run much longer than
most of the competitors, experiments were only performed
once. We also measure the indexing time, but we do not
take it into account for ranking.

2.3 Datasets
We used two different types of datasets for evaluation in
both tracks, to cover different alphabets and string lengths.
READS: These data sets contain reads from a human genome.

The data is characterized by a small alphabet (5 sym-
bols) and quite uniform length of strings (around 100
symbols per string).

CITIES: These data sets is based on geographical names
taken from World Gazetteer. The data is characterized
by a larger alphabet (around 200 symbols) and quite
non-uniform length of strings (5-64).

The values for k are restricted depending on the dataset.
For READS, we announced and used k ∈ {0, 4, 8, 12, 16};
for CITIES k ∈ {0, 1, 2, 3, 4}. The implicit maximum error
rate for READS is around 1

6
and for CITIES around 4

5
. To

better evaluate scalability of submissions, we created five

3



Dataset |dataset| |queries|

TINY 15,000 100

SMALL 150,000 1,000

MEDIUM 1,500,000 10,000

LARGE 5,000,000 20,000

HUGE 15,000,000 100,000

"Max" 20,000,000 200,000

Dataset |dataset| |queries|

TINY 10,000 1,000

SMALL 50,000 5,000

MEDIUM 100,000 10,000

LARGE 500,000 50,000

HUGE 1,000,000 100,000

"Max" 2,000,000 200,000

Reads

Geonames

15,000 

150,000 

1,500,000 
5,000,000 

15,000,000 

100 

1,000 

10,000 
20,000 

100,000 

10 
100 

1,000 
10,000 

100,000 
1,000,000 

10,000,000 
100,000,000 

TINY SMALL MEDIUM LARGE HUGE 

READS 

|dataset| |queries| 

10,000 

50,000 
100,000 

500,000 
1,000,000 

1,000 

5,000 
10,000 

50,000 
100,000 

100 

1,000 

10,000 

100,000 

1,000,000 

TINY SMALL MEDIUM LARGE HUGE 

CITIES 

|dataset| |queries| 

Figure 2: Size of dataset and number of queries used for evaluation (READS and CITIES)

datasets and query sets of different sizes for each type of
data (READS and CITIES). The size of each dataset and
the number of queries for Track 1 are shown in Figure 2. For
READS, the number of reads starts with 15,000 (TINY) and
ends with 15,000,000 (HUGE). For CITIES, the number of
cities starts with 10,000 (TINY) and ends with 1,000,000
(HUGE). For READS and CITIES, the maximum number
of queries in HUGE is 100,000.

2.4 Evaluation Environments
After the development phase of the competition, partici-
pants submitted their final programs which were measured
on two different evaluation platforms.
System 1: A computer with 8 cores and 64 GB RAM. The

operating system (Fedora Scientific 17 x86 64) was in-
stalled on a SSD with 128 GB. The SSD contained
the datasets as well as the programs. Each program
serialized its results to an external USB 3.0 hard disk
with 3 TB. This system was announced beforehand
and results here were used for ranking.

System 2: A server with 80 cores and 1 TB RAM. The op-
erating system was openSUSE 12.1 x86 64. All datasets,
programs, and serialized results were put on a local
hard disk with a total storage capacity of several TB
(ToDo: ask Norbert). This system was introduced
only during evaluation for (a) performing experiments
with more cores / memories and for (b) confirming
results on a separate hardware with different architec-
ture and CPUs.

Most of the experiments were run on System 1, which was
also officially announced during the competition. We have
used System 2 only for an extended evaluation, investigating
the scalability with the number of threads (for top perform-
ing methods on System 1). In our evaluation below, we will
mention explicitly, if System 2 was used. Note that the code
for both systems was exactly the same, besides the param-
eter for the number of threads.

3. METHODS
This section describes the methods used by each team in
their submissions to the competition.

3.1 Team 1
PassJoin [14] adopts a partition-based framework for string
similarity search and joins. The basic idea is that given
two datasets R and S, and an edit distance threshold k,
for each string in R, we split it into k+1 disjoint segments.
For each string in S, PassJoin checks if it contains any sub-
string matching the segments of R. If no, PassJoin prunes

the string; otherwise the string and those strings whose seg-
ments matching the substrings of the string are verified.
There are two challenges in the partition-based method. The
first one is how to select the substrings. A position-aware
substring selection method and a multi-match-aware sub-
string selection method have been proposed. It has been
proven the multi-match-aware substring selection method
selects the minimum number of substrings. And it is the
only way to select the minimum number of substrings when
the string length is longer than 2*k+1. The second one is
how to verify each candidate pair. PassJoin uses a length-
based verification method, an improved early termination
technique, and an extension-based verification method which
can outperform the traditional method.
Team 1 submitted two programs:
Program 1 A : Please explain search-1 / join-1 here with

one or two sentences.
Program 1 B : Please explain search-2 / join-2 here with

one or two sentences.
Both programs of Team 1 were evaluated for both tracks
and both datasets.

3.2 Team 2
Team 2 tries to outperform conventional index-based searches
by a sequential search algorithm, i.e., strings from the database
are compared sequentially to every query string. Starting
from a naive algorithm for computing edit distances, sev-
eral optimizations are introduced [11]. Calculation of the
edit distance is improved by using length-heuristics, i.e. if
the difference in length between two strings is larger than
the edit distances, then the pair is rejected and no further
tests performed. If the computation of a dot matrix cannot
be avoided, the program applies several heuristics to prune
the search space early. The case k = 0 is implemented as a
special case by just using highly-optimized strcmp available
in C++. Further optimizations include the use of reference-
based semantics over value-based semantics and the use of
simple data types. Finally, several possibilities to design
and implement parallelism are analysed. They devise sim-
ple scheduling strategies depending on the current workload.
Team 2 submitted only one program: 2 A, which was eval-
uated for Track 1 only.

3.3 Team 3
The Waterfall algorithm [33] solves the competition chal-
lenge without indexing or any other preprocessing of the
database strings. First, a reduction of the edit distance
problem to the longest common subsequence (LCS) prob-
lem between the database string and the query string, both

4



Team Affiliation General approach Indexed based? Indexing query set?
1 Tsinghua University, China Partitioning and pruning [14] yes ?
2 Universitaet Magdeburg, Germany Sequential search [11] no ?
3 University of Warwick, UK Bit-parallel LCS computation [33] no ?
4 Sofia University, Bulgaria Compact acyclic directed word

graphs [8]
yes ?

5 FU Berlin, Germany Radix/suffix trees and filtration [28] yes ?
6 IIT Kanpur, India Deletion neighborhoods / hash-

ing [1]
yes ?

7 Louisiana State University, USA Q-gram indexing with filtering [23] yes ?
8 University of New South Wales,

Australia
Trie-index with filtering [24] yes ?

9 Northeastern University, China BWT, cache-aware implementa-
tion [36]

yes ?

