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ABSTRACT

The string similarity search is an important research area. It
enables applications to accept input errors and to detect
similarities between strings. This kind of search contains the
string similarity search problem. The time to solve this problem
depends on the number, the length and the size of the alphabet of
the data to search. It is possible to divide the data in data of
natural language and data of non-natural language. In data of
natural language, this paper analyzes a set of names of cities all
over the world. For non-natural language data the paper uses reads
from human genome. This paper wants to analyze, if it is possible
to outperform an index-based search by a sequential search
algorithm. The evaluation shows, that the index-based search has
a higher performance on the human genome reads, but not on the
geographical names.
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1. INTRODUCTION

Beside of the ability of an exact string search, nowadays most
applications needs a function for similarity search. Applications
search in data of natural language strings or non-natural language
strings. Natural language strings are human readable words. An
application that searches in this data has to be tolerant against
input errors, because the user could make typing errors or errors in
the spelling of a word. Nevertheless the application has to find all
relevant results in the data [7, 10]. Applications for non-natural
languages are for example applications, which search for similar
human genome reads [1].

It is necessary to solve the string similarity search problem, to
perform the similarity search in both areas. The input for this
problem is a query string, a similarity measure and set of data to
search. To solve this problem, the application has to determine all
the datasets, similar to the query with respect to the similarity
measurement [2].

Permission to make digital or hand copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post
on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EDBT/ICDT 13, March 18 — 22 2013, Genoa, ltaly

Copyright 2013 ACM 978-1-4503-1599-9/13/03 ...$15.00.

This paper uses the unweighted edit distance as similarity
measurement. The used datasets are given by the “String
Similarity Seach/Join Competition” of the EDBT/ICDT 2013
Joint Conference. The datasets are names of cities as natural
language data and human genome reads for non-natural language
data. The paper will try several approaches to solve the problem in
an efficient way.

The aim of this work is to find out, if a sequential solution of the
string similarity search problem on the city-names and the
genome reads can outperform an index-based solution in its
execution time. Both algorithms will be improved by several
approaches.

The paper is structured as follows. The second chapter will
explain important terms and introduce several existing approaches
from scientific literature. The third and fourth chapter will present
approaches to improve the sequential and index-based search
algorithms. The fifth chapter will evaluate the implemented
applications for sequential and index-based search by measuring
the execution time. The sixth chapter summarizes the work and
mentions possible future work.

2. FOUNDATIONS AND RELATED WORK
This chapter explains important terms and gives a look to related
work in scientific literature. At first the string similarity search
problem will be explained. After that the edit distance is defined
and calculated by a sample. Furthermore the chapter explains two
approaches of existing related work. Finally it summarizes the
preliminary considerations and forms two hypothesis.

2.1 String Similarity Search Problem

The string similarity search problem returns each string of a set of
strings that has at least a given similarity for a given query. Let q
be query string, X a set of strings, ed a distance function and k the
threshold value for the distance [3, 9]. A string x is part of the
result, if it fulfills the following conditions:

x€Xand ed(q,x) <k (D)

To solve this problem, the application hast to determine each
string x, that does not exceed the threshold k. The competition
rules give the edit distance as similarity metric. This distance
measurement will be explained in the following.

2.2 Edit Distance

The edit distance ed(x,y) of two strings x and y is the minimal
number of insert, delete or replace operations to transform x to y.
Two strings are within edit distance k, if ed(x,y) <k [3, 9]. The
following example shows the calculation of the edit distance for
two strings. The input are the string “AGGCGT and “AGAGT”.
The operations insert, delete and replace are available to transform
the strings. Each execution of an operation has costs of 1. The



computation of the edit distance uses a matrix M. 1,,0..1, with
(I + 1) rows and (I, + 1) columns. Let I, be the length of string
x and 1, be the length of string y. The symbol at position i of a
string y is y;. M; ; is the entry of the matrix at row i and column j.
The entry M; ; is calculated as follows [5]:

Mo =1, MO,j =j 2)
M;; = Falls(x; = y;) dann M;_y ;4 3)
sonst 1 + min(Mi_Lj, Mi,j—l' Mi—l,j—l) (4)

Figure 1 shows the computation of the edit distance between the
two strings. The last step is to calculate the entry in M, , which

will contain the edit distance between string x and string y. In this
step the calculation uses condition (3), because both strings have
the same symbol at the last position. So, it will use the value of
M5 4 in entry Mg 5. The calculated edit distance is 2.

