
Trying to outperform a well-known index with a sequential 
scan 

Jan Hentschel, Thomas Meyer, Thomas Rommel 
Otto-von-Guericke-University 

Universitätsplatz 2 
39106 Magdeburg, Germany 

{Jan.Hentschel, Thomas.Meyer, Thomas.Rommel}@st.ovgu.de 

  

ABSTRACT 

The string similarity search is an important research area. It 

enables applications to accept input errors and to detect 

similarities between strings. This kind of search contains the 

string similarity search problem. The time to solve this problem 

depends on the number, the length and the size of the alphabet of 

the data to search. It is possible to divide the data in data of 

natural language and data of non-natural language. In data of 

natural language, this paper analyzes a set of names of cities all 

over the world. For non-natural language data the paper uses reads 

from human genome. This paper wants to analyze, if it is possible 

to outperform an index-based search by a sequential search 

algorithm. The evaluation shows, that the index-based search has 

a higher performance on the human genome reads, but not on the 

geographical names.  

General Terms 

Algorithms, Performance 

Keywords 

Similarity Search, string similarity, edit distance, string matching 

1. INTRODUCTION 
Beside of the ability of an exact string search, nowadays most 

applications needs a function for similarity search. Applications 

search in data of natural language strings or non-natural language 

strings. Natural language strings are human readable words. An 

application that searches in this data has to be tolerant against 

input errors, because the user could make typing errors or errors in 

the spelling of a word. Nevertheless the application has to find all 

relevant results in the data [7, 10]. Applications for non-natural 

languages are for example applications, which search for similar 

human genome reads [1]. 

It is necessary to solve the string similarity search problem, to 

perform the similarity search in both areas. The input for this 

problem is a query string, a similarity measure and set of data to 

search. To solve this problem, the application has to determine all 

the datasets, similar to the query with respect to the similarity 

measurement [2]. 
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This paper uses the unweighted edit distance as similarity 

measurement. The used datasets are given by the “String 

Similarity Seach/Join Competition” of the EDBT/ICDT 2013 

Joint Conference. The datasets are names of cities as natural 

language data and human genome reads for non-natural language 

data. The paper will try several approaches to solve the problem in 

an efficient way. 

The aim of this work is to find out, if a sequential solution of the 

string similarity search problem on the city-names and the 

genome reads can outperform an index-based solution in its 

execution time. Both algorithms will be improved by several 

approaches. 

The paper is structured as follows. The second chapter will 

explain important terms and introduce several existing approaches 

from scientific literature. The third and fourth chapter will present 

approaches to improve the sequential and index-based search 

algorithms. The fifth chapter will evaluate the implemented 

applications for sequential and index-based search by measuring 

the execution time. The sixth chapter summarizes the work and 

mentions possible future work. 

2. FOUNDATIONS AND RELATED WORK 
This chapter explains important terms and gives a look to related 

work in scientific literature. At first the string similarity search 

problem will be explained. After that the edit distance is defined 

and calculated by a sample. Furthermore the chapter explains two 

approaches of existing related work. Finally it summarizes the 

preliminary considerations and forms two hypothesis. 

2.1 String Similarity Search Problem 
The string similarity search problem returns each string of a set of 

strings that has at least a given similarity for a given query. Let q 

be query string,   a set of strings,    a distance function and   the 

threshold value for the distance [3, 9]. A string   is part of the 

result, if it fulfills the following conditions: 

                     

To solve this problem, the application hast to determine each 

string  , that does not exceed the threshold  . The competition 

rules give the edit distance as similarity metric. This distance 

measurement will be explained in the following. 

2.2 Edit Distance 
The edit distance         of two strings   and   is the minimal 

number of insert, delete or replace operations to transform   to  . 

Two strings are within edit distance  , if            [3, 9]. The 

following example shows the calculation of the edit distance for 

two strings. The input are the string “AGGCGT and “AGAGT”. 

The operations insert, delete and replace are available to transform 

the strings. Each execution of an operation has costs of 1. The 



computation of the edit distance uses a matrix            with 

       rows and        columns. Let    be the length of string 

  and    be the length of string  . The symbol at position   of a 

string   is   .      is the entry of the matrix at row   and column  . 

The entry      is calculated as follows [5]: 

       ,        

       Falls(     ) dann          

 sonst                                

Figure 1 shows the computation of the edit distance between the 

two strings. The last step is to calculate the entry in       , which 

will contain the edit distance between string   and string  . In this 

step the calculation uses condition (3), because both strings have 

the same symbol at the last position. So, it will use the value of 

     in entry     . The calculated edit distance is 2. 