Table 1: Teams which participated in the competition

suitably modified, is applied. The strings’ LCS score is
then computed by a bit-parallel algorithm, based on [4].
This technique is extended so that a database string can
be tested simultaneously against multiple query strings, by a
subword-parallel technique similar to that of [13], which was
further developed in the waterfall algorithm. Due to the self-
imposed restriction of not preprocessing the database, the
algorithm runs significantly slower than other competitors,
which do index the database strings before answering the
queries. However, the approach chosen by Team 3 can prove
useful in a situation where input preprocessing is not possi-
ble. Such a situation occurs e.g. when the string database
is replaced by a continuous stream of input strings, each
of which needs to be matched against a small set of query
strings in real time.
Team 3 submitted only one program: 3 A, which was eval-
uated for both tracks and both datasets.

3.4 Team 4
WallBreaker [8] is a novel sequential algorithm for the ap-
proximate search problem in a finite set of words. It re-
duces and essentially overcomes the wall-effect caused by
the redundantly generated false candidates [9]. To achieve
this the query is split into smaller subqueries with smaller
threshold. This allows Wallbreaker to start with an exact
match and then extend these exact matches to longer can-
didates whereas the threshold increases slowly in a stepwise
manner. In order to implement this idea in practice two
kind of resources are used: (i) a linear space representa-
tion of the infixes in the finite set of strings in the database
that enables a left/right extension of an infix in constant
time per character; and (ii) efficient filters that prune the
unsuccessful candidates as soon as a clear evidence for this
occurs. Furthermore, information about the possible lengths
of longest/shortest left/right possible extensions is encoded
in the index structure. This information is then used as an
additional length-filter.
As a result WallBreaker achieves the following breaking-
the-wall-effect. In the beginning WallBreaker considers only
small neighbourhoods of short words which keeps the search-
ing space modest. Afterwards, while increasing the poten-
tial size of the neighbourhoods, longer infixes are generated
that are much more informative than shorter ones and sup-
press the searching space for their own sake. For further
details refer to [9], where besides the standard Levenshtein
edit-distance also the generalised Levenshtein edit-distance

is handled.
Team 4 submitted two programs:
Program 4 A : Please explain parameters 16 y 5 3 here

with one or two sentences.
Program 4 B : Please explain parameters 16 n 5 3 here

with one or two sentences.
Both programs of Team 4 were evaluated for both tracks
and both datasets.

3.5 Team 5
The methods of Team 5 [28] are variations of those applied
in Masai [27], a recently published tool for mapping high-
throughput DNA sequencing data. First an online solution
for computing edit distances using a banded version of the
Myers bit-vector algorithm [21] is proposed. Team 5 is able
to check in time ???Q: THERE IS NO M IN THE COM-

PLEXITY FORMULA? O
( (k+1)(n+|Σ|)

w

)
, where w is the

CPU word size and Σ the string alphabet, if two strings of
length m and n (w.l.o.g. m < n) are within edit distance k.
Then multiple backtracking is proposed, a ???Q: PPLEASE
REPHRASE: ”MULTIPLE INDEXED METHOD” multi-
ple indexed method based on backtracking on top of radix
trees. Parallelization is performed with multiple backtrack-
ing using a task queue filled by means of static load bal-
ancing. Finally, following the seminal work of Navarro and
Baeza-Yates [22], a filtering method based on partitioning of
queries into approximate seeds is implemented. Such filter-
ing method combines the previous two methods and works
well for moderate error rates. The programs are imple-
mented in C++ and OpenMP using the SeqAn library.
Team 5 submitted four programs:
Program 5 A : Please explain parameters –online -t 8

here with one or two sentences.
Program 5 B : Please explain parameters –seed-length

4/10 -t 8 here with one or two sentences.
Program 5 C : Please explain parameters –seed-length

5/13 -t 8 here with one or two sentences.
Program 5 D : Please explain parameters –seed-length

6/15 -t 8 here with one or two sentences.

3.6 Team 6
Team 6’s system [1] follows the paradigm of mapping strings
in the database into a signature space using a suitable sig-
nature scheme, and using a filtering condition to generate
a candidate list. The signature of a string is a set of keys.
The index structure is a hash-table which is essentially an

5



inverted index on the keys. Team 6’s idea is that deletion
neighbourhoods [31]) offer a powerful, selective signature
scheme to process edit distance queries. Previous studies
have focussed on bypassing the large space requirement by
making suitable modifications to the filtering condition. By
choosing to index only an L-length suffix of resulting keys,
significant reductions in query processing times can be still
be obtained (over corresponding q-gram schemes), while in-
curring non-exorbitant, practical space cost. Notice that in
principle any/all of prefix, suffix, midfix can be used. The
candidate list is checked for answers using a length-threshold
aware edit distance computation. The entire workload is
partitioned into k parts, each part is handled by a single,
dedicated thread.
Team 6 only submitted one program: 6 A, which was eval-
uated for Track 1 with CITIES.

3.7 Team 7
The index structure of Team 7 [23] consists of a generalized
suffix tree (GST) and a two-level wavelet tree (WT) on its
leaves. The first level WT maintains an array of starting
positions of all suffixes of GST. For each leaf of this WT,
another WT for the difference between the starting position
of the suffix and the string length to which it belongs to
is maintained. Given τ , r, Team 7 obtains τ + k disjoint
partitions of r aiming to balance selectivity of count filtering
and frequency of partitioned segments. Then GST and WT
are used to obtain inverted list of each partition pre-filtered
by “Position Restricted Alignment” that combines the well-
know length and position filters. All inverted lists are then
merged to retrieve the strings similar to r.
Team 7 submitted only one program: 7 A, which was eval-
uated for Track 1 with READS only.

3.8 Team 8
Team 8 presents [24] a solution based on tries, which have
the advantages of small indexing space, freeness of verifica-
tion, and computation sharing among strings with common
prefixes. The method proposed is a simple adaptation of
our ongoing work on trie-based error-tolerant prefix match-
ing [38]. Existing trie-based methods process a query by
incrementally traversing the trie and maintaining a set of
trie nodes (called active nodes) for each prefix of the query.
One common drawback is that they have to maintain a large
number of active nodes. Instead, Team 8 record only a small
number of potentially feasible nodes as ”active nodes” dur-
ing query processing, which reduces the overhead of main-
taining nodes and reporting results. In addition, Team 8
characterizes the essence of edit distance computation by
a novel data structure named edit vector automaton, which
substantially accelerates the state transition of active nodes,
and therefore, improves the total query performance. Naive
parallelization is added to exploit multi-core CPUs.
Team 8 submitted only one program: 8 A, which was eval-
uated for Track 1 with CITIES only.

3.9 Team 9
BWTSearcher [36] of Team 9 takes advantage of a cache-
aware multicore framework using BWT (Burrows-Wheeler-
Transform, see [29]). BWTSearcher segments the whole col-
lection of database sequences to fit to the CPU cache lines.
The approximate string search algorithm is based on a parti-
tion approach. The query is decomposed into τ + 1 chunks.