This paper will use different approaches to calculate the edit
distance, in order to solve the string similarity search problem. It
will discuss filters, the use of an index and faster string similarity
algorithms. The basis and reference for the implementation of this
paper are related publications. These approaches will be explained
in the following.

2.3 Related Publications

This subchapter will introduce several publications related to the
string similarity search problem. The approaches to solve the
problem will be explained in a short way.

Human genome reads consist of very long strings. Rheinlander et
al. show, that former use of similarity operations is very limited
and inefficient. That’s why they developed a new efficient
algorithm for similarity search named PETER. This algorithm
supports Hamming and edit distance. PETER uses a compressed
prefix tree for indexing data. Very long suffixes are stored in a
file, in order to hold the tree in main memory. The tree stores
information about the minimal and maximal length of the strings
and the frequency vector, a vector with the number of occurrences
for each symbol in the string. These information enable an early
filtering of the results. The algorithm can stop searching in a
branch, that can not contain correct results [8].

Navarro et al. consider the following problems. The first problem
is the size of the index using a suffix tree. The second problem is
the exponential dependency of the calculation effort to the length
of the strings and the edit distance. To solve the first problem,
they use a suffix array. This has the advantage, that the index can
only reach a maximum size of four times of the number of strings.
Furthermore suffix arrays are with exception of very short strings
faster than suffix trees. The second problem is solved by splitting
the query string and later integrating the particular results. It is
possible to reduce the exponential dependency of string length
and edit distance by this method.

All problems and experiences of that approaches are used as
basics for chapter 3 and 4.

2.4 Preliminaries

Human genome reads and city-names have very specific
properties. So it is useful to make preliminary considerations
about efficient approaches. Human genome reads have a large
string length and a very small alphabet. On the other hand city-
names have usually a smaller string length, but a larger alphabet.

The alphabet can vary by using different character sets and
languages. For example, adding the Chinese language will enlarge
the alphabet by adding all the symbols.

These properties enable the construction of two hypotheses for
efficient string similarity search. The paper will analyze these two
hypotheses.

=  Anindex-based solution will have a higher performance
on human genome reads than a sequential solution,
because of the large string lengths.

= An optimized sequential solution can have a higher
performance on the city-names than an index-based
solution, because of the smaller string lengths.

The next chapters 3 and 4 will discuss approaches to improve the
sequential and the index-based solution for the string similarity
search.

3. RUDIMENTS FOR IMPROVING THE
SEQUENTIAL SOLUTION

This chapter will introduce several approaches to improve the
performance of the sequential solution. Starting with an initial
solution, it focuses on improving the calculation of the edit
distance, using value and reference semantic, simple data types
and program methods, parallelism and the management of
parallelism. Chapter 5 will evaluate these approaches. At first the
initial solution is discussed and based on that the improvements
will be explained.

3.1 Base Implementation

The first implemented solution should work and solve the string
similarity search problem without any errors. The used
programming language is C++. This language has the advantage
to focus on runtime and memory efficiency. Some other
programming languages like Java focus on simplicity and clarity
of the language instead of performance. So, it is not useful to use
such a language [11].

The procedure of the initial implementation consists of reading
the query and data sets, calculating the edit distance and writing
the results to a file. The results of this solution provide the
reference to verify the correct results of the following solutions
for the sequential and the index-based search. After verifying the
results, the execution times will show, if the implemented
approach could improve the previous solution or not. If the
implemented approach improved the performance it will be part
of the following solutions.

3.2 Faster Edit Distance Calculation

As described in chapter 2, the calculation of the edit distance is
very costly. Thus, the calculation should be improved by reducing
the calculation time.

The first idea tries to avoid the calculation of the edit distance:

=  Consideration of string length: Let d be a delta between
the length I, of string x and the length L, of string y,
calculated as:

d= |lx_ly| (5)

Delta d will be compared with the given maximum edit
distance. If d is greater than the given edit distance, the
application does not have to compute the edit distance.
Because the edit distance will be greater than the given



maximum edit distance. Thus, the current string cannot
be part of the correct results.

=  Exact search: The given edit distance zero describes the
case of exact search. It is not necessary to compute the
edit distance. It is more efficient to compare each letter
of string x and string y, to determine if the string is a
result for the query.