This paper will use different approaches to calculate the edit 

distance, in order to solve the string similarity search problem. It 

will discuss filters, the use of an index and faster string similarity 

algorithms. The basis and reference for the implementation of this 

paper are related publications. These approaches will be explained 

in the following. 

2.3 Related Publications 
This subchapter will introduce several publications related to the 

string similarity search problem. The approaches to solve the 

problem will be explained in a short way. 

Human genome reads consist of very long strings. Rheinländer et 

al. show, that former use of similarity operations is very limited 

and inefficient. That’s why they developed a new efficient 

algorithm for similarity search named PETER. This algorithm 

supports Hamming and edit distance. PETER uses a compressed 

prefix tree for indexing data. Very long suffixes are stored in a 

file, in order to hold the tree in main memory. The tree stores 

information about the minimal and maximal length of the strings 

and the frequency vector, a vector with the number of occurrences 

for each symbol in the string. These information enable an early 

filtering of the results. The algorithm can stop searching in a 

branch, that can not contain correct results [8]. 

Navarro et al. consider the following problems. The first problem 

is the size of the index using a suffix tree. The second problem is 

the exponential dependency of the calculation effort to the length 

of the strings and the edit distance. To solve the first problem, 

they use a suffix array. This has the advantage, that the index can 

only reach a maximum size of four times of the number of strings. 

Furthermore suffix arrays are with exception of very short strings 

faster than suffix trees. The second problem is solved by splitting 

the query string and later integrating the particular results. It is 

possible to reduce the exponential dependency of string length 

and edit distance by this method. 

All problems and experiences of that approaches are used as 

basics for chapter 3 and 4. 

2.4 Preliminaries 
Human genome reads and city-names have very specific 

properties. So it is useful to make preliminary considerations 

about efficient approaches. Human genome reads have a large 

string length and a very small alphabet. On the other hand city-

names have usually a smaller string length, but a larger alphabet. 

The alphabet can vary by using different character sets and 

languages. For example, adding the Chinese language will enlarge 

the alphabet by adding all the symbols. 

These properties enable the construction of two hypotheses for 

efficient string similarity search. The paper will analyze these two 

hypotheses. 

 An index-based solution will have a higher performance 

on human genome reads than a sequential solution, 

because of the large string lengths. 

 An optimized sequential solution can have a higher 

performance on the city-names than an index-based 

solution, because of the smaller string lengths. 

The next chapters 3 and 4 will discuss approaches to improve the 

sequential and the index-based solution for the string similarity 

search. 

3. RUDIMENTS FOR IMPROVING THE 

SEQUENTIAL SOLUTION 
This chapter will introduce several approaches to improve the 

performance of the sequential solution. Starting with an initial 

solution, it focuses on improving the calculation of the edit 

distance, using value and reference semantic, simple data types 

and program methods, parallelism and the management of 

parallelism. Chapter 5 will evaluate these approaches. At first the 

initial solution is discussed and based on that the improvements 

will be explained. 

3.1 Base Implementation 
The first implemented solution should work and solve the string 

similarity search problem without any errors. The used 

programming language is C++. This language has the advantage 

to focus on runtime and memory efficiency. Some other 

programming languages like Java focus on simplicity and clarity 

of the language instead of performance. So, it is not useful to use 

such a language [11]. 

The procedure of the initial implementation consists of reading 

the query and data sets, calculating the edit distance and writing 

the results to a file. The results of this solution provide the 

reference to verify the correct results of the following solutions 

for the sequential and the index-based search. After verifying the 

results, the execution times will show, if the implemented 

approach could improve the previous solution or not. If the 

implemented approach improved the performance it will be part 

of the following solutions. 

3.2 Faster Edit Distance Calculation 
As described in chapter 2, the calculation of the edit distance is 

very costly. Thus, the calculation should be improved by reducing 

the calculation time. 

The first idea tries to avoid the calculation of the edit distance: 

 Consideration of string length: Let   be a delta between 

the length    of string   and the length    of string  , 

calculated as: 

           

Delta   will be compared with the given maximum edit 

distance. If   is greater than the given edit distance, the 

application does not have to compute the edit distance. 

Because the edit distance will be greater than the given 



maximum edit distance. Thus, the current string cannot 

be part of the correct results. 