Prog. I S I S I S I S I S

1_A 0.4 0.2 1.1 0.4 10.3 4.3 34.0 24.5 108.0 312.1

1_B 0.4 0.2 1.2 0.4 10.5 9.5 33.6 64.9 100.9 924.7

2_A 0.1 2.4 1.3 185.7 - - - - - -

3_A 0.0 1.5 0.0 4.5 0.3 289.8 0.7 1,979.8 2.0 30,898.0

4_A 2.5 0.5 29.3 0.2 291.0 4.6 872.5 24.6 2,251.8 232.5

4_B 1.7 0.3 23.0 0.5 235.2 5.4 710.3 27.8 1,754.5 249.0

5_A 0.0 0.5 0.1 23.9 0.9 2,802.1 - - - -

5_B 1.4 0.1 2.4 0.7 15.8 8.7 55.4 51.6 192.2 580.8

5_C 1.4 0.1 2.4 1.7 15.7 31.4 55.3 95.8 193.9 761.2

5_D 1.4 0.1 2.3 2.7 15.5 52.5 55.7 138.9 193.7 900.3

7_A 0.5 0.5 1.1 0.4 168.4 13.2 567.8 62.9 2,710.9 1,587.8

9_A 0.3 0.2 2.4 9.2 26.5 532.5 85.6 3,269.4 465.6 42,866.6

TINY SMALL MEDIUM LARGE HUGE

Figure 3: Indexing (I) and search (S) times for different
READS datasets [time in seconds].

If P matches the text with at most τ errors, at least one
of the parts will match a substring of the text exactly. A
new data structure called BWTPA is proposed to find the
matched candidates. Length filter and position filter are
used to prune the candidates. Team 9 proposed a reversed
segment trie to merge the identical segments, which can save
much duplicated computation. In addition, a look ahead al-
gorithm is developed to support bounded edit distance and
improve the verification of the candidate strings. BWT-
searcher can search on any dataset, but is not optimized on
DNA data, yet.
Team 9 has only one participating program: 9 A, which was
evaluated on all datasets for Track 1.

4. EVALUATING APPROXIMATE STRING
SEARCH METHODS

In the following section we evaluate all submissions for Track 1:
approximate string search. We present results for READS
datasets first and then show the results for CITIES.

4.1 Similarity Search for READS
In Figure 3, we show the indexing and search times for the
READS dataset and random values for k (for each query
in the dataset we have assigned a random number out of
{0, 4, 8, 12, 16}). For READS-TINY and READS-SMALL
most of the programs compute the results within a few sec-
onds, with two exceptions. 2 A, the index-less approach,

Prog. k=0 k=4 k=8 k=12 k=16

1_A 0.2 0.2 0.3 1.5 25.4

1_B 0.2 0.2 0.4 3.1 42.1

2_A - - - - -

3_A 2.9 30.9 136.2 335.8 972.6

4_A 0.1 0.1 0.4 3.3 17.8

4_B 0.1 0.1 0.4 3.5 20.1

5_A - - - - -

5_B 0.1 0.2 0.9 19.5 56.4

5_C 0.1 0.2 3.9 9.1 108.4

5_D 0.1 0.2 5.2 44.7 160.8

7_A 0.4 5.6 6.4 20.5 30.5

9_A 117.3 242.0 242.5 311.2 1,749.3

MEDIUM

Figure 4: Search times for READS-MEDIUM and dif-
ferent values of k [time in seconds].

6



0.0 
10.0 
20.0 
30.0 
40.0 
50.0 

1_A 1_B 3_A 4_A 4_B 5_B 5_C 5_D 7_A 9_A 

M
em

o
ry

 (
G

B
) 

Figure 5: Peak main memory usage for READS-HUGE
[memory in GB].

Prog. 1 100 10,000 100,000 200,000

1_A 199.0000 1.9900 0.0225 0.0042 0.0031

1_B 205.0000 2.0100 0.0220 0.0048 0.0032

2_A - - - - -

3_A 1,625.0000 18.3100 3.0682 4.2107 3.8523

4_A 83.0000 0.7800 0.0101 0.0041 0.0035

4_B 107.0000 0.8700 0.0101 0.0043 0.0030

5_A 50.0000 234.5200 - - -

5_B 52.0000 0.2200 0.0211 0.0160 0.0142

5_C 38.0000 0.1800 0.0228 0.0174 0.0138

5_D 44.0000 0.2100 0.0214 0.0155 0.0144

7_A 116.0000 1.5600 0.5538 0.5519 0.5423

9_A 279.0000 25.7800 24.0174 25.8930 24.8394

READS-MEDIUM - Number of queries

Figure 6: Batch effect for READS-MEDIUM: Time per
query for a different number of total queries (1-200,000
queries) [time in milliseconds].

needs already 185 seconds for answering READS-SMALL.
For READS-MEDIUM, 2 A did not compute a result within
several hours, so it was not evaluated on the larger datasets.
Program 5 A, another index-less approach, needs 23.9 sec-
onds for READS-SMALL and around 45 minutes for READS-
MEDIUM. Therefore, 5 A was not tested on READS-LARGE
and READS-HUGE. All other programs were evaluated for
each dataset.
The fastest programs for READS-HUGE are 4 A and 4 B,
taking 232.5 and 249.0 seconds, respectively. The third pro-
gram is 1 A, which needs 312.1 seconds. However, the index-
ing time of 1 A is around 20 times shorter than the indexing
time for 4 A and 4 B. Programs 1 B, 5 B, 5 C, and 5 D need
10 to 15 minutes for READS-HUGE. Program 3 A, which
does not use an index structure, already needs 8 hours to
compute all solutions for READS-HUGE.
In Figure 4, we show search times for different values of k
and the dataset READS-MEDIUM. Note that for all the
programs the indexing time is independent of the value of
k, indexing times were shown in Figure 3. Except 3 A and
9 A, all programs can compute the results set for k ≤ 8
within few seconds. The best program for k = 16 is 4 A,
needing only 17.8 seconds, followed by 4 B and 1 A. For all
values of k, 4 A is among the fastest programs, only clearly
outperformed by 1 A for k = 12.
We show the peak main memory usage for all programs with
respect to READS-Huge in Figure 5. Programs 5 B, 5 C,
and 5 D only use around 13.6 GB of main memory, followed
by 3 A with 15.6 GB. The maximum amount of main mem-
ory is used by 9 A with 40.6 GB. The average main memory
is 24.2 GB, which means that all the programs make use of
roughly half of the main memory available in the evaluation
environment.
We have further analysed effect of batch-processing for all
programs for READS-MEDIUM and k=4, except 2 A. In

Prog. 1 100 10,000 100,000 200,000

1_A 100.0% 100.0% 100.0% 100.0% 100.0%

1_B 100.0% 100.0% 100.0% 100.0% 100.0%

2_A - - - - -

3_A 100.0% 100.0% 100.0% 100.0% 100.0%

4_A 100.0% 200.0% 645.8% 479.2% 609.1%

4_B 100.0% 200.0% 645.8% 479.2% 609.1%

5_A 100.0% 200.0% 445.8% 479.8% 465.7%

5_B 100.0% 200.0% 445.8% 479.8% 465.7%

5_C 100.0% 200.0% 445.8% 479.8% 465.7%

5_D 100.0% 200.0% 445.8% 479.8% 465.7%

7_A 100.0% 100.0% 100.0% 100.0% 100.0%

9_A 100.0% 100.0% 100.0% 100.0% 100.0%

READS-MEDIUM - Number of queries

Figure 7: Result redundancy: Searching READS-
MEDIUM with k=4 for different number of queries (1-
200,000) [redundancy in percent; 100% stands for no re-
dundant results; 200% means that in average each result
is reported twice].