If it is not possible to avoid the calculation, the solution should try
to abort the calculation early. This approach looks as follows:

=  Consideration of diagonal: The diagonals of the edit
distance matrix M have special properties. The diagonal
in Figure 1 shows, that the value of the edit distance is
rising or stagnating. This is a consequence of the rules
for calculating the edit distance described in chapter 2.
The calculation depends on one of the three surrounding
entries on the left and upper side. So there are overall
three diagonals and errors can be reduced by one of the
neighbor diagonals. Errors on the diagonal with entry
M, 1, cannot be reduced. At the end of the calculation

the entry M., will contain the edit distance between

string x and string y. Considering these facts, there are
the following two conditions for aborting the
calculation:

If Iy zl,and i —d = jand M;; > k) 6)
If (I, <lyandi=j—dandM;; > k) 7

If the value on the diagonal with entry M, exceeds

the given edit distance, the application can abort the
calculation. For example in Figure 2 after the algorithm
calculated entry M, 3 condition (6) is fulfilled, like that:

6>25and (4—1)=3and2>1 ®)

3.3 Values and References

In contrast to programming languages like Java, the programmer
in C++ has always to decide, if objects are used direct or indirect
with pointers or references. The scientific literature uses the terms
value and reference semantic. The value semantic is used on stack
objects. The size of an object is fixed and cannot be arbitrary
changed. The reference semantic is mostly used on heap objects.
The size of an object is not fixed and the programmer can change
it. Furthermore it is possible to reference an object several times
and to manage it by different methods. In addition to the actual
object the reference semantic uses a reference, e. g. a pointer. The
creation and deletion of such a pointer costs time. Thus, it is
useful to use smaller objects direct and to manage larger objects
by references [11].

BlWN|=2O|=2M®

BlWR| 22N W >

wNn| = e
[SE7 ) ENRENI Ry N PN P

=H Q00>
o olbs|wn|alo
(LRI YR Y N T Y

Figure 1. Calculation of edit distance
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Figure 2. Aborting the calculation of edit distance

The use of the reference semantic has the following advantages:

= Speed: The reference semantic gives the reference of an
object to a called method. The value semantic copies the
entire object [11]

=  Flexibility: For example to order objects, the reference
semantic only has to copy the pointer to the correct
position, not the entire object. It could use a pointer for
each sort key [11].

= Memory Efficiency: The reference semantic uses
memory for the current number of objects. The value
semantic always allocates memory for the possible
maximum number of objects [11].

So, the implementation should use the value semantic for smaller
objects and the reference semantic for larger objects, in order to
optimize the execution time.

3.4 Simple data types and program methods
The area of data types and functions offers some potential for
improvements in every programming language. As a basic
principle simple data types should be used, because the execution
time, due to a lower memory usage, is crucial lower. With these
data types it is possible to work faster as with complex data types.
For example, the access of an object used in an array is faster than
an object used in a vector. The same goal should be achieved with
the usage of simple methods. To reduce execution time, it makes
sense to implement existing methods in a new way. The
comparison of two strings or the minimum of two numbers could
be implemented in a new way to reduce some overhead. That the
reason why the usage of simple data types and the implementation
of simple calculations will be reviewed.

3.5 Parallelism

Parallelism is one of the important instruments to gain more
performance [14]. Beside the development of an optimal
parallelism strategy and its management, the choice of a
parallelism library is crucial in C++. C++ itself offers parallelism
with C++ 11 [15], but this mechanism in the most common
compilers is implement in a dissatisfied way. To choose the right
library some core questions must be considered, for example:

= What role plays portability?

=  How familiar are the developers with C++ respectively
how much time can be invested to become familiar with
the appropriate library?

= Does the library fit in the existing implementation?

The point about portability is one of the main exclusion criterions.
For a Linux-based implementation all Windows-specific libraries
are not valuable. Additionally the portability between different
Linux distributions is important. Beside the portability the time
investment for the developers to become familiar with a new



library and the integration into the existing implementation should
be considered. The time investment can vary from library to
library. The same is true for the integration into the existing
implementation.

The parallelism feature of C++ 11 will not be covered in any
detail, because GCC 4.7 as a compiler does not support most of
the appropriate features?.