 Exact search: The given edit distance zero describes the 

case of exact search. It is not necessary to compute the 

edit distance. It is more efficient to compare each letter 

of string   and string  , to determine if the string is a 

result for the query. 

If it is not possible to avoid the calculation, the solution should try 

to abort the calculation early. This approach looks as follows: 

 Consideration of diagonal: The diagonals of the edit 

distance matrix   have special properties. The diagonal 

in Figure 1 shows, that the value of the edit distance is 

rising or stagnating. This is a consequence of the rules 

for calculating the edit distance described in chapter 2. 

The calculation depends on one of the three surrounding 

entries on the left and upper side. So there are overall 

three diagonals and errors can be reduced by one of the 

neighbor diagonals. Errors on the diagonal with entry 

       cannot be reduced. At the end of the calculation 

the entry        will contain the edit distance between 

string   and string  . Considering these facts, there are 

the following two conditions for aborting the 

calculation: 

                                 

                                 

If the value on the diagonal with entry        exceeds 

the given edit distance, the application can abort the 

calculation. For example in Figure 2 after the algorithm 

calculated entry      condition (6) is fulfilled, like that: 

                         

3.3 Values and References 
In contrast to programming languages like Java, the programmer 

in C++ has always to decide, if objects are used direct or indirect 

with pointers or references. The scientific literature uses the terms 

value and reference semantic. The value semantic is used on stack 

objects. The size of an object is fixed and cannot be arbitrary 

changed. The reference semantic is mostly used on heap objects. 

The size of an object is not fixed and the programmer can change 

it. Furthermore it is possible to reference an object several times 

and to manage it by different methods. In addition to the actual 

object the reference semantic uses a reference, e. g. a pointer. The 

creation and deletion of such a pointer costs time. Thus, it is 

useful to use smaller objects direct and to manage larger objects 

by references [11].  

 

Figure 1. Calculation of edit distance 

 

Figure 2. Aborting the calculation of edit distance 

 

The use of the reference semantic has the following advantages: 

 Speed: The reference semantic gives the reference of an 

object to a called method. The value semantic copies the 

entire object [11] 

 Flexibility: For example to order objects, the reference 

semantic only has to copy the pointer to the correct 

position, not the entire object. It could use a pointer for 

each sort key [11]. 

 Memory Efficiency: The reference semantic uses 

memory for the current number of objects. The value 

semantic always allocates memory for the possible 

maximum number of objects [11]. 

So, the implementation should use the value semantic for smaller 

objects and the reference semantic for larger objects, in order to 

optimize the execution time. 

3.4 Simple data types and program methods 
The area of data types and functions offers some potential for 

improvements in every programming language. As a basic 

principle simple data types should be used, because the execution 

time, due to a lower memory usage, is crucial lower. With these 

data types it is possible to work faster as with complex data types. 

For example, the access of an object used in an array is faster than 

an object used in a vector. The same goal should be achieved with 

the usage of simple methods. To reduce execution time, it makes 

sense to implement existing methods in a new way. The 

comparison of two strings or the minimum of two numbers could 

be implemented in a new way to reduce some overhead. That the 

reason why the usage of simple data types and the implementation 

of simple calculations will be reviewed. 

3.5 Parallelism 
Parallelism is one of the important instruments to gain more 

performance [14]. Beside the development of an optimal 

parallelism strategy and its management, the choice of a 

parallelism library is crucial in C++. C++ itself offers parallelism 

with C++ 11 [15], but this mechanism in the most common 

compilers is implement in a dissatisfied way. To choose the right 

library some core questions must be considered, for example: 

 What role plays portability? 

 How familiar are the developers with C++ respectively 

how much time can be invested to become familiar with 

the appropriate library? 

 Does the library fit in the existing implementation? 

The point about portability is one of the main exclusion criterions. 

For a Linux-based implementation all Windows-specific libraries 

are not valuable. Additionally the portability between different 

Linux distributions is important. Beside the portability the time 

investment for the developers to become familiar with a new 



library and the integration into the existing implementation should 

be considered. The time investment can vary from library to 

library. The same is true for the integration into the existing 

implementation. 

The parallelism feature of C++ 11 will not be covered in any 

detail, because GCC 4.7 as a compiler does not support most of 

the appropriate features1.  

After some research the following libraries were considered: 

 Boost2 

 Qt3 

 Intel Threading Building Block4 

The Boost library offers a simple integration and good portability. 