READS- Prog. I S I S I S

1_A 16.6 4.1 15.8 1.8 14.6 1.2

4_A 510.6 4.9 527.2 2.0 639.4 1.5

5_B 25.0 14.7 24.9 17.4 18.1 16.6

1_A 47.4 26.3 48.3 10.9 47.8 7.0

4_A 1,851.3 27.0 1,518.6 12.8 1,740.8 8.1

5_B 93.7 80.0 66.1 81.8 66.0 91.2

1_A 131.8 371.7 134.9 137.7 131.1 82.1

4_A 4,290.4 245.3 3,718.7 87.2 4,096.2 42.8

5_B 301.2 1,237.5 240.3 1,186.4 2,172.2 1,403.7

LARGE

HUGE

8 threads 24 threads 80 threads

MEDIUM

Figure 8: Search times for READS-MEDIUM, READS-
LARGE, and READS-HUGE on System 2 [time in sec-
onds].

Figure 6, the average time per query for different number
of queries is shown. It can be seen that for most programs,
the average query answering time per query is reduced, if
the number of queries is increased. For a large number of
queries, the programs of Team 1 and Team 4 have the short-
est time per query.
In Figure 7, we analyse the redundancy in the results. The
official rules allowed to serialize the same answer several
times: sometimes the same result is found by different com-
ponents of a search algorithm independently. The programs
of Team 4 and Team 5 report redundant answers several
times (in average 4-6 times). All other programs report each
answer only once (baseline 100 percent).
We have further evaluated the three top-performing pro-
grams on our second evaluation environment System 2 with
a different number of threads. In Figure 8, the results of
the evaluation are shown. It can be seen that 1 A and 4 A
scale quite well with the number of threads: if the number of
threads is increased by 3 (8 to 24), the search time is reduced
by a factor larger than 2. The improvement from 24 threads
to 80 threads is not so big any more. For 5 B there is almost
no effect when increasing the number of threads. Their mul-
tiple backtracking algorithm is not straightforward to par-
allelize and the quite naive static load-balancing approach
doesn’t scale well. In this scenario it is probably easier to
abandon multiple backtracking and go back to ”standard”
single backtracking, that allows a trivial query-by-query par-
allelization.

7



Prog. I S I S I S I S I S

1_A 0.1 0.5 0.1 0.4 0.2 0.9 0.9 18.2 1.9 59.9

1_B 0.1 0.4 0.1 0.4 0.2 0.9 0.9 17.7 1.7 46.8

2_A 0.0 0.5 0.0 4.0 0.1 23.6 0.2 228.3 - -

3_A 0.0 1.5 0.0 3.0 0.0 6.1 0.1 41.2 0.2 109.6

4_A 2.3 0.2 3.9 0.7 7.0 1.6 25.0 28.5 39.7 69.2

4_B 1.1 0.5 3.9 0.7 7.0 1.6 24.5 28.4 39.9 67.3

5_A 0.0 2.0 0.0 39.0 0.0 176.5 0.1 3,623.9 - -

5_B 2.4 1.1 2.4 14.6 2.5 53.8 2.7 1,018.9 3.1 4,903.0

5_C 2.4 1.1 2.4 13.6 2.4 44.7 2.7 1,088.8 3.2 4,387.4

5_D 2.4 1.6 2.4 14.6 2.5 43.2 2.7 1,062.3 3.1 3,097.0

6_A 13.0 0.5 63.2 1.3 126.3 2.8 562.4 16.0 1,206.3 248.3

8_A 0.0 0.5 0.1 1.4 0.2 5.4 1.0 107.9 2.0 445.5

9_A 0.1 0.5 0.1 0.9 0.2 2.5 1.1 15.2 1.6 137.5

TINY SMALL MEDIUM LARGE HUGE

Figure 9: Indexing (I) and search (S) times for different
CITIES datasets [time in seconds].

Prog. k=0 k=1 k=2 k=3 k=4

1_A 0.0 0.0 0.1 0.5 3.5

1_B 0.0 0.0 0.1 0.6 3.0

2_A 8.0 7.0 7.2 16.7 21.3

3_A 5.3 5.2 5.5 6.0 8.0

4_A 0.0 0.0 0.1 0.9 6.2

4_B 0.0 0.0 0.2 0.9 5.9

5_A 178.4 172.8 154.3 159.9 194.7

5_B 0.0 0.6 6.2 63.3 206.1

5_C 0.0 0.7 9.2 39.1 199.1

5_D 13.6 11.9 24.6 58.4 119.0

6_A 0.3 2.3 5.4 7.8 15.4

8_A 0.1 0.1 0.6 4.0 18.4

9_A 0.0 0.1 0.3 2.5 9.1

MEDIUM

Figure 10: Search times for CITIES-MEDIUM [time in
seconds].

4.2 Similarity Search for CITIES
In Figure 9, we show the indexing and search times for the
CITIES dataset and random values for k. For CITIES-TINY
and CITIES-SMALL most of the programs compute the re-
sults within a few seconds. The only exception are the pro-
grams of Team 5, which need already 13.6 -39.0 seconds for
CITIES-SMALL. All programs were tested on all datasets,
with two exceptions. Programs 2 A and 5 A did not return
a result for CITIES-HUGE within several hours. Indexing
times are quite short for all programs, except 6 A, which
almost spends 20 minutes on indexing CITIES-HUGE.
The fastest program for CITIES-HUGE is 1 B, needing 46.8
seconds. It is closely followed by 1 A, 4 A, and 4 B. The pro-
grams of Team 5 are the slowest for CITIES, which proba-
bly means that their approach is better suited to deal with
small-alphabet READS.
In Figure 10, the search times for CITIES-MEDIUM and
different values of k are shown. Programs 1 A and 1 B are
always among the fastest.
In Figure 11, the peak main memory usage for the dataset
CITIES-HUGE is shown. Most of the programs show mod-
est memory usage; the average is only 6 GB. The most main
memory is used by Program 6 A: 24.7 GB, followed by 4 A
and 4 B with 12-13 GB. Program 9 A only uses 0.6 GB
of main memory. The average main memory used by all
programs is 6 GB. Thus, most of the main memory is left
unused. We conjecture that it should be possible to further

0.1 

1 

10 

100 

1_A 1_B 3_A 4_A 4_B 5_B 5_C 5_D 6_A 8_A 9_A 

M
em

o
ry

 (
G

B
) 

Figure 11: Peak main memory usage for CITIES-HUGE
[memory in GB].