After some research the following libraries were considered:
=  Boost?
" Qt3
= Intel Threading Building Block*

The Boost library offers a simple integration and good portability.
The time investment is minimal. Because the threading library of
Boost was the foundation of the parallelism specification® of C++
11 it is a generic approach. Qt is another library which offers,
beside the creation of user interfaces, a parallelism library. Beside
the platform independence the time investment for the developers
is minimal, because of the great documentation. The Qt library
has the disadvantage that its parallelism library is object-oriented
and not easy to integrate in a non-object-oriented approach. To
use the library classes have to inherit from the QThread® object
[16]. The last library is the Intel Threading Building Block library.
It offers, like Boost and Qt, portability, but a developer has to
investment more time to become familiar with it. In contrast it
promises good performance and a better parallelism management
[13, 17].

Because of the wide spread, the simple integration, and its good
documentation Boost will be used for the parallelism
implementation. It does not offer the best performance, but it can
be used and integrated with no additional effort.

3.6 Parallelism management

Beside the usage of the right parallelism library the definition of a
parallelism strategy is crucial for the performance. There are three
variants how a thread can be closed. In this context the following
three hypotheses will be evaluated:

1.  Open and close many threads as possible.
2. Open exactly one thread per CPU core.

3. Anintelligent management of threads where threads are
only opened and closed when it’s needed.

The first point has the lowest implementation effort. One thread
will be opened per query to calculate the result. This has some
disadvantages. On the one hand it is a waste of resources, because
every thread object in Boost will be created on the stack, which
gives some problems if you open a lot of threads at the same time.
On the other hand queries can be executed very fast and open and
close a thread can take more time than the execution of the query

! http://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html,
Access: 01/12/2013

2 http://www.boost.org/, Access: 01/12/2013

3 http://qt.digia.com/, Access: 01/12/2013

4 http://software.intel.com/en-us/intel-tbb/, Access: 01/12/2013

Shttp://www.open-
std.org/jtcl/sc22/wg21/docs/papers/2007/n2184.html,
01/12/2013

6 http://doc.qt.digia.com/qt/threads.html, Access: 01/12/2013
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itself. The evaluation will show the dimensions of the
performance reduction. Open a thread per CPU core is a good
alternative to point 1. With this strategy a thread will not be open
per query. This guarantees a balance in the work of every CPU
core. The implementation effort is a little bit bigger as in the
solution of point 1. Crucial for the success of this strategy is a
balanced distribution of queries on the different cores. This can be
done through a simple partitioning. The most promising approach
is an intelligent management of opening and closing threads
where threads are only opened and closed when they are needed.
This guarantees that resources are not wasted. To use this
approach rules have to be defined for opening and closing threads.
Two example rules are:

=  Open a thread when the average usage over all cores is
more than 70%.

=  Close a thread when the average usage over all cores is
less than 30%.

When following this approach the locking problem has to be
considered. An example: There are two threads ¢y, t,. Thread t,
likes to open a new thread, because rule number one is matched.
Thread t, at the same time likes to close a thread, because the
average usage is decreased nearly at the same time. There are
several solutions to this problem. A well-known is the master-
slave principle [12, 18]. In this solution one thread is responsible
for opening new threads and closing threads. On the one hand
with that solution there is one additional thread which is only
responsible for the management of the other threads without
executing a single query. On the other hand the locking problem is
solved and with an effective management the usage of the
resources for the master thread can be neutralized.

Within the scope of this work the best parallelism strategy will be
evaluated through several tests.

3.7 OVERVIEW ABOUT THE
RUDIMENTS FOR IMPROVING THE
SEQUENTIAL SOLUTION

All the presented rudiments for improving the sequential solution
will be implemented step-by-step. Figure 3 shows a model of the
six approaches. The results of the first solution will be used for
the comparison in the other approaches. This guarantees the
correctness of the results and that the approach improves the
performance. There are several measurement points in the
implementation to monitor the different modules of the
implementation. It is possible to reject an approach if it does not
return the correct results or if the execution time is not reduced.

A Base

implementation ﬁ

B. Faster edit
distance calculation

Overview about the rudiments
for improving the sequential
solution

F Parallelism
management

[ D. Simple datatypes |

E. Parallelism - C. Values and

and programing / \ references
methods

Figure 3. Overview about the rudiments to improve the
sequential solution
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4. RUDIMENTS FOR IMPROVING THE
INDEX-BASED SOLUTION

This paragraph describes the index-based solution. It will describe
the different steps to improve the performance of the index-based
solution.