The time investment is minimal. Because the threading library of 

Boost was the foundation of the parallelism specification5 of C++ 

11 it is a generic approach. Qt is another library which offers, 

beside the creation of user interfaces, a parallelism library. Beside 

the platform independence the time investment for the developers 

is minimal, because of the great documentation. The Qt library 

has the disadvantage that its parallelism library is object-oriented 

and not easy to integrate in a non-object-oriented approach. To 

use the library classes have to inherit from the QThread6 object 

[16]. The last library is the Intel Threading Building Block library. 

It offers, like Boost and Qt, portability, but a developer has to 

investment more time to become familiar with it. In contrast it 

promises good performance and a better parallelism management 

[13, 17]. 

Because of the wide spread, the simple integration, and its good 

documentation Boost will be used for the parallelism 

implementation. It does not offer the best performance, but it can 

be used and integrated with no additional effort. 

3.6 Parallelism management 
Beside the usage of the right parallelism library the definition of a 

parallelism strategy is crucial for the performance. There are three 

variants how a thread can be closed. In this context the following 

three hypotheses will be evaluated: 

1. Open and close many threads as possible. 

2. Open exactly one thread per CPU core. 

3. An intelligent management of threads where threads are 

only opened and closed when it’s needed. 

The first point has the lowest implementation effort. One thread 

will be opened per query to calculate the result. This has some 

disadvantages. On the one hand it is a waste of resources, because 

every thread object in Boost will be created on the stack, which 

gives some problems if you open a lot of threads at the same time. 

On the other hand queries can be executed very fast and open and 

close a thread can take more time than the execution of the query 

                                                                 

1 http://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html,   

Access: 01/12/2013 

2 http://www.boost.org/, Access: 01/12/2013 

3 http://qt.digia.com/, Access: 01/12/2013 

4 http://software.intel.com/en-us/intel-tbb/, Access: 01/12/2013 

5http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2007/n2184.html, Access: 

01/12/2013 

6 http://doc.qt.digia.com/qt/threads.html, Access: 01/12/2013 

itself. The evaluation will show the dimensions of the 

performance reduction. Open a thread per CPU core is a good 

alternative to point 1. With this strategy a thread will not be open 

per query. This guarantees a balance in the work of every CPU 

core. The implementation effort is a little bit bigger as in the 

solution of point 1. Crucial for the success of this strategy is a 

balanced distribution of queries on the different cores. This can be 

done through a simple partitioning. The most promising approach 

is an intelligent management of opening and closing threads 

where threads are only opened and closed when they are needed. 

This guarantees that resources are not wasted. To use this 

approach rules have to be defined for opening and closing threads. 

Two example rules are: 

 Open a thread when the average usage over all cores is 

more than 70%. 

 Close a thread when the average usage over all cores is 

less than 30%. 

When following this approach the locking problem has to be 

considered. An example: There are two threads      . Thread    

likes to open a new thread, because rule number one is matched. 

Thread    at the same time likes to close a thread, because the 

average usage is decreased nearly at the same time. There are 

several solutions to this problem. A well-known is the master-

slave principle [12, 18]. In this solution one thread is responsible 

for opening new threads and closing threads. On the one hand 

with that solution there is one additional thread which is only 

responsible for the management of the other threads without 

executing a single query. On the other hand the locking problem is 

solved and with an effective management the usage of the 

resources for the master thread can be neutralized. 

Within the scope of this work the best parallelism strategy will be 

evaluated through several tests. 

3.7 OVERVIEW ABOUT THE 

RUDIMENTS FOR IMPROVING THE 

SEQUENTIAL SOLUTION 
All the presented rudiments for improving the sequential solution 

will be implemented step-by-step. Figure 3 shows a model of the 

six approaches. The results of the first solution will be used for 

the comparison in the other approaches. This guarantees the 

correctness of the results and that the approach improves the 

performance. There are several measurement points in the 

implementation to monitor the different modules of the 

implementation. It is possible to reject an approach if it does not 

return the correct results or if the execution time is not reduced. 

 

Figure 3. Overview about the rudiments to improve the 

sequential solution 
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4. RUDIMENTS FOR IMPROVING THE 

INDEX-BASED SOLUTION 
This paragraph describes the index-based solution. It will describe 

the different steps to improve the performance of the index-based 

solution. 

4.1 Base implementation 
At first a solution will be implemented, which solves the string 

similarity search problem through the usage of an index. From 

this solution other approach will be evaluated.  

As a base implementation the solution of the sequential search 

will be used. Improvements like the better calculation of the edit 

distance, the usage of pointers and references, and the usage of 

simple data types and program methods are already included in 

this first solution. 

