Efficient High-Similarity String Comparison:
The Waterfall Algorithm

(Extended Abstract)

Alexander Tiskin
DIMAP and Department of Computer Science
University of Warwick
Coventry CV4 7AL, United Kingdom

ABSTRACT

This paper outlines the design of a bit-parallel, multi-string
algorithm for high-similarity string comparison. We present
it in the framework for the longest common subsequence
(LCS) problem developed by the author in [31]. The algo-
rithm is based on a bit-parallel LCS algorithm by Crochemore
et al. [14].

1. LCS AND ALIGNMENT DAG

A classical approach to string comparison is based on the
following numerical measure of string similarity.

Definition 1. Given strings a, b, the longest common sub-
sequence (LCS) problem asks for the length of the longest
string that is a subsequence of both a and b. We will call
this length the LCS score of strings a, b, and denote it by
les(a,b).

Example. Let a = "BAABCBCA", b = "“BAABCABCABACA".
(This example, borrowed from Alves et al. [6], will serve as
a running example for this chapter.) String b of length 13
contains the whole string a of length 8 as a subsequence,
therefore we have

les(a,b) =8

The best known algorithms for the LCS problem run within
(model-dependent) polylogarithmic factors of O(mn).

A standard method for the LCS problem represents a
problem instance by a dag (directed acyclic graph) on a
rectangular grid of nodes, where every edge is assigned a
score of either 0 or 1.

Example. Figure 1 shows the alignment dag for strings
a = "BAABCBCA”, b = “BAABCABCABACA". All edges are
directed left-to-right and top-to-bottom. The diagonal edges
of score 0 are not shown. The colour of the remaining edges
indicates their scores: blue (respectively, red) corresponds
to edge score 0 (respectively, 1).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Joint EDBT/ICDT 2013 workshops, March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1599-9/13/03 ...$15.00.

Figure 1: Alignment dag G, and a highest-scoring
path

2. THE BLOW-UP TECHNIQUE

The concept of LCS score is generalised by that of (weighted)
alignment score (see e.g. [20]). An alignment of strings a, b is
obtained by putting a subsequence of a into one-to-one cor-
respondence with a (not necessarily identical) subsequence
of b, character by character and respecting the index order.
The corresponding pair of characters, one from a and the
other from b, are said to be aligned. A character that is not
aligned against a character of another string is said to be
aligned against a gap in that string. Each of the resulting
character alignments is given a real weight:

e a pair of aligned matching characters has weight wy, >
0;

e a pair of aligned mismatching characters has weight
wx < Wi

e a gap-character or character-gap pair has weight wg <
%wx; it is normally assumed that wg < 0 (i.e. this
weight is in fact a penalty).

The intuition behind the weight inequalities is as follows:
aligning a matching pair of characters is always better than
aligning a mismatching pair of characters, which in its turn is
never worse than leaving both characters unaligned (aligned
against a gap).

Definition 2. The (weighted) alignment score for strings a,
b is the maximum total weight across all possible alignments
of a against b.

Example. The LCS alignment score is given by

wy = 1 wx =wg =0

A slightly more sophisticated alignment score, intended to
penalise gaps in DNA sequence alignment, is given by

wy =1 wx =0 we = —0.5

Another alignment score used for DNA sequence comparison
[12, Section 1.3] is given by

H)NIZQ wWx =—1 U)G:—].5

The concept of alignment dag can be naturally generalised
to the weighted case. To distinguish between the weighted
and unweighted cases, we will use a script font in the corre-
sponding notation.

The weighted alignment of strings a, b corresponds to a
weighted alignment dag G, where diagonal match edges,
diagonal mismatch edges, and horizontal /vertical edges have
weight wys, wx, we, respectively.

Given an arbitrary set of alignment weights, it is often con-
venient to normalise them so that 0 = weg < wx < wy = 1.
To obtain such a normalisation, first observe that, given a
pair of strings a, b, and arbitrary weights war > 0, wx < war,
we < %wx, we can replace the weights respectively by
wy + 2z, wx + 2z, we + x, for any real x. This weight
transformation increases the score of every global alignment
(top-left to bottom-right) path in Ga by (m +n)z. There-
fore, the relative scores of different global alignment paths
do not change. In particular, the maximum global alignment
score is attained by the same path as before the transforma-
tion. By taking x = —w¢, and dividing the resulting weights
by wa —2we > 0, we achieve the desired normalisation. (A
similar method is used by Rice et al. [28]; see also [15, 21].)