4.1 Base implementation

At first a solution will be implemented, which solves the string
similarity search problem through the usage of an index. From
this solution other approach will be evaluated.

As a base implementation the solution of the sequential search
will be used. Improvements like the better calculation of the edit
distance, the usage of pointers and references, and the usage of
simple data types and program methods are already included in
this first solution.

A prefix tree will be used for a fast search in the data. This has the
advantage that the complexity of query depends on the depth of
the tree instead of the number of data sets [6, 8]. The depth is
equals to the length of the longest string in the data set.

At first the data sets will be read from the file. After this the prefix
tree will be created through adding every single string. Next the
query file be read and the queries will be executed. The important
time measurement for comparing the sequential with the index-
based search is the time needed for calculating the results that
means the time frame between reading the files have finished and
the end of calculating all results for the given queries. As a
specialty compared to the base implementation additional
information will be stored in the nodes. This information allows
an early cancellation of following the branches who not will
return a correct result. To realize that the minimal and maximal
length of a data set will be stored in the nodes, which can be
reached [8].

In the base implementation for the index-based search a node with
the prefix y,_; must fulfill the following conditions to consider its
child nodes for the query x:

ed(Xo..i,¥o.1) Sk +dp )
dy, = max{|ly — max|, [l — min|} (10)

The prefix of string y at the position (i + 1) is described through
Vo.i- Because the edit distance of x, ; and y,_; in a prefix tree,
based on the step-by-step descent in the tree can only be
calculated to a position i a tolerance value d,, must be calculated.
d,, compensates the loss of information from not knowing the
length of y. The edit distance may not be greater as the sum of the
allowed edit distance k and the delta d,,. Delta d,,, means the
maximum reachable variance of the length 1, of the query x to the
maximum length max; respectively the minimum length min,; of
the result y. If the value is lower than the variance the current
branch of the tree must not be included for the calculation of the
result.

The base implementation is required to give a correct result back.
If this goal is achieved other steps will be executed to improve
performance.

4.2 Compression

Another improvement is the compression. The main goal of this
approach is to create only as many nodes as needed in the prefix
tree. That decreases the memory usage and enables through fewer

calculations of the edit distance a faster similarity search. The
following example in Figure 4 shows the compression.

The words “Berlin”, “Bern”, and “Ulm” will be inserted to the
prefix tree. After the insertion is completed the prefix tree will be
compressed. During that process nodes with only a single child
node can be merged. After the compression the sample prefix tree
only includes half of the nodes of the normal tree.

4.3 Parallelism management

Similar to the sequential search an index-based search can profit
from a parallelized execution. Because the parallelization of the
index-based search has the same requirements as the sequential
solution the same strategies can be used. For more information
have a look at chapter 3. In the paragraphs 5 and 6 parallelism and
its management is discussed in detail.

4.4 Overview about the rudiments for

improving the index-based solution
Figure 5 gives an overview about the rudiments to improve the
index-based solution.

It has to be mentioned that, beside the improvements discussed in
this chapter, the improvements of the sequential search are
included in the base implementation.

The process is similar to the one from the sequential solution. The
results of the base implementation will be compared in every
single step to guarantee the correctness of it. To prove a faster or
slower execution time several measurement points are included in
the implementation.

5. EVALUATION OF THE SEQUENTIAL
AND INDEX-BASED SOLUTION

This chapter will evaluate the sequential and index-based solution.
At first the evaluation environment will be described. Based on it
the presentation, the explanation, and the evaluation of the results
of the time measurement will be compared with each other.

5.1 Evaluation environment

As an evaluation environment an Ubuntu Desktop 12.10
virtualized in Hyper-V as a standard installation will be used. The
environment consists of eight gigabyte RAM and a virtualized
Intel i7@2.19 GHz processor with eight processor cores. Because
of a better comparison, all of the following measurement results
are received from this environment.
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Figure 4. Compression of a prefix tree



A Base
implementation

Cverview about the rudiments
for improving the index-based
solution

C. Parallelism
management

B. Compression

Figure 5. Overview about the rudiments for improving the
index-based solution

5.2 Proceeding of the evaluation

The process of the evaluation is as follows. Starting point are the
same data sets for the measurement in every single area. The data
sets and their properties are listed in Table I.