GEONAMES

1_A 1_B 2_A 3_A 4_A 4_B 5_A 5_B 5_C 5_D 6_A 8_A 9_A

1 1 1 1 1 1 1 1 1 1 1 8 1

1 1 1 1 1 1 8 8 8 8 1 8 1

9 9 3 8 1 1 8 8 8 8 1 8 8

9 9 4 8 1 1 8 8 8 8 1 8 8

9 9 5 8 1 1 8 8 8 8 1 8 8

9 9 7 1 1 1 8 8 8 8 1 8 8

9 9 8 1 1 1 8 8 8 8 1 8 8

9 9 9 8 1 1 8 8 8 8 1 8 8

9 9 9 8 1 1 8 8 8 8 1 8 8

9 9 9 8 1 1 8 8 8 8 1 8 8

9 9 9 1 1 1 8 8 8 8 1 8

9 9 9 1 1 1 8 9 8 8 1 8

9 9 9 8 1 1 8 9 9 8 1 8

9 9 9 8 1 1 8 8 9 8 1 8

9 9 9 8 1 1 8 8 9 8 1 8

9 9 9 1 1 1 8 8 9 8 1 8

9 9 9 1 1 1 8 9 8 8 1 8

9 9 9 8 1 1 8 9 8 8 1 8

9 9 9 8 1 1 8 8 8 8 1 8

9 9 9 8 1 1 8 8 9 8 1 8

9 9 9 1 1 1 8 9 9 8 1 8

9 9 9 1 1 1 8 9 8 8 1 8

9 9 9 8 1 1 8 9 8 8 1 8

9 9 9 8 1 1 8 9 8 8 1 8

9 9 9 2 1 1 8 9 8 8 1 8

9 9 9 1 1 1 8 9 8 8 1 8

9 9 9 1 1 1 8 9 8 8 1 8

9 8 9 8 1 1 8 9 8 8 1 8

5 2 9 8 1 1 8 9 8 8 1 8

1 1 9 2 1 1 8 9 8 8 1 8

1 1 9 1 1 1 8 9 8 8 1 8

1 1 9 1 1 1 8 9 9 9 1 8

1 9 8 1 1 8 9 9 9 1 8

9 8 1 1 8 9 8 8 1 8

9 1 1 1 8 9 8 8 1 8

9 1 1 1 8 9 8 8 1 8

9 1 1 1 8 9 8 9 1 8

9 8 1 1 8 9 8 9 1 8

9 8 1 1 8 8 8 8 1 8

9 1 1 1 8 8 9 8 1 8

9 1 1 1 8 8 9 8 1 8

9 1 1 1 8 8 8 8 1 8

9 8 1 1 8 9 8 9 1 8

9 8 1 1 8 9 8 9 1 8

9 1 1 1 8 8 8 8 1 8

9 1 1 1 8 8 8 8 1 8

9 1 1 1 8 8 8 8 1 8

9 8 1 1 9 8 8 9 1 8

9 8 1 1 9 9 8 9 1 8

9 1 1 1 8 9 9 8 1 8

9 1 16 16 8 8 9 8 1 8

9 1 16 16 8 8 8 9 1 8

0 
5 

10 
1_B 

0 
5 

10 
2_A 

0 
5 

10 
3_A 

0 
8 

16 
4_A 

0 
5 

10 
5_A 

0 
5 

10 
5_B 

0 
5 

10 
6_A 

0 
5 

10 
8_A 

0 
5 

10 
9_A 

0 
5 

10 
1_B 

0 
5 

10 
2_A 

0 
5 

10 
3_A 

0 
8 

16 
4_A 

0 
5 

10 
5_A 

0 
5 

10 
5_B 

0 
5 

10 
6_A 

0 
5 

10 
8_A 

0 
5 

10 
9_A 

Figure 12: Searching CITIES-LARGE: number of active
threads from the beginning of the program until its ter-
mination. Note that all the programs had a different run
time, the x-axis has a different scale for each program.

CITIES- Progr. I S I S I S

1_A 0.21 0.57 0.22 0.24 0.27 0.19

4_A 10.25 0.95 10.26 0.38 10.31 0.23

5_B 0.77 158.15 1.20 133.68 1.36 103.95

1_A 1.123 12.84 1.042 5.341 1.143 3.222

4_A 33.283 17.68 33.353 7.297 33.686 4.377

1_A 2.225 43.615 2.226 19.679 2.247 11.529

4_A 52.903 57.473 53.53 28.283 53.175 21.057
HUGE

LARGE

8 threads 24 threads 80 threads

MEDIUM

Figure 13: Search times for CITIES on System 2 [time
in seconds].

improve query answering times by pre-computation of more
sophisticated index structures.
In Figure 12, the number of active threads is shown over time
when searching CITIES-LARGE. The graphs of 1 A, 4 B,
5 C, and 5 D are not shown since they are very similar to
1 B, 4 A, 5 B, and 5 B, respectively. Most of the programs
start preprocessing with one thread and then increase the
number of threads for answering the queries. Program 3 A
is the only program which does not follow this pattern and
yields a kind of heart-beat curve (reason?). Load schedul-
ing of programs 1 B and 4 A can possibly be improved, since
these programs do not make use of the full number of avail-
able cores until the end. Program 4 A has a long single-
thread preprocessing phase; afterwards it makes use of 16
(!) threads, instead of only 8. The number of threads for
6 A is always one.
We have further evaluated the three top-performing pro-
grams on our second evaluation environment System 2 with
a different number of threads. In Figure 13, the results are
shown. The results are very similar to the results of READS:
Program 1 A and 4 A scale well from 8 to 24 threads and
quite good for 24 threads to 80 threads. Program 5 B does

8



Prog. TINY SMALL MEDIUM LARGE HUGE

1_A 0.5 1.1 1.6 4.4 9.6

1_B 0.5 0.6 1.8 4.6 9.9

3_A 2.0 8.3 200.3 1,836.1 15,531.2

4_A 2.5 29.8 288.5 870.0 2,258.0

4_B 2.0 23.8 234.5 709.9 1,764.5

5_A 19.5 1,813.8 - - -

5_B 2.5 3.3 5.2 9.5 30.8

5_C 2.5 3.3 4.7 9.2 30.9

5_D 2.5 4.0 5.1 9.2 30.6

9_A 0.5 1.2 7.0 9.1 328.7

READS k=0

Figure 14: Join times for READS and k=0 [time in
seconds].

Prog. TINY SMALL MEDIUM LARGE HUGE

1_A 0.5 9.8 1,028.3 11,283.9 82,636.5

1_B 0.5 26.0 2,941.0 33,055.5 -

3_A 26.0 1,732.3 - - -

4_A 33.1 362.8 4,048.4 25,823.9 149,344.1

4_B 32.5 361.7 - - -

5_A 19.8 2,217.3 - - -

5_B 4.1 50.8 4,200.9 - -

5_C 31.0 431.0 - - -

5_D 40.0 625.0 - - -

9_A 159.7 9,327.3 - - -

READS k=16

Figure 15: Join times for READS and k=16 [time in
seconds].

not scale as well as the other two (and was not tested for
CITIES-LARGE and CITIES-HUGE).