A prefix tree will be used for a fast search in the data. This has the 

advantage that the complexity of query depends on the depth of 

the tree instead of the number of data sets [6, 8]. The depth is 

equals to the length of the longest string in the data set. 

At first the data sets will be read from the file. After this the prefix 

tree will be created through adding every single string. Next the 

query file be read and the queries will be executed. The important 

time measurement for comparing the sequential with the index-

based search is the time needed for calculating the results that 

means the time frame between reading the files have finished and 

the end of calculating all results for the given queries. As a 

specialty compared to the base implementation additional 

information will be stored in the nodes. This information allows 

an early cancellation of following the branches who not will 

return a correct result. To realize that the minimal and maximal 

length of a data set will be stored in the nodes, which can be 

reached [8]. 

In the base implementation for the index-based search a node with 

the prefix      must fulfill the following conditions to consider its 

child nodes for the query x: 

                    

                              

The prefix of string y at the position (i + 1) is described through 

    . Because the edit distance of      and      in a prefix tree, 

based on the step-by-step descent in the tree can only be 

calculated to a position i a tolerance value    must be calculated. 

   compensates the loss of information from not knowing the 

length of y. The edit distance may not be greater as the sum of the 

allowed edit distance k and the delta   . Delta    means the 

maximum reachable variance of the length    of the query x to the 

maximum length      respectively the minimum length      of 

the result y. If the value is lower than the variance the current 

branch of the tree must not be included for the calculation of the 

result. 

The base implementation is required to give a correct result back. 

If this goal is achieved other steps will be executed to improve 

performance. 

4.2 Compression 
Another improvement is the compression. The main goal of this 

approach is to create only as many nodes as needed in the prefix 

tree. That decreases the memory usage and enables through fewer 

calculations of the edit distance a faster similarity search. The 

following example in Figure 4 shows the compression. 

The words “Berlin”, “Bern”, and “Ulm” will be inserted to the 

prefix tree. After the insertion is completed the prefix tree will be 

compressed. During that process nodes with only a single child 

node can be merged. After the compression the sample prefix tree 

only includes half of the nodes of the normal tree. 

4.3 Parallelism management 
Similar to the sequential search an index-based search can profit 

from a parallelized execution. Because the parallelization of the 

index-based search has the same requirements as the sequential 

solution the same strategies can be used. For more information 

have a look at chapter 3. In the paragraphs 5 and 6 parallelism and 

its management is discussed in detail. 

4.4 Overview about the rudiments for 

improving the index-based solution 
Figure 5 gives an overview about the rudiments to improve the 

index-based solution. 

It has to be mentioned that, beside the improvements discussed in 

this chapter, the improvements of the sequential search are 

included in the base implementation. 

The process is similar to the one from the sequential solution. The 

results of the base implementation will be compared in every 

single step to guarantee the correctness of it. To prove a faster or 

slower execution time several measurement points are included in 

the implementation. 

5. EVALUATION OF THE SEQUENTIAL 

AND INDEX-BASED SOLUTION 
This chapter will evaluate the sequential and index-based solution. 

At first the evaluation environment will be described. Based on it 

the presentation, the explanation, and the evaluation of the results 

of the time measurement will be compared with each other. 

5.1 Evaluation environment 
As an evaluation environment an Ubuntu Desktop 12.10 

virtualized in Hyper-V as a standard installation will be used. The 

environment consists of eight gigabyte RAM and a virtualized 

Intel i7@2.19 GHz processor with eight processor cores. Because 

of a better comparison, all of the following measurement results 

are received from this environment. 

 

 

Figure 4. Compression of a prefix tree 

 



 

Figure 5. Overview about the rudiments for improving the 

index-based solution 

5.2 Proceeding of the evaluation 
The process of the evaluation is as follows. Starting point are the 

same data sets for the measurement in every single area. The data 

sets and their properties are listed in Table I. 

All in all there are three measurements for every approach on the 

appropriate data sets. The execution of 100, 500, and 1,000 

queries will be measured. All time values are similar to the actual 

execution and not the CPU time, because the usage of parallelism 

can lead to other measurement results when using the CPU time. 

For the sequential and index-based solution only the time will be 

measured to calculate the results. 

If not described in another way the following is true for the 

following paragraphs: If the execution time of an approach is 

better than the execution time of the previous approach the new 

approach will be included in the final implementation. 

In the next paragraphs the best sequential and index-based 

solution for the city names data set will be determined. Based on 

this the results will be compared with each other to make a 

decision which solution is better. This proceeding will be repeated 

for the DNA sequences. 