All in all there are three measurements for every approach on the
appropriate data sets. The execution of 100, 500, and 1,000
queries will be measured. All time values are similar to the actual
execution and not the CPU time, because the usage of parallelism
can lead to other measurement results when using the CPU time.
For the sequential and index-based solution only the time will be
measured to calculate the results.

If not described in another way the following is true for the
following paragraphs: If the execution time of an approach is
better than the execution time of the previous approach the new
approach will be included in the final implementation.

In the next paragraphs the best sequential and index-based
solution for the city names data set will be determined. Based on
this the results will be compared with each other to make a
decision which solution is better. This proceeding will be repeated
for the DNA sequences.

5.3 Evaluation of the sequential solution on

the city names data set

In this paragraph the sequential solution on the city names data set
will be evaluated. The goal of this evaluation is to choose the
solution with the fastest execution time for the string similarity
search problem. The measurement results of every single step are
summarized in Table I11 of the appendix.

5.3.1 Base implementation

The following time measurements are from the base
implementation which is used as a reference for the correctness
and improvement of the other approaches. This implementation
does not use any of the described improvement approaches. To
execute 100 queries this implementation takes 16.92 sec., for
executing 500 queries 84.80 sec., and for executing 1,000 queries
166.22 sec.

5.3.2 Calculation of the edit distance

As explained in section 3, there are different approaches to the
calculation of the edit distance implemented. It takes 3.71 sec to
execute 100 queries, 17.81 sec to execute 500 queries, and 34.20
sec to execute 1,000 queries. It was possible to reduce the
execution time to one seventh.

5.3.3 Value or reference

A reduction in the execution time could also be achieved by
deciding on a specific use of the value semantic or reference
semantic in C++. For example, when passing large objects, they
must not be copied completely. This is a C++ specific
optimization, which is not available in many other programming
languages. To execute 100 queries this implementation takes 2.88
sec., for executing 500 queries 15.13 sec., and for executing 1,000
queries 29.31 sec.

5.3.4 Simple data types and program methods
The use of simple data types and implementation of simple
program methods promises additional performance gains. It takes
2.20 sec to execute 100 queries, 11.54 sec to execute 500 queries
and 21.64 sec to execute 1,000 queries. In comparison to the base
implementation, the execution time is only one eleventh.

5.3.5 Parallelism

If properly implemented, parallelism can achieve performance
gains. In this first implementation of parallelism, the first strategy
of parallelism is implemented. A thread will be created for each
query and closed after the completion. To execute 100 queries this
implementation takes 13.13 sec., for executing 500 queries 64.95
sec., and for executing 1,000 queries 129.35 sec. In comparison to
the last implementation, the execution time is much higher. This
approach will not be discarded. It should be considered in more
detail in the next approach.

5.3.6 Management of parallelism

Management of parallelism allows adjustment of parallelism. It
prevents the wasting of resources and promises a further
performance improvement. Several configurations are tested for
their performance gains. Different kind of threads will be opened
for all three sets of queries. The use of 4, 8, 16 and 32 threads are
considered and examined. The creation of eight threads
corresponds to the second strategy and the creation of different
kind of threads corresponds to the third strategy. The results of the
measurement are shown in Table 11 of the appendix. The creation
of eight threads represents the optimum. This solution is better
than the solution of the fourth approach.

5.4 Evaluation of the index-based solution on

the city names data set

The previous section has shown how the iterative optimizations
were able to improve the sequential scan on the city names data
set. This section also follows an iterative optimization to improve
the index-based search on the city names data set. The
measurement results of every single step are summarized in Table
V of the appendix.

5.4.1 Base implementation

The following results are from the base implementation for the
index-based solution on the city names data set. The
implementation represents the first implementation of an index
based on a prefix tree. It takes 8.14 sec to execute 100 queries,
42.26 sec to execute 500 queries and 77.95 sec to execute 1,000
queries.

Table 1. Overview about the data sets and their properties

#Data Edit

sets #Symbols | Length distance
City 400,000 | ca. 255 max. 64 | 0,1,2,3
names
DNA 750,000 | 5 ca.100 | 0,4,8 16




5.4.2 Compression

The compression is the first step to improve the index-based
solution. As described in Chapter 1V, the number of tree nodes is
reduced. To execute 100 queries this implementation takes 7.26
sec., for executing 500 queries 38.79 sec., and for executing 1,000
queries 73.43 sec.