5. EVALUATING APPROXIMATE STRING
JOIN METHODS

In the following section we evaluate all submissions for Track 2:
approximate string join. We present results for READS
datasets first and then show the results for CITIES.

5.1 Similarity Join for READS
In Figure 14 and Figure 15, we show the join times for the
READS dataset, for k=0 (a) and k=16 (b), respectively.
For k=0, all programs have been tested for all datasets, ex-
cept from 5 A. Program 5 A already needs around 30 min-
utes to perform a join on READS-SMALL. The fastest pro-
grams need less than 10 seconds to perform a self-join on
READS-HUGE: 1 A and 1 B. For k=16, most programs
could only be tested until READS-SMALL. Two programs
were evaluated in READS-HUGE: Program 1 A needed 22.9
hours and Program 4 A needed 41.5 hours.
We report the join times for READS-HUGE and different
values for k in Figure 16. Programs 3 A and 9 A already
need more than 20 hours to perform a 4-approximate self-
join on READ-HUGE. The best performing method is im-
plemented in Program 1 A.
In Figure 17, the number of active threads is shown over
time when joining READS-MEDIUM with k=4. The graphs
of 1 A, 4 B, 5 C, and 5 D are not shown since they are
very similar to 1 B, 4 A, 5 B, and 5 B, respectively. The
overall join time for 1 B is only few seconds, so the graph is
not as stable as the other ones. For Program 4 A and 5 B
the preprocessing phase can be clearly identified (with only

Prog. k=0 k=4 k=8 k=12 k=16

1_A 0.2 1.0 3.7 84.4 1,377.3

1_B 0.2 0.9 8.9 231.0 -

3_A 258.8 5,760.0 - - -

4_A 37.6 41.3 81.2 220.8 2,489.1

4_B 29.4 31.4 75.7 214.1 -

5_A - - - - -

5_B 0.5 12.4 126.7 2,590.4 -

5_C 0.5 12.1 111.9 - -

5_D 0.5 12.3 74.9 - -

9_A 5.5 1,197.5 - - -

READS-HUGE (time in minutes!)

Figure 16: Join times for READS-HUGE and different
k [time in minutes].

GEONAMES

1_A 1_B 3_A 4_A 4_B 5_A 5_B 5_C 5_D 9_A

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 8 1 8 8 1

1 1 1 1 1 8 1 8 8 1

9 9 1 1 1 8 1 8 8 1

9 5 1 1 1 8 1 8 8 1

3 9 1 1 1 8 1 8 8 1

9 9 1 1 1 8 1 8 8 1

9 9 1 1 1 8 1 8 8 8

9 1 1 1 1 8 1 8 8 8

1 1 1 1 1 8 1 8 8 8

1 1 1 1 8 1 8 8 8

1 1 1 8 1 8 8 8

1 1 1 8 1 9 8 8

1 1 1 8 1 9 8 8

1 1 1 8 8 9 8 8

1 1 1 8 8 9 8 8

1 1 1 8 8 8 8 8

1 1 1 8 8 8 8 8

1 1 1 8 8 8 8 8

1 1 1 8 8 9 8 8

1 1 1 8 8 9 8 8

1 1 1 8 8 8 8 8

1 1 1 8 8 8 8 8

1 1 1 8 8 8 8 8

1 1 1 8 8 8 8 8

1 1 1 8 8 8 8 8

1 1 1 8 8 8 8 8

1 1 1 8 8 8 8 8

1 1 1 8 8 8 8 8

1 1 1 8 8 8 8 8

8 1 1 8 8 8 8 8

8 1 1 8 8 9 9 8

8 1 1 8 8 9 9 8

8 1 1 8 8 8 8 8

8 1 1 8 8 8 8 8

8 1 1 8 8 8 8 8

8 1 1 8 8 8 9 8

8 1 1 8 8 8 9 8

8 1 1 8 8 8 8 8

8 1 1 8 8 9 8 8

8 1 1 8 8 9 8 8

8 1 1 8 8 8 8 8

8 1 1 8 8 8 9 8

8 1 1 8 8 8 9 8

8 1 1 8 8 8 8 8

8 1 1 8 8 8 8 8

8 1 1 8 8 8 8 8

8 1 1 9 8 8 9 8

8 1 1 9 8 8 9 8

8 1 1 8 8 9 8 8

8 1 16 8 8 9 8 8

8 1 16 8 8 8 9 8

0 
5 

10 
1_B 

0 
5 

10 
3_A 

0 
8 

16 
4_A 

0 
5 

10 
5_B 

0 
5 

10 
9_A 

0 
5 

10 
1_B 

0 
5 

10 
3_A 

0 
8 

16 
4_A 

0 
5 

10 
5_B 

0 
5 

10 
9_A 

Figure 17: Joining READS-Medium with k=4: number
of active threads from the beginning of the program un-
til its termination. Note that all the programs had a
different run time, the x-axis has a different scale for
each program.

Threads Progr. k=0 k=4 k=8 k=12 k=16

1_A 1.22 8.51 16.22 87.95 1,000.14

4_A 460.37 470.45 633.01 1,724.68 6,077.06

5_B 3.04 80.29 213.45 3,538.78 10,230.97

1_A 1.23 6.76 10.76 33.96 381.07

4_A 460.26 462.56 576.99 869.19 2,354.78

5_B 5.63 55.41 162.01 3,679.70 9,808.58

1_A 1.22 6.64 9.57 23.61 335.73

4_A 469.87 460.93 486.23 645.42 1,318.72

5_B 3.76 52.55 188.61 3,437.48 5,157.10

8

24

80

READS-MEDIUM

Figure 18: Join times for READS-MEDIUM on Sys-
tem 2 [time in seconds].

one thread). Program 3 A yields again a kind of heart-beat
curve (reason?). Program 4 A makes use of 16 threads again
instead of only 8. Program 9 A uses 8 threads for most of
the time (only the first few seconds are run with only one
thread; hard to see because the overall join time is around
90 minutes).
We have further evaluated the three top-performing pro-
grams on our second evaluation environment System 2 with
a different number of threads. In Figure 18, the results are
shown. For all programs a higher number of threads reduces
the runtime. It is interesting to see that with an increasing
value of k, the effect is bigger than with small numbers. We
conjecture that the overhead of setting up the threads and
synchronization is dominating for smaller k.

5.2 Similarity Join for CITIES
Join times for the CITIES dataset and are reported in Fig-
ure 19 for k=0 and in Figure 20 k=4. Apart from Program
5 A, all programs finished to compute an exact self join on
all CITIES datasets. Program 1 A is the fastest program
in each case. Team 4’s programs are ranked second. Pro-

9



Prog. TINY SMALL MEDIUM LARGE HUGE

1_A 0.6 0.6 0.6 0.6 1.0

1_B 0.8 0.7 0.7 0.6 1.1

3_A 5.8 28.4 56.7 287.2 588.1

4_A 1.9 4.2 7.0 24.9 40.9

4_B 1.7 4.3 7.2 25.0 39.7

5_A 7.7 175.1 850.1 - -

5_B 4.7 4.6 4.5 6.7 11.3

5_C 4.6 4.7 4.8 6.3 11.3

5_D 4.9 4.8 4.8 6.2 11.4

8_A 1.0 0.6 0.9 1.4 3.3

9_A 0.7 1.0 0.6 3.4 10.9

CITIES k=0

Figure 19: Join times for CITIES and k=0 [time in sec-
onds].