Definition 3. Given original weights wa, wx, wa, the cor-
responding normalised weights are wy, = 1, wy = %,
wg = 0. We call the corresponding alignment score the nor-
malised score. The original alignment score h can be restored
from the normalised score h™ by reversing the normalisation:

h="h"(wn —2we) + (M +n) - we.

Example. In Example 2, the LCS score is already nor-
malised. The other two scores give the normalised scores

with weights wy, = 1, wk = % = 0.5 (respectively,

Y= S = 0.4), and wi =0.

g

Definition 4. A set of character alignment weights will be
called rational, if all the weights are rational numbers.

Given a rational set of normalised weights, the alignment
score problem on strings a, b can be reduced to the LCS
problem by the following blow-up procedure. Let wx = & <
1, where p, v are positive natural numbers. We transform
input strings a, b of lengths m, n into new blown-up strings
a, b of lengths m = vm, . = vn. The transformation con-
sists in replacing every character - in each of the strings by
a substring $"7” 7" of length v (here, $ is a special guard
character, not present in the original strings).

Example. Figure 2 shows semi-local weighted alignment of
strings a, b. We assume the normalised alignment weights
wy =1, wx = 0.5, wg = 0.

Subfigure 2a shows the alignment dag G, . Match edges
of weight wy = 1 and mismatch edges of weight wy =

(a) Weighted alignment dag Gq

$B $A $A SBSCSASBSCSASBSA $C A
$B\\ N \\s\ \\ NNNNN
$AN \\\ \\\ N \\ \\ \
NN NS
$B\\\\\\ \\\\\\
$scNN NN \\ NNV NN NN
$B\\ N \\ N \\ \s\\ NN
O N NN NNN \\Q\\\

sAN NNN N NNNRK \\ N\

b) Alignment dag G ; for the blown-up strings
g g Gap g

Figure 2: The blow-up technique

0.5 are shown respectively by solid and dotted red lines. |
Subfigure 2b shows the alignment dag G j for the blown-up

strings a, 5, where v = 2.

An important special case of weighted string alignment
is the edit distance problem. Here, the characters are as-
sumed to match “by default”: wy = 0. The mismatches
and gaps are penalised: 2ws < wx < 0. The resulting score
is always nonpositive. Equivalently, we regard string a as
being transformed into string b by a sequence of weighted
character edits:

e character insertion or deletion (indel) has weight —wq >
0;

e character substitution has weight —wx > 0.

Definition 5. The (weighted) edit distance between strings
a, b is the minimum total weight of a sequence of character
edits transforming a into b. Equivalently, it is the (non-
negative) absolute value of the corresponding (nonpositive)
alignment score.

The edit distance is a metric: it is nonnegative (zero on
equal strings and positive otherwise), symmetric, and satis-
fies the triangle inequality.

Example. The indel distance (also called the LCS distance
or simple distance) [26, 9, 11] has indel weight 1 and sub-
stitution weight 2, making a substitution equivalent to an
insertion-deletion pair, and thus redundant. The correspond-
ing indel alignment score is given by

wy =0 wx = —2 we = —1

The indelsub distance (also called the Levenshtein distance)
[23] has both indel weight and substitution weight equal to
1. The corresponding indelsub alignment score is given by

'LU]W:O wX:wG:—l

3. LCS COMPUTATION AS A TRANSPO-
SITION NETWORK

Comparison networks were first considered as a computa-
tion model by Batcher [10] (see also [13, 4]).

Definition 6. A circuit represents a computation as a dag
(directed acyclic graph). The internal nodes of a circuit are
labeled by elementary operations on values, which are passed
along the edges; source and sink nodes represent the inputs
and outputs, respectively. A comparator node (or simply
comparator) is a node of indegree and outdegree 2, which
sorts its two operands in increasing order. In other words,
a comparator node compares the operands on the incoming
edges, and returns each of the minimum and the maximum
operand on a prescribed outgoing edge. A comparison net-
work s a circuit where all internal nodes are comparator
nodes.