5.4.3 Management of parallelism

The last step implements the management of parallelism. The
implementation of the sequential scan is re-used and adapted
according to the conditions. The use of 4, 8, 16 and 32 threads are
considered and examined. The results of the measurement are
shown in Table IV of the appendix. The creation of 33 threads
was not able to reduce the execution time. The use of 32 threads
represents the optimal index-based solution for the city name data
set.

5.5 Comparison of the sequential solution
with the index-based solution on the city

names data set

The results of the measurement can be stated as follows. The
execution time for the sequential scan could be reduced by
different kinds of approaches. Considering 100, 500 and 1000
queries, the execution time could be reduced by 91 to 97 percent.
The execution time for the index-based solution could be reduced
by 81 to 82 percent. In comparison of the sequential solution with
the index-based solution on the city names data set, the sequential
solution needs between 4 and 58 percent of the time of the index-
based solution.

An optimized sequential scan is faster than an index-based
solution on a set of short strings. The hypothesis is supported.
Figure 6 illustrates the best sequential solution with the best
index-based solution. The following sections evaluate approaches
to improve the sequential and index-based solution on the DNA
data set.

5.6 Evaluation of the sequential solution on
the DNA data set

The implementation of the sequential solution for the DNA data
set is the same as the implementation of the sequential solution for
the city names data set. The test cases are similar to those of the
sequential solution. The results of measurement for the
management of the parallelism are shown in Table VI in the
appendix. The optimal number of threads is 32. It is different to
the city names data sets.

City names data set
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Figure 6. Comparison of the sequential solution with the
index-based solution on the city names data set

The measurement results of every single step are summarized in
Table VII of the appendix. The last approach with 32 Threads
represents the best solution and should be considered for this
reason further. This solution will be compared to the best index-
based solution.

5.7 Evaluation of the index-based solution on
the DNA data set

The index-based solution shows that the implementation of a
compression and the use of parallelism management can improve
the performance of an index-based solution on DNA data sets.
The results of measurement for the management of the parallelism
are shown in Table VIII in the appendix. The optimal number of
threads is 16. This approach represents best solution in
comparison to the previous approaches. All results of
measurement are shown in Table 1X in the appendix.

5.8 Comparison of the sequential solution
with the index-based solution on the DNA data

set

The results of the measurement can be stated as follows. The
execution time for the sequential scan could be reduced by
different kinds of approaches. Considering 100, 500 and 1000
queries, the execution time could be reduced by 99 percent. The
execution time for the index-based solution could be reduced by
91 to 92 percent. In comparison of the sequential solution with the
index-based solution on the city names data set, the index-based
solution needs between 9 and 19 percent of the time of the
sequential solution. An index-based solution is faster than an
optimized sequential solution on a set of large strings. The second
hypothesis is supported. Figure 7 illustrates the best sequential
solution with the best index-based solution.

6. CONCLUSION AND FUTURE WORK

The aim of this paper was to outperform an index-based solution
with a sequential scan. Different kind of approaches like
improving the calculation of the edit distance, using value
semantic or reference semantic, using simple data types and
implementing simple program methods, implementing parallelism
and management of parallelism were considered to implement a
sequential solution. The index-based solution is based on this
knowledge. Furthermore a compression of the prefix-tree and the
management of parallelism were examined. It was determined that
the index-bases solution takes less time to compute the results on
the DNA data set, but it takes more time on the city name data set.

DNA data set
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Figure 7. Comparison of the sequential solution with the
index-based solution on the city names data set



The topic of this work provides further needs for research. The
following area can be examined:

e  Sorting: Can a pre-sorting by length or alphabet reduce
the execution time?

e Dictionary Compression: The use of a compression
dictionary in the DNA region could achieve
improvements. An alphabet of five symbols makes it
possible to represent a symbol with three bits. This
makes it possible to store symbols more efficiently and
to accelerate the computation time of the edit distance,
because fewer bits in sum must be compared.

e  Frequency vectors: Addition information about the
number of occurrence could calculate. For the DNA
data set, the number of occurrence of the symbols A, C,

G, N and T is needed. For the city names data set, the
number of occurrence of the symbols A, E, I, O and U is
needed. On this basis, it is possible to implement an
early filtering.

e  Programming languages: The same approach could be
implemented with a different programming language, to
examine their effectiveness in this domain.

e Library for parallelism: The parallelism approach could
be implemented with a different library. For example,
the Qt and the Intel Threading Building Blocks library
are two interesting alternatives for parallelism.

e Management of parallelism: A possibility of
improvement is to implement an intelligent management
of parallelism. The opening and closing of threads has
to be dependent on the system workload.

e Number of data records: Has the number of data records
an effect on the best solution?