5.3 Evaluation of the sequential solution on 

the city names data set 
In this paragraph the sequential solution on the city names data set 

will be evaluated. The goal of this evaluation is to choose the 

solution with the fastest execution time for the string similarity 

search problem. The measurement results of every single step are 

summarized in Table III of the appendix. 

5.3.1 Base implementation 
The following time measurements are from the base 

implementation which is used as a reference for the correctness 

and improvement of the other approaches. This implementation 

does not use any of the described improvement approaches. To 

execute 100 queries this implementation takes 16.92 sec., for 

executing 500 queries 84.80 sec., and for executing 1,000 queries 

166.22 sec. 

5.3.2 Calculation of the edit distance 
As explained in section 3, there are different approaches to the 

calculation of the edit distance implemented. It takes 3.71 sec to 

execute 100 queries, 17.81 sec to execute 500 queries, and 34.20 

sec to execute 1,000 queries. It was possible to reduce the 

execution time to one seventh. 

5.3.3 Value or reference 
A reduction in the execution time could also be achieved by 

deciding on a specific use of the value semantic or reference 

semantic in C++. For example, when passing large objects, they 

must not be copied completely. This is a C++ specific 

optimization, which is not available in many other programming 

languages. To execute 100 queries this implementation takes 2.88 

sec., for executing 500 queries 15.13 sec., and for executing 1,000 

queries 29.31 sec. 

5.3.4 Simple data types and program methods 
The use of simple data types and implementation of simple 

program methods promises additional performance gains. It takes 

2.20 sec to execute 100 queries, 11.54 sec to execute 500 queries 

and 21.64 sec to execute 1,000 queries. In comparison to the base 

implementation, the execution time is only one eleventh. 

5.3.5 Parallelism 
If properly implemented, parallelism can achieve performance 

gains. In this first implementation of parallelism, the first strategy 

of parallelism is implemented. A thread will be created for each 

query and closed after the completion. To execute 100 queries this 

implementation takes 13.13 sec., for executing 500 queries 64.95 

sec., and for executing 1,000 queries 129.35 sec. In comparison to 

the last implementation, the execution time is much higher. This 

approach will not be discarded. It should be considered in more 

detail in the next approach. 

5.3.6 Management of parallelism 
Management of parallelism allows adjustment of parallelism. It 

prevents the wasting of resources and promises a further 

performance improvement. Several configurations are tested for 

their performance gains. Different kind of threads will be opened 

for all three sets of queries. The use of 4, 8, 16 and 32 threads are 

considered and examined. The creation of eight threads 

corresponds to the second strategy and the creation of different 

kind of threads corresponds to the third strategy. The results of the 

measurement are shown in Table II of the appendix. The creation 

of eight threads represents the optimum. This solution is better 

than the solution of the fourth approach. 

5.4 Evaluation of the index-based solution on 

the city names data set 
The previous section has shown how the iterative optimizations 

were able to improve the sequential scan on the city names data 

set. This section also follows an iterative optimization to improve 

the index-based search on the city names data set. The 

measurement results of every single step are summarized in Table 

V of the appendix. 

5.4.1 Base implementation 
The following results are from the base implementation for the 

index-based solution on the city names data set. The 

implementation represents the first implementation of an index 

based on a prefix tree. It takes 8.14 sec to execute 100 queries, 

42.26 sec to execute 500 queries and 77.95 sec to execute 1,000 

queries. 

Table I. Overview about the data sets and their properties 

 
#Data 

sets 
#Symbols Length 

Edit 

distance 

City 

names 
400,000 ca. 255 max. 64 0, 1, 2, 3 

DNA 750,000 5 ca. 100 0, 4, 8, 16 



5.4.2 Compression 
The compression is the first step to improve the index-based 

solution. As described in Chapter IV, the number of tree nodes is 

reduced. To execute 100 queries this implementation takes 7.26 

sec., for executing 500 queries 38.79 sec., and for executing 1,000 

queries 73.43 sec. 

5.4.3 Management of parallelism 
The last step implements the management of parallelism. The 

implementation of the sequential scan is re-used and adapted 

according to the conditions. The use of 4, 8, 16 and 32 threads are 

considered and examined. The results of the measurement are 

shown in Table IV of the appendix. The creation of 33 threads 

was not able to reduce the execution time. The use of 32 threads 

represents the optimal index-based solution for the city name data 

set. 