The most well-studied types of comparison networks are
the ones that either sort their inputs, or merge two disjoint
subsets of inputs. In particular, Batcher [10] gave classical
merging networks with O(nlogn) comparators, and sort-
ing networks with O(nlog®n) comparators. Ajtai et al.
[2, 3] gave an asymptotically optimal sorting network with
O(nlogn) comparators; their construction was subsequently
simplified by Paterson [27] and by Seiferas [30].

Comparison networks are usually visualised by wire dia-
grams (also known as Knuth diagrams), where the values
propagate across the network along a set of parallel wires.
Every comparator is represented by a directed line segment,
drawn orthogonally between two (not necessarily adjacent)
wires. The order in which a comparator returns the mini-
mum and the maximum output is consistent across all the
comparators in the network. The most common convention
on wire diagrams (adopted e.g. by Knuth [22]) is to draw
the wires horizontally, directed from left to right; sometimes
(e.g. in [27]), they are drawn vertically, directed from top
to bottom. In our setting, it will be convenient to draw
the wires diagonally, directed from top-left to bottom-right.
Comparator segments will be directed so that the minimum
output is returned on the bottom-left, and the maximum on
the top-right.

We will be dealing exclusively with the following restricted
type of comparison network.

Definition 7. A comparison network is called a transposi-
tion network, if in its wire diagram, all the comparisons are
between adjacent wires.

Every alignment dag can be associated with a transposi-
tion network.

Example. Figure 3 illustrates the transposition network for
an alignment dag on strings a = "ACBC", b = “"ABCA”". Sub-
figure 3a shows the alignment dag G, . Following our usual
colour conventions, the diagonal edges of weight 1 are shown
in red, and the diagonal edges of weight 0 are omitted. Sub-
figure 3a also shows the reduced seaweed braid laid over

braid

(b) Corresponding transposition
network

Figure 3: An alignment dag and its transposition
network

the alignment dag G, (see [31] for an introduction to sea-
weed braids). Subfigure 3b shows in black the corresponding
transposition network, laid diagonally over G4,5. A cell con-
tains a comparator, if and only if it does not contain a red
diagonal edge.

Let us denote the input and output arrays of a transpo-
sition network N(Gap) by z(—m : n) and y(0 : m + n),
respectively. Assuming all input values of the network are
distinct, each value traces a well-defined path through the
network. We write m(2) = j, if the input x(7) ends up as the
output y(7).

Although a transposition network N (G,) is in general
neither merging nor sorting, it is useful to consider its op-
eration on certain kinds of input. In particular, we consider
anti-sorted binary input: a sequence of ones, followed by a
sequence of zeros. It turns out that the output of such a
network can be used to obtain the LCS score of the input
strings.

Theorem 1. Consider an alignment dag Gq,» and the corre-
sponding semi-local seaweed matrix P, . Let the transposi-
tion network N'(Ga,b) operate on an anti-sorted input array
z(—m : n), consisting of m 1-values and n 0-values:

(i) = 1 ifie{—m:0)
W=N0 ifie(0:n)

Let y{0 : m + n) be the output array of N(Gayp). Then we

(a) Alignment dag with a parti-
tioned seaweed braid

(b) Corresponding transposition
network with binary input

Figure 4: LCS computation by a transposition net-
work

have

les(a,b) = Zj€<0:n> y(j) =m— Zje(n;m+n) y(9)

Example. Figure 4 illustrates Theorem 1 on the same pair
of strings as Figure 3. The seaweeds originating at the top
(respectively, the left-hand side) of the dag are shown by
solid (respectively, dotted) lines. Subfigure 4b shows the
transposition network of Subfigure 3b, laid over the align-
ment dag Gq,. The network is given an anti-sorted binary
input. The path of each 0-value (respectively, 1-value) cor-
responds to a solid (respectively, dotted) seaweed. We have

les(a,b) = 255(0;4> y(j) =3
les(a,b) =4 =3 5 y()) =4—-1=3

as claimed by Theorem 1.