Prog. TINY SMALL MEDIUM LARGE HUGE

1_A 0.7 3.0 10.5 117.0 345.5

1_B 0.9 3.0 11.0 119.5 353.0

3_A 6.5 31.0 68.5 577.0 1,700.0

4_A 2.0 17.0 54.0 807.0 945.0

4_B 2.5 17.0 57.5 810.0 942.0

5_A 10.4 205.5 982.5 - -

5_B 13.8 241.0 920.5 - -

5_C 15.0 226.5 926.0 - -

5_D 22.6 266.0 838.5 2,401.0 -

8_A 6.0 141.5 532.5 3,585.0 21,230.0

9_A 16.1 193.5 578.5 - -

CITIES k=4

Figure 20: Join times for CITIES and k=4 [time in sec-
onds].

Prog. k=0 k=1 k=2 k=3 k=4

1_A 1.0 1.9 6.1 50.1 345.5

1_B 1.1 1.8 6.8 53.8 353.0

3_A 588.1 564.1 655.8 847.6 1,700.0

4_A 40.9 45.5 81.2 440.6 945.0

4_B 39.7 42.2 78.8 418.3 942.0

5_B 11.3 78.3 1,719.2 - -

5_C 11.3 37.1 726.2 11,462.5 -

5_D 11.4 32.8 785.9 - -

8_A 3.3 21.2 218.2 3,339.2 21,230.0

9_A 10.9 28.9 198.7 1,912.9 -

CITIES-HUGE

Figure 21: Join times for CITIES-HUGE and different
k [time in seconds].

gram 3 A finishes third, which is quite remarkably for an
index-less approach.
The join times for CITIES-HUGE and different values of k
are reported in Figure 21. Program 1 A is the best for all
values of k, except for k=1, where it is outperformed slightly
by 1 B. We did not test the index-less approach 5 A.
We have further evaluated the three top-performing pro-
grams on our second evaluation environment System 2 with
a different number of threads. In Figure 22, the results are
shown. For all programs a higher number of threads reduces
the runtime. The results show a similar behaviour as when
joining READS: it seems that performing a join with a small
k usually is better with a small number of threads, while for
larger k it makes indeed sense to make use of parallelism.

Threads Progr. k=0 k=1 k=2 k=3 k=4

1_A 0.06 0.30 0.53 1.83 8.12

4_A 10.40 10.35 11.15 17.06 46.00

5_B 1.45 4.17 56.12 376.39 2,513.64

1_A 0.08 0.27 0.38 0.94 3.14

4_A 10.42 10.37 10.69 12.60 22.76

5_B 5.76 4.07 65.28 760.71 2,353.97

1_A 0.11 0.31 0.39 0.85 2.42

4_A 10.47 10.46 10.48 11.37 16.76

5_B 2.38 3.92 42.47 532.91 2,051.15

24

80

CITIES-MEDIUM

8

Figure 22: Join times for CITIES-MEDIUM on Sys-
tem 2 [time in seconds].

6. DISCUSSION
We compare the results of the competition to one standard
tool for approximate string matching: Flamingo 4.1 [3]. Un-
fortunately, Flamingo has only implemented approximate
search, no approximate join. We run Flamingo with the
standard configuration (filters as set by the GettingStarted-
example) and different length of q-grams. The results are
shown in Figure 23. Index and search times are consider-
ably longer than many of the competitors in our competi-
tion. However, note that Flamingo makes only use of one
thread and the memory footprint seems to be very small.
Possibly, performance of Flamingo can be further improved
by additional filters.
TODO: evaluation of Pearl; more discussion of the results
Based on our datasets and competing programs, we conclude
that a rough error rate of 20-25% pushes today’s techniques
to the limit. For instance, self-joining a set of 15.000.000
sequence reads of length 100 with an edit-distance threshold
k = 16 takes almost one day even for the best participant.
Although we have ranked programs based on search time,
we have also measured indexing time separately. We found
that indexing times vary a lot between implementations; in
addition many programs use only one thread for indexing.
One interesting direction of research is to investigate paral-
lelization of indexing algorithm. In our analyses it can be
seen as well that some index structures perform better with
a small size of an alphabet, while others are advantageous
with larger a size of an alphabet.
Future Work and Ideas:
• For Track 1, search times can be reduced by less queries.

Problem: no batch effect
• Further analyses:

– Increase k further (READS: 20,24)
– Use different similarity measure, e.g. length-depending

error rate
• Have a special track on small-memory index structures
• a special track with no indexing: online search
• Avoid serialization of GB of results

10



Prog. Index Search Index Search Index Search Index Search Index Search

Flamingo |q|=2 0.0 0.2 0.1 4.7 0.2 26.6 1.2 704.7 - -

Flamingo |q|=3 0.0 0.2 0.2 7.6 0.4 42.8 1.9 1,200.9 - -

Flamingo |q|=4 0.0 0.4 0.2 9.7 0.5 55.4 - - - -

Prog. Index Search Index Search Index Search Index Search Index Search

Flamingo |q|=5 0.2 0.5 2.1 45.9 - - - - - -

Flamingo |q|=6 0.2 0.5 2.3 44.1 36.8 6,052.2 - - - -

Flamingo |q|=7 0.3 2.9 3.0 443.7 - - - - - -

CITIES-TINY CITIES-SMALL CITIES-MEDIUM CITIES-LARGE CITIES-HUGE

READS-TINY READS-SMALL READS-MEDIUM READS-LARGE READS-HUGE

Figure 23: Indexing and Search times for Flamingo [time in seconds].

7. ADDITIONAL AUTHORS

8. REFERENCES
[1] A. Arora, S. Mishra, T. Gandhi, and A. Bhattacharya.

Efficient edit distance based string similarity search

using deletion neighborhoods. In Wandelt and

Leser [34].

[2] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all

pairs similarity search. In Proceedings of the 16th

international conference on World Wide Web, WWW

’07, pages 131–140, New York, NY, USA, 2007. ACM.

[3] A. Behm, R. Vernica, S. Alsubaiee, S. Ji, J. Lu, L. Jin,

Y. Lu, and C. Li. UCI Flamingo Package 4.1, 2010.

[4] M. Crochemore, C. S. Iliopoulos, Y. J. Pinzon, and

J. F. Reid. A fast and practical bit-vector algorithm

for the Longest Common Subsequence problem.

Information Processing Letters, 80(6), Dec. 2001.

[5] D. Dey, S. Sarkar, and P. De. A distance-based

approach to entity reconciliation in heterogeneous

databases. IEEE Trans. Knowl. Data Eng.,

14(3):567–582, 2002.