5.5 Comparison of the sequential solution 

with the index-based solution on the city 

names data set 
The results of the measurement can be stated as follows. The 

execution time for the sequential scan could be reduced by 

different kinds of approaches. Considering 100, 500 and 1000 

queries, the execution time could be reduced by 91 to 97 percent. 

The execution time for the index-based solution could be reduced 

by 81 to 82 percent. In comparison of the sequential solution with 

the index-based solution on the city names data set, the sequential 

solution needs between 4 and 58 percent of the time of the index-

based solution. 

An optimized sequential scan is faster than an index-based 

solution on a set of short strings. The hypothesis is supported. 

Figure 6 illustrates the best sequential solution with the best 

index-based solution. The following sections evaluate approaches 

to improve the sequential and index-based solution on the DNA 

data set. 

5.6 Evaluation of the sequential solution on 

the DNA data set 
The implementation of the sequential solution for the DNA data 

set is the same as the implementation of the sequential solution for 

the city names data set. The test cases are similar to those of the 

sequential solution. The results of measurement for the 

management of the parallelism are shown in Table VI in the 

appendix. The optimal number of threads is 32. It is different to 

the city names data sets.  

 

Figure 6. Comparison of the sequential solution with the 

index-based solution on the city names data set 

The measurement results of every single step are summarized in 

Table VII of the appendix. The last approach with 32 Threads 

represents the best solution and should be considered for this 

reason further. This solution will be compared to the best index-

based solution. 

5.7 Evaluation of the index-based solution on 

the DNA data set 
The index-based solution shows that the implementation of a 

compression and the use of parallelism management can improve 

the performance of an index-based solution on DNA data sets. 

The results of measurement for the management of the parallelism 

are shown in Table VIII in the appendix. The optimal number of 

threads is 16. This approach represents best solution in 

comparison to the previous approaches. All results of 

measurement are shown in Table IX in the appendix. 

5.8 Comparison of the sequential solution 

with the index-based solution on the DNA data 

set 
The results of the measurement can be stated as follows. The 

execution time for the sequential scan could be reduced by 

different kinds of approaches. Considering 100, 500 and 1000 

queries, the execution time could be reduced by 99 percent. The 

execution time for the index-based solution could be reduced by 

91 to 92 percent. In comparison of the sequential solution with the 

index-based solution on the city names data set, the index-based 

solution needs between 9 and 19 percent of the time of the 

sequential solution. An index-based solution is faster than an 

optimized sequential solution on a set of large strings. The second 

hypothesis is supported. Figure 7 illustrates the best sequential 

solution with the best index-based solution. 

6. CONCLUSION AND FUTURE WORK 
The aim of this paper was to outperform an index-based solution 

with a sequential scan. Different kind of approaches like 

improving the calculation of the edit distance, using value 

semantic or reference semantic, using simple data types and 

implementing simple program methods, implementing parallelism 

and management of parallelism were considered to implement a 

sequential solution. The index-based solution is based on this 

knowledge. Furthermore a compression of the prefix-tree and the 

management of parallelism were examined. It was determined that 

the index-bases solution takes less time to compute the results on 

the DNA data set, but it takes more time on the city name data set. 

 

 

Figure 7. Comparison of the sequential solution with the 

index-based solution on the city names data set 

0

5

10

15

100 queries 500 queries 1000 queries

se
co

n
d

s

City names data set

Best sequential solution Best index-based solution

0

200

400

600

800

1000

100 queries 500 queries 1000 queries

se
co

n
d

s

DNA data set

Best sequential solution Best index-based solution



The topic of this work provides further needs for research. The 

following area can be examined: 

 Sorting: Can a pre-sorting by length or alphabet reduce 

the execution time? 

 Dictionary Compression: The use of a compression 

dictionary in the DNA region could achieve 

improvements. An alphabet of five symbols makes it 

possible to represent a symbol with three bits. This 

makes it possible to store symbols more efficiently and 

to accelerate the computation time of the edit distance, 

because fewer bits in sum must be compared. 

 Frequency vectors: Addition information about the 

number of occurrence could calculate. For the DNA 

data set, the number of occurrence of the symbols A, C,  

G, N and T is needed. For the city names data set, the 

number of occurrence of the symbols A, E, I, O and U is 

needed. On this basis, it is possible to implement an 

early filtering. 

 Programming languages: The same approach could be 

implemented with a different programming language, to 

examine their effectiveness in this domain. 