4. PARAMETERISED LCS

An algorithm’s complexity is most commonly defined to
be a function of a single argument: the input size. However,
in the pursuit of efficiency, algorithms may also be designed
to be sensitive to various other parameters of the input.
In the context of string comparison, the two most relevant
parameters are:

e the input strings’ alignment score; we consider primar-
ily the LCS score A = les(a, b);

e the input strings’ edit distance; we consider primarily
the LCS distance k = distrcs(a,b) = m+mn — 2.

In this section, we study algorithms for the LCS problem
that are sensitive to these parameters. We consider low-
stmilarity and high-similarity LCS algorithms. The running
times of such algorithms are parameterised respectively by
A and k, so that advantage can be taken of the low value of a
parameter. More generally, one can also use weighted align-
ment scores or weighted edit distances (e.g. the Levenshtein
distance) as parameters.

As we aim for algorithms that, for a low value of the pa-
rameter, run substantially faster than ©(mn), we cannot
afford to perform all the mn pairwise comparisons of char-
acters from each string. We assume a character comparison
model that allows comparison outcomes “equal”, “less than”
and “greater than”, so that the “missing” comparisons can be
obtained by transitivity, and algorithms with running time
o(mn) become possible.

For simplicity, we ignore the trivial cases A = 0 (the two
input strings have no characters in common) and x = 0 (the
two input strings are identical). As usual, we denote the
alphabet size by o. Without loss of generality, we assume
m < n.

Low-similarity comparison (sensitive to low \).

In this type of comparison, the overall number of match-
ing character pairs will be low. To locate these matching
pairs effectively, the input strings a and b are preprocessed
into a data structure that allows efficient queries defined by
the string identification problem [1, 17, 29]. The preprocess-
ing builds a binary search tree on each input string, and
returns a partitioning of both a and b into character equal-
ity classes. This preprocesing procedure runs in time m log o
(respectively, nlogo).

After the preprocessing, the low-similarity LCS problem
can be solved by one of the algorithms due to Hirschberg [16],
Hsu and Du [17] (see also Apostolico [7]), Apostolico and
Guerra [9]. All these algorithms run in time O(n\). Apos-
tolico, Browne and Guerra [8] proposed another algorithm
that requires no preprocessing, and runs in time O(n\log o)
and linear space.

High-similarity comparison (sensitive to low k).

In this type of comparison, the overall number of matching
character pairs may be as high as mn. However, an efficient
high-similarity LCS algorithm may not need to look at all
these matches; speaking informally, a good algorithm “will
know where to look for relevant matches”. In fact, it is
sufficient to consider O(n - k) character matches overall. In
contrast to low-similarity comparison, there is no need for
preprocessing the input strings.

Efficient high-similarity LCS algorithms have been given
by Ukkonen [32], Myers [24], Wu et al. [33]. All these algo-
rithms run in time O(n - k). Apostolico, Browne and Guerra
[8] proposed another algorithm that runs in time O(n - k)
and linear space.

Flexible comparison (sensitive to both low X and low
%).

This type of comparison can be achieved by preprocess-
ing the input string as for low-similarity comparison, and
then running both comparison types alongside each other.

1 0
1 1
1 0
1 \ 1
1 \ 1
1 | o
1 \ 1
1 1

0o 0 1 1 0 0 1 O

(a) Low-similarity

0O 0 0 0 0 0 0 O
1 0
1 AN AN 0
1 AN N 0
1 0
1 \ 1
1 1
1 1
1 0

11 1 0 1 1 0 O
(b) High-similarity

Figure 5: The waterfall algorithm

However, dedicated flexible comparison algorithms have also
been proposed. In particular, the flexible LCS algorithm by
Hirschberg [16] runs in time O(Axlogn), and one by Rick
[29] in time O(Ak) and linear space.

We now describe an algorithm based on the comparison
network method. The algorithm is sensitive to both parame-
ters A and k, providing flexible LCS computation efficient in
both the low- and the high-similarity case. Our algorithm
matches existing flexible-LCS algorithms in running time.
We call it the waterfall algorithm. For a formal description
of the algorithm, see [31].