Finally, this work has produced promising results. There are a lot
of other approaches, which could be examined in the future.
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8. APPENDIX

Table 1. Management of parallelism in the sequential solution

on the city name data set

Table VI. Management of parallelism in the sequential
solution on the DNA data set

Number of queries

Number of queries

Number of threads 100 500 1.000 Number of threads 100 500 1.000
gueries gueries gueries queries gueries gueries

4 threads 1.29 sec 3.98 sec 7.21 sec 4 threads 126.17 sec | 573.94sec | 1,136.40 sec

8 threads 1.46 sec 3.57 sec 5.93 sec 8 threads 88.94 sec 476.01 sec | 841.55 sec

16 threads 2.29 sec 3.86 sec 6.17 sec 16 threads 83.73 sec 415.25 sec | 848.47 sec

32 threads 4.56 sec 5.48 sec 6.98 sec 32 threads 89.53 sec 413.98 sec | 827.32 sec

Table I11. Evaluation of the sequential solution on the city

name data set

Table VII. Evaluation of the sequential solution on the DNA

data set

Number of queries

Number of queries

Approach 100 500 1.000 Approach 100 500 1.000
queries queries queries queries queries queries

1) Base 1) Base - ~ -
implementation 16.92 sec 84.80 sec 166.22 sec implementation ~halfday | =1 day ~ 2 days
2) Calculation of the 2) Calculation of the
edit distance 3.71 sec 17.81 sec 34.20 sec edit distance 278.45sec | 1,767.40 sec| 3,191.10 sec
3) Value or 3) Value or
reference 2.88 sec 15.13 sec 29.31 sec reference 269.45sec | 1,746.70 sec| 3,110.12 sec
4) Simple data types 4) Simple data types
and program methods 2.20 sec 11.54 sec 21.64 sec and program methods 267.42sec | 1,512.36 sec| 2,833.03 sec
5) Parallelism 13.13 sec 64.95 sec 129.35 sec 5) Parallelism 88.18 sec 434.66 sec | 905.89 sec
6) Management of 6) Management of
parallelism 1.46 sec 3.57 sec 5.93 sec parallelism 89.53 sec 413.98 sec | 827.32 sec

Table 1V. Management of parallelism in the index-based

solution on the city name data set

Table VIII. Management of parallelism in the index-based
solution on the DNA data set

Number of queries

Number of queries

Number of threads 100 500 1.000 Number of threads 100 500 1.000
queries queries gueries queries queries gueries

4 threads 2.39 sec 11.79 sec 20.99 sec 4 threads 118.31sec | 545.35sec | 1,094.73 sec

8 threads 1.70 sec 8.17 sec 14.78 sec 8 threads 76.60 sec 419.59 sec | 823.76 sec

16 threads 1.50 sec 7.93 sec 14.31 sec 16 threads 71.78 sec 367.95sec | 753.01 sec

32 threads 1.53 sec 7.58 sec 14.19 sec 32 threads 72.62 sec 370.21sec | 768.96 sec

Table V. Evaluation of the index-based solution on the city

name data set

Table IX. Evaluation of the index-based solution on the DNA

data set

Number of queries

Number of queries

Approach 100 500 1.000 Approach 100 500 1.000
queries queries gueries queries queries gueries
1) Base 1) Base
implementation 8.14 sec 42.26 sec 77.95 sec implementation 876.48 sec | 4,355.42 sec| 8,686.65 sec
2) Compression 7.26 sec 38.79 sec 73.43 sec 2) Compression 352.24 sec | 1,737.44 sec| 3,450.47 sec
3) Management of 3) Management of
parallelism 1.53 sec 7.58 sec 14.19 sec parallelism 71.78 sec 367.95sec | 753,01 sec