[6] J. Fischer, V. Mäkinen, and G. Navarro. An(other)

entropy-bounded compressed suffix tree. In

Proceedings 19th Annual Symposium on Combinatorial

Pattern Matching (CPM), LNCS 5029, pages 152–165,

2008.

[7] X. Ge and P. Smyth. Deformable markov model

templates for time-series pattern matching. In

Proceedings of SIGKDD, pages 81–90, New York, NY,

USA, 2000. ACM.

[8] S. Gerdjikov, S. Mihov, P. Mitankin, and K. U.

Schulz. Wallbreaker - overcoming the wall effect in

similarity search. In Wandelt and Leser [34].

[9] S. Gerdjikov, S. Mihov, P. Mitankin, K. U. Schulz,

and K. U. Schulz. Good parts first - a new algorithm

for approximate search in lexica and string databases.

2013.

[10] L. Gravano, P. G. Ipeirotis, H. V. Jagadish,

N. Koudas, S. Muthukrishnan, and D. Srivastava.

Approximate string joins in a database (almost) for

free. In Proceedings of the 27th International

Conference on Very Large Data Bases, VLDB ’01,

pages 491–500, San Francisco, CA, USA, 2001.

Morgan Kaufmann Publishers Inc.

[11] J. Hentschel, T. Meyer, and T. Rommel. Trying to

outperform well-known indices with a sequential scan.

In Wandelt and Leser [34].

[12] M. Henzinger. Finding near-duplicate web pages: a

large-scale evaluation of algorithms. In Proceedings of

the 29th annual international ACM SIGIR conference

on Research and development in information retrieval,

SIGIR ’06, pages 284–291, New York, NY, USA, 2006.

ACM.

[13] H. Hyyrö, K. Fredriksson, and G. Navarro. Increased

bit-parallelism for approximate and multiple string

matching. ACM Journal of Experimental

Algorithmics, 10, 2005.

[14] Y. Jiang, D. Deng, J. Wang, G. Li, and J. Feng.

Efficient parallel partition-based algorithms for

similarity search and join with edit distance

constraints. In Wandelt and Leser [34].

[15] G. Li, D. Deng, J. Wang, and J. Feng. Pass-join: A

partition-based method for similarity joins. PVLDB,

5(3):253–264, 2011.

[16] H. Li and R. Durbin. Fast and accurate short read

alignment with burrows-wheeler transform.

Bioinformatics (Oxford, England), 25(14):1754–1760,

2009.

[17] Y. Li, A. Terrell, and J. M. Patel. Wham: a

high-throughput sequence alignment method. In

Proceedings of the ACM SIGMOD International

Conference on Management of Data, Athens, Greece,

June 12-16,, pages 445–456. ACM, 2011.

[18] U. Manber and E. W. Myers. Suffix arrays: A new

method for on-line string searches. SIAM J. Comput.,

22(5):935–948, 1993.

[19] P. Mitankin, S. Mihov, and K. U. Schulz. Deciding

word neighborhood with universal neighborhood

automata. Theor. Comput. Sci., 412(22):2340–2355,

2011.

[20] I. Moraru and D. G. Andersen. Exact pattern

matching with feed-forward bloom filters. J. Exp.

Algorithmics, 17(1):3.4:3.1–3.4:3.18, Sept. 2012.

[21] G. Myers. A fast bit-vector algorithm for approximate

11



string matching based on dynamic programming. J.

ACM, 46(3):395–415, 1999.

[22] G. Navarro and R. Baeza-Yates. A hybrid indexing

method for approximate string matching. Journal of

Discrete Algorithms, 1(1):205–239, 2000.

[23] M. Patil, X. Cai, S. V. Thankachan, R. Shah,

D. Foltz, and S.-J. Park. Approximate string matching

by position restricted alignment. In Wandelt and

Leser [34].

[24] J. Qin, X. Zhou, W. Wang, and C. Xiao. Efficient

algorithms for edit similarity queries. In Wandelt and

Leser [34].

[25] A. Rheinländer, M. Knobloch, N. Hochmuth, and

U. Leser. Prefix tree indexing for similarity search and

similarity joins on genomic data. In Proceedings of the

22nd SSDBM, pages 519–536, Berlin, Heidelberg,

2010. Springer-Verlag.

[26] S. Sarawagi and A. Kirpal. Efficient set joins on

similarity predicates. In Proceedings of the 2004 ACM

SIGMOD international conference on Management of

data, SIGMOD ’04, pages 743–754, New York, NY,

USA, 2004. ACM.

[27] E. Siragusa, D. Weese, and K. Reinert. Fast and

accurate read mapping with approximate seeds and

multiple backtracking. Nucleic acids research, Jan.

2013.

[28] E. Siragusa, D. Weese, and K. Reinert. Scalable string

similarity search / join with approximate seeds and

multiple backtracking. In Wandelt and Leser [34].

[29] A. B. sorting Lossless, M. Burrows, M. Burrows,

D. Wheeler, and D. J. Wheeler. A block-sorting

lossless data compression algorithm. Technical report,

Digital SRC Research Report, 1994.

[30] E. Sutinen and J. Tarhio. On using q-gram locations

in approximate string matching. In Proceedings of the

Third Annual European Symposium on Algorithms,

ESA ’95, pages 327–340, London, UK, UK, 1995.

Springer-Verlag.

[31] B. S. T. Bocek, E. Hunt. Fast Similarity Search in

Large Dictionaries. Technical Report ifi-2007.02,

Department of Informatics, University of Zurich, April

2007. http://fastss.csg.uzh.ch/.

[32] A. Tiskin. Semi-local longest common subsequences in

subquadratic time. J. Discrete Algorithms,

6(4):570–581, 2008.

[33] A. Tiskin. Efficient high-similarity string comparison:

The waterfall algorithm. In Wandelt and Leser [34].

[34] S. Wandelt and U. Leser, editors. Proceedings of the

First International Competition on Scalable String

Similarity Search and Join (S4), Joint EDBT/ICDT

Workshops, Genoa, Italy. ACM, 2013.

[35] G. Wang, B. Wang, X. Yang, and G. Yu. Efficiently

indexing large sparse graphs for similarity search.

IEEE Trans. Knowl. Data Eng., 24(3):440–451, 2012.
[36] J. Wang, X. Yang, and B. Wang. Cache-aware parallel

approximate string search and join using bwt. In

Wandelt and Leser [34].

[37] W. Wang, C. Xiao, X. Lin, and C. Zhang. Efficient

approximate entity extraction with edit distance

constraints. In Proceedings of the ACM SIGMOD

International Conference on Management of data,

pages 759–770, New York, NY, USA, 2009. ACM.

[38] C. Xiao, J. Qin, W. Wang, Y. Ishikawa, K. Tsuda,

and K. Sadakane. Efficient error-tolerant query

autocompletion. PVLDB, 2013.

[39] C. Xiao, W. Wang, and X. Lin. Ed-join: an efficient

algorithm for similarity joins with edit distance

constraints. PVLDB, 1(1):933–944, 2008.

[40] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang.

Efficient similarity joins for near-duplicate detection.

ACM Trans. Database Syst., 36(3):15, 2011.

12