The name “waterfall algorithm” is justified by the follow-
ing interpretation. Let us think of the O-values as a vis-
cous, non-compressible “discrete liquid” that flows through
the alignment dag under gravity. The blocks of adjacent 0-
values correspond to “jets” in this “liquid”; these “jets” may
split or merge while flowing through the dag. Initially, there
is just a single “jet” flowing vertically down through the top
boundary of the dag. The diagonal match edges form bar-
riers for the “liquid”: whenever such a barrier is hit from
above by a “jet”, the “jet” splits into two, and the right
“subjet” gets displaced by one unit, following the inclination
of the barrier. After the displacement, the right “subjet”
may touch another “jet” to its right, in which case the two
touching “jets” merge into one. The amount of “liquid” that
flows out of the dag at its right-hand side (respectively, its
bottom) corresponds to the LCS score A (respectively, the
LCS distance p) of the input strings.

Example. Figure 5 illustrates two separate runs of the wa-
terfall algorithm:

e Subfigure 5a shows the low-similarity case, with input
strings a = "ABCBDABE", b = “FFDBCFAC",

e Subfigure 5b shows the high-similarity case, with input
strings a = "AAABABCA”, b = “ABADCADB".

Following our usual convention, the diagonal edges in match
cells are shown in red. The rest of the alignment dag, as well
as the input strings, are kept implicit. The anti-sorted input
to the transposition network is represented by the sequences
of red 1-values and blue O-values along the left (respectively,
the top) boundary of the alignment dag.

The iterative procedure of block splitting and merging is
shown by filling in the interior of the alignment dag with
blue and white pattern as follows. Every horizontal edge
in the alignment dag corresponds to a blue (respectively,
white) streak in the pattern, whenever that edge is crossed
by an (implicit) wire carrying a 0- (respectively, 1-) value.
Therefore, for each row index [in the dag, the correspond-
ing sequence of blocks and gaps is represented by a sequence
of continuous blue and white streaks in a horizontal line at
level I. The transition of block sequences between every pair
of successive rows is shown by connecting the corresponding
pairs of blue streaks with a blue strip. For the vertical (re-
spectively, diagonal) transition of a single 0-value, the con-
necting strip has the shape of a unit square (respectively,
unit-width parallelogram).

The output of the transposition network is represented by
the mixed sequence of red 1-values and blue 0-values along
the bottom and right boundaries of the alignment dag. Each
output 0-value is also shown by a blue tab. By Theorem 1,
we have

les(a,b) = ng(o;g) y(j) =3=8- 256(4:8) y(j) =8 —
les(a,b) = Zje(o;s) y(j)) =5=8— ng(4;8) y(j) = 8-

in Subfigures 5a and 5b, respectively.

Just as the splitting/merging procedure in the waterfall
algorithm is not symmetric with respect to blocks and gaps,
so the pattern in Figure 5 is not symmetric either with re-
spect to horizontal and vertical directions, or with respect to
0- and 1-values. For this reason, while the blocks are repre-
sented by the usual blue colour, the gaps are left uncoloured
(i.e. are represented by the “background” white). The red
colour, which we would normally use to represent 1-values,
is not present in the pattern.

Parameterised LCS algorithms are closely related to thresh-
old LCS algorithms. Here, a threshold value for the param-
eter A or k is given, and the algorithm is required to output
the LCS score of the input strings, as long as this value is
below the threshold, or to report “excess”, if the LCS score
(respectively, LCS distance) exceeds the threshold; in the
latter case, there is no requirement for the score to be output
explicitly. In general, a threshold algorithm can be obtained
from a parameterised algorithm by setting an appropriate
time-out threshold as a function of the parameter threshold,
and reporting “excess”, if the algorithm’s running time ex-
ceeds the time-out threshold. Alternatively, a threshold LCS
algorithm can be obtained from the waterfall algorithm by
reporting “excess”, if the current number of blocks exceeds
the threshold value for A (respectively,).