 Library for parallelism: The parallelism approach could 

be implemented with a different library. For example, 

the Qt and the Intel Threading Building Blocks library 

are two interesting alternatives for parallelism. 

 Management of parallelism: A possibility of 

improvement is to implement an intelligent management 

of parallelism. The opening and closing of threads has 

to be dependent on the system workload. 

 Number of data records: Has the number of data records 

an effect on the best solution?  

Finally, this work has produced promising results. There are a lot 

of other approaches, which could be examined in the future. 
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8. APPENDIX 
 

Table II. Management of parallelism in the sequential solution 

on the city name data set 

Number of threads 

Number of queries 

100 

queries 

500 

queries 

1.000 

queries 

4 threads 1.29 sec 3.98 sec 7.21 sec 

8 threads 1.46 sec 3.57 sec 5.93 sec 

16 threads 2.29 sec 3.86 sec 6.17 sec 

32 threads 4.56 sec 5.48 sec 6.98 sec 

 

Table III. Evaluation of the sequential solution on the city 

name data set 

Approach 

Number of queries 

100 

queries 

500 

queries 

1.000 

queries 

1) Base 

implementation 
16.92 sec 84.80 sec 166.22 sec 

2) Calculation of the 

edit distance 
3.71 sec 17.81 sec 34.20 sec 

3) Value or 

reference 
2.88 sec 15.13 sec 29.31 sec 

4) Simple data types 

and program methods 
2.20 sec 11.54 sec 21.64 sec 

5) Parallelism 13.13 sec 64.95 sec 129.35 sec 

6) Management of 

parallelism 
1.46 sec 3.57 sec 5.93 sec 

 

Table IV. Management of parallelism in the index-based 

solution on the city name data set 

Number of threads 

Number of queries 

100 

queries 

500 

queries 

1.000 

queries 

4 threads 2.39 sec 11.79 sec 20.99 sec 

8 threads 1.70 sec 8.17 sec 14.78 sec 

16 threads 1.50 sec 7.93 sec 14.31 sec 

32 threads 1.53 sec 7.58 sec 14.19 sec 

 

Table V. Evaluation of the index-based solution on the city 

name data set 

Approach 

Number of queries 

100 

queries 

500 

queries 

1.000 

queries 

1) Base 

implementation 
8.14 sec 42.26 sec 77.95 sec 

2) Compression 7.26 sec 38.79 sec 73.43 sec 

3) Management of 

parallelism 
1.53 sec 7.58 sec 14.19 sec 

 

Table VI. Management of parallelism in the sequential 

solution on the DNA data set 

Number of threads 

Number of queries 

100 

queries 

500 

queries 

1.000 

queries 

4 threads 126.17 sec 573.94 sec 1,136.40 sec 

8 threads 88.94 sec 476.01 sec 841.55 sec 

16 threads 83.73 sec 415.25 sec 848.47 sec 

32 threads 89.53 sec 413.98 sec 827.32 sec 

 

Table VII. Evaluation of the sequential solution on the DNA 

data set 

Approach 

Number of queries 

100 

queries 

500 

queries 

1.000 

queries 

1) Base 

implementation 
≈ half day ≈ 1 day ≈ 2 days 

2) Calculation of the 

edit distance 
278.45 sec 1,767.40 sec 3,191.10 sec 

3) Value or 

reference 
269.45 sec 1,746.70 sec 3,110.12 sec 

4) Simple data types 

and program methods 
267.42 sec 1,512.36 sec 2,833.03 sec 

5) Parallelism 88.18 sec 434.66 sec 905.89 sec 

6) Management of 

parallelism 
89.53 sec 413.98 sec 827.32 sec 

 

Table VIII. Management of parallelism in the index-based 

solution on the DNA data set 

Number of threads 

Number of queries 

100 

queries 

500 

queries 

1.000 

queries 

4 threads 118.31 sec 545.35 sec 1,094.73 sec 

8 threads 76.60 sec 419.59 sec 823.76 sec 

16 threads 71.78 sec 367.95 sec 753.01 sec 

32 threads 72.62 sec 370.21 sec 768.96 sec 

 

Table IX. Evaluation of the index-based solution on the DNA 

data set 

Approach 

Number of queries 

100 

queries 

500 

queries 

1.000 

queries 

1) Base 

implementation 
876.48 sec 4,355.42 sec 8,686.65 sec 

2) Compression 352.24 sec 1,737.44 sec 3,450.47 sec 

3) Management of 

parallelism 
71.78 sec 367.95 sec 753,01 sec 

 