(a) Binary transposition
network cell

s 0 1T 0 1 0 1 0 1
clo o 1 1 0 0 1 1
wlo o 0o o 1 1 1 1
s lo 1 1 0 0 1 1
¢ o 0 o 1 0o 1 0 1

(b) Corresponding truth table

L c
A |

s + <
|
C/

(¢) Boolean circuit for
2d +s s+ (sAhp)+c

s Jo 1T 0 1 0 1 0 1
c|lo o 1 1 0 o0 1 1
wlo o 0o o 1 1 1 1
s{o 1 1 [o] o 0o 1 1
¢ o 0 o 1 0o 1 0 1

(d) Corresponding truth table

Figure 6: Binary transposition network via a
Boolean circuit

5. BIT-PARALLEL LCS

The most efficient practical method for computing the
(global) LCS score for a pair of strings is by bit-parallel algo-
rithms. These algorithms take advantage of bitwise Boolean
operations on bit vectors available in modern processors, of-
ten in combination with arithmetic operations on the same
vectors as integers. We denote by w the word (standard bit
vector) length; in modern general-purpose processors, word
length is often w = 64.

Early bit-parallel string comparison algorithms were given
by Allison and Dix [5] and by Myers [25]. Crochemore at al.
[14] proposed an efficient bit-parallel LCS algorithm, run-
ning in time O(mn/w). For every w cells of the align-
ment dag G b, the algorithm only performs five elementary
operations (one arithmetic and four Boolean). Hyyré [18]
improved this to four operations (two arithmetic and two
Boolean).

Both algorithms [14, 18] can be viewed as an implemen-
tation of a binary transposition network, described in Sec-
tion 3, by standard bit-parallel processor instructions. Fig-
ure 6 shows the main idea of such an implementation for the
algorithm of [14]. Consider a cell in a binary transposition
network, and let us denote its input bits by s, ¢, and its out-
put bits by s’, ¢, as shown in Subfigure 6a. Let us denote by
4 an extra input bit, which takes value 1 if and only if the
current dag cell is a match cell. The operation of a network
cell is fully described by the truth table in Subfigure 6b.

Now consider a Boolean circuit shown in Subfigure 6c.
The circuit consists of an A-gate and a full adder element,
which adds its three input bits arithmetically, and returns
the sum as two separate output bits. Let us again denote
the input bits by s, ¢, u, and the output bits by s’, ¢’. Then,
the circuit computes a Boolean-arithmetic expression

2 + 5 s+ (sAp)+ec

The operation of such a circuit is fully described by the truth
table in Subfigure 6d.

Note that the truth tables in Subfigures 6b and 6d differ in
just the one highlighted bit. This difference can be corrected
by two extra Boolean operations, resulting in a Boolean-
arithmetic expression that fully implements the operation
of a single transposition network cell:

2¢ + 5" (s+ (sAp)+c)V(sA-p) (1)

Now consider a row of n cells in the alignment dag Gq,s,
assuming for the moment n < w. Let S denote a word vari-
able that will hold the input s, and then the output s’, for
each cell, least significant bit first. Likewise, let M denote
a word constant that holds the match parameter u for each
cell, least significant bit first. (The input ¢ and output ¢’ will
not be represented explicitly, but will instead correspond to
a propagating carry bit in word integer addition, from the
least significant bit all the way to the most significant bit.)
The operation of the transposition network A (Gg) in the
given row of cells corresponds to evaluating an expression

S+ (S+(SAM))V(SA-M) (2)

which is obtained from (1) by identifying the output ¢’ of
each cell with the input ¢ of the next cell in the row. Here,
the Boolean operations are bitwise, and the addition is on
integers represented by the words. Note that for an exact
correspondence with (2), the roles of 0-values and 1-values in
the waterfall algorithm must be exchanged (or, alternatively,
the cells must be composed into words by columns, rather
than by rows).

If n > w, then each row of the alignment dag is partitioned
into [n/w] words of length w. In this case, expression (2)
needs to be modified to allow carry propagation from each
word to the next word in its row.

The described bit-parallel approach can be extended to
provide even more efficient string comparison in the case of
highly similar strings. We consider the threshold version of
the high-similarity LCS problem, as described in Section 4.
Let k denote a threshold on distzcs(a,b), i.e. the LCS dis-
tance between the input strings a, b. We assume for simplic-
ity that the value k is odd, and that m = n. Under these
assumptions, a highest-scoring path in the alignment dag
Ga,p must lie strictly within a symmetric diagonal band of
width k41, unless distcs(a, b) exceeds k. Hence, the water-
fall algorithm can be modified as follows. First, we ignore all
character matches outside the band, as well as on the band’s
lower-left and upper-right boundaries. We also ignore all the
(explicit) input O-values and all the (implicit) input 1-values
outside the band; therefore, we only have 1 (explicit) in-
put 0-values at the top of the band, and % (implicit) input
1-values at the left-hand side of the band. Finally, we create
artificial separator matches along the bottom-left boundary
of the band. The LCS score lcs(a,b) can be obtained by
counting the output 0-values at the bottom of the band (or,
symmetrically, the output 1-values at the right-hand side of

Figure 7: High-similarity bit-parallel waterfall algo-
rithm

the band). The algorithm reports “exceed”, if all the input 0-
values are output at the bottom of the band. The algorithm
runs in time O(mk/w).

Figure 7 shows a run of the resulting high-similarity bit-
parallel waterfall algorithm, for x = 3. The visual conven-
tions are similar to those in Figures 5a, 5b. Note that the
band is of width x + 1 = 4, and that there are "‘T'*'l = 2 in-
put O-values at the band’s top. Both these values end up as
output O-values at the band’s bottom, hence the algorithm
returns “exceed” in the given run.

The described algorithm is particularly easy to implement
when the bandwidth m 4+ 1 < w — 1. In such a case, every
row of the band fits into a single word. The bit-parallel
five- (respectively, four-) instruction sequence of either of
[14, 18] can be used; the only modification required is an
extra shift instruction in each row, to account for the band
right-shifting by 1 when moving to the next row.

Still further optimisation is possible in the case of multi-
string comparison. This type of comparison has been consid-
ered e.g. by by Hyyré et al. [19]. Here, we asked to compute
the LCS score for string a against each of the r strings bo,

.., by—1, all of length n. We assume that we are given a
single threshold s on all distrcs(a,bs), 0 < s < r. As be-
fore, we assume for simplicity that the value k is odd, and
that m = n. The problem can be solved by r independent
runs of the high-similarity bit-parallel waterfall algorithm.
However, it is possible to combine these runs into a single
bit-parallel computation, where in each step, we evaluate a
single row from every one of the r bands. The bands are
packed together in a single super-band of width r(x + 1);
individual bands within the super-band are separated by di-
agonals of separator matches.

Figure 8 shows a run of the resulting high-similarity bit-
parallel multi-string waterfall algorithm, for xk = 3 and r =
4. The leftmost band (band 0) is identical to the band in
Figure 7. The algorithm returns “exceed” for bands 0, 1, 3.
For band 2, we have a single 0-value output at the bottom
of the band, hence lcs(a,b2) =n — 1 by Theorem 1.

Finally, note that all the described techniques for bit-

parallel string comparison are compatible with integer-weighted

alignment, by application of the blow-up technique described
in Section 2. For example, we can obtain bit-parallel algo-
rithms for Levenshtein alignment score (or, symmetrically,
Levenshtein edit distance) by blowing up the alignment dag
by a factor of 2 in each dimension.

6. REFERENCES

[1]

2]

3]
[4]

[5]

[6]

7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

A. V. Aho, D. S. Hirschberg, and J. D. Ullman.
Bounds on the complexity of the longest common
subsequence problem. Journal of the ACM, 23:1-12,
1976.

M. Ajtai, J. Komlés, and E. Szemerédi. An o(nlogn)
sorting network. In Proceedings of the 15th ACM
STOC, pages 1-9, 1983.

M. Ajtai, J. Komlds, and E. Szemerédi. Sorting in
clogn parallel steps. Combinatorica, 3(1):1-19, 1983.
S. W. Al-Haj Baddar and K. E. Batcher. Designing
Sorting Networks: A New Paradigm. Springer, 2011.
L. Allison and T. I. Dix. A bit-string
longest-common-subsequence algorithm. Information
Processing Letters, 23(5):305-310, 1986.

C. E. R. Alves, E. N. Céceres, and S. W. Song. An
all-substrings common subsequence algorithm.
Discrete Applied Mathematics, 156(7):1025-1035,
2008.

A. Apostolico. Remark on the Hsu-Du new algorithm
for the longest common subsequence problem.
Information Processing Letters, 25(4):235-236, 1987.
A. Apostolico, S. Browne, and C. Guerra. Fast
linear-space computations of longest common
subsequences. Theoretical Computer Science,
92(1):3-17, 1992.

A. Apostolico and C. Guerra. The longest common
subsequence problem revisited. Algorithmica,
2(1):315-336, 1987.

K. E. Batcher. Sorting networks and their
applications. In AFIPS Conference Proceedings,
volume 32, pages 307-314. Thompson Book Company,
1968.

L. Bergroth, H. Hakonen, and T. Raita. A survey of
longest common subsequence algorithms. In
Proceedings of the 7th SPIRE, pages 39-48, 2000.
Kun-Mao Chao and Louxin Zhang. Sequence
Comparison: Theory and Methods, volume 7 of
Computational Biology Series. Springer, 2009.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and

C. Stein. Introduction to Algorithms. The MIT
Electrical Engineering and Computer Science Series.
The MIT Press and McGraw—Hill, second edition,
2001.

M. Crochemore, C. S. Iliopoulos, Y. J. Pinzon, and
J. F. Reid. A fast and practical bit-vector algorithm
for the Longest Common Subsequence problem.
Information Processing Letters, 80(6):279-285, 2001.
D. Gusfield, K. Balasubramanian, and D. Naor.
Parametric optimization of sequence alignment.
Algorithmica, 12:312—-326, 1994.

D. S. Hirschberg. Algorithms for the longest common
subsequence problem. Journal of the ACM,
24(4):664-675, 1977.

W. J. Hsu and M. W. Du. New algorithms for the lcs
problem. Journal of Computer and System Sciences,
29:133-152, 1984.

H. Hyyro. Bit-parallel lcs-length computation
revisited. In Proceedings of AWOCA, 2004.

H. Hyyro, K. Fredriksson, and G. Navarro. Increased
bit-parallelism for approximate string matching. In

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Figure 8: High-similarity bit-parallel multi-string waterfall algorithm

Proceedings of WEA, volume 3059 of Lecture Notes in
Computer Science, pages 285-298, 2004.

B. N. Jackson and S. Aluru. Pairwise sequence
alignment. In Handbook of Computational Molecular
Biology, Chapman and Hall/CRC Computer and
Information Science Series, chapter 1, pages 1-1 —
1-31. Chapman and Hall/CRC, 2006.

N. C. Jones and P. A. Pevzner. An Introduction to
Bioinformatics Algorithms. Computational Molecular
Biology. The MIT Press, 2004.

D. E. Knuth. The Art of Computer Programming:
Sorting and Searching, volume 3. Addison Wesley,
1998.

V. Levenshtein. Binary codes capable of correcting
spurious insertions and deletions of ones. Problems of
Information Transmission, 1:8-17, 1965.

E. W. Myers. An O(N D) difference algorithm and its
variations. Algorithmica, 1(1):251-266, 1986.

G. Myers. A fast bit-vector algorithm for approximate
string matching based on dynamic programming.
Journal of the ACM, 46(3):395-415, 1999.

S. B. Needleman and C. D. Wunsch. A general
method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of
Molecular Biology, 48(3):443-453, 1970.

M. S. Paterson. Improved sorting networks with
o(log n) depth. Algorithmica, 5(1):75-92, 1990.

S. V. Rice, H. Bunke, and T. A. Nartker. Classes of
cost functions for string edit distance. Algorithmica,
18:271-280, 1997.

C. Rick. Simple and fast linear space computation of
longest common subsequences. Information Processing
Letters, 75(6):275-281, 2000.

J. Seiferas. Sorting networks of logarithmic depth,
further simplified. Algorithmica, 53(3):374-384, 2009.
A. Tiskin. Semi-local string comparison: Algorithmic
techniques and applications. Technical Report
0707.3619, arXiv.

E. Ukkonen. Algorithms for approximate string
matching. Information and Control, 64(1-3):100-118,
1985.

S. Wu, U. Manber, G. Myers, and W. Miller. An
O(N P) sequence comparison algorithm. Information
Processing Letters, 35(6):317-323, 1990.

