
Trie-based Similarity Search and Join

Jianbin Qin† Xiaoling Zhou† Wei Wang† Chuan Xiao‡
†University of New South Wales, Australia
{jqin, xiaolingz, weiw}@cse.unsw.edu.au

‡ Nagoya University, Japan
{chuanx}@itc.nagoya-u.ac.jp

ABSTRACT
Driven by the increasing demands from applications such as
data cleansing, integration, and bioinformatics, approximate
string matching queries have gain much attention recently.
In this paper, we present the design and implementation of
a trie-based system which supports both string similarity
search and join based on our recent work [23].

1. INTRODUCTION

1.1 Background
With the increasing need to store textual data in modern

applications, it poses a stringent demand to manage string
data and support efficient query processing for them. An
fundamental type of query is the string similarity query,
which matches database strings that are similar but not
identical. Reasons for using approximate rather than ex-
act matching in queries are mainly due to the allowance of
typographical errors, or existence of multiple conventions for
the same entity such as names or addresses.

String similarity queries include string similarity search
and string similarity join. Given a set of string objects R
in database, a search string Q, a similarity function and a
similarity threshold t, string similarity search finds all the
strings in R that has similarity of at least t with Q. If we
do string similarity search by treating every string object in
another set S as Q, this problem is called string similarity
join. More specifically, string similarity join finds every pair
of strings that have similarity at least t where the two similar
strings in one pair come from two different sets.

There are many applications of string similarity queries.
For example, in data integration, similarity join of customer
records can help identify multiple profiles of the same cus-
tomers. In data cleansing, similar objects can be found
and inconsistencies and redundancies can be eliminated us-
ing string similarity search [2]. In bioinformatics, similarity
queries can be used to find similar genome sequences to help
finding a cure for diseases [8, 13]. Similarity queries have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT/ICDT ’13 March 18 – 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1599-9/13/03 ...$15.00.

also been used to perform various Web mining activities,
including duplicate web page detection [1, 22].

Consequently, there has been much interest to solving the
string similarity queries efficiently. However, this problem
is much more challenging than the exact string matching
problem. This is mainly because the introduction of com-
plex similarity functions (such as edit distance) and the po-
tentially substantial increase of result size. In addition, the
solution is expected to be able to scale to millions or bil-
lions of objects as required by applications such as industrial
search engines (Google or Bing). For them, there are mil-
lions of users querying the service at any given time, which
results in millions of similarity queries concurrently to the
search system, yet all expecting to receiving results in near
real-time.

1.2 Existing Work
In terms of similarity functions that are used to measure

the similarity of two objects, commonly used ones includes
overlap, Jaccard, and cosine similarity functions, and the
edit distance function. In the following, we briefly survey
existing work on string similarity search and join problems
with a given edit distance threshold, as they are widely used
to captures typographical errors for text strings or docu-
ments. Readers are referred to recent surveys and tutorials
for a more comprehensive treatment of the existing work [6,
17, 7, 10].

There are several major approaches to deal with string
similarity queries with edit distance constraints. A prevalent
approach is based on the filter-and-verify framework. For
example, the gram-based [21] and chunk-based methods [12,
18, 18] transform strings into sets of grams or chunks first,
and then leverage existing search or join methods for sets to
answer the queries. Additional filtering can be performed to
further improve the performance, for example, count filter-
ing, positional filtering and length filtering [5], prefix filter-
ing [2], location-based and content-based mismatch-filterings
[21], error-estimation-based filtering [12], and vchunk num-
ber filtering [18]. Finally, similarity functions are computed
for each pair in the candidate set to verify if they are true
match. A major disadvantage of these methods is that they
are inefficient when dealing with datasets with very short
strings, as the selectivities of the grams or chunks are be-
come rather poor.

Another approach is based on enumeration. Enumeration-
based methods generate all the possible strings that are
within similarity threshold t from given strings, hence trans-
forming a similarity query to an exact match query. The
naive method typically does not work in practice as the num-

ber of enumeration is prohibitively large. Several approaches
based on deletion neighbourhood [14], and partitioning [19]
have been proposed, which work extremely well for small
edit distance thresholds. The disadvantage of these meth-
ods is that they become resource intensive to enumerate all
the variants when strings are very long or the edit distance
threshold is very large.

Yet another approach is based on tries [3]. It indexes the
strings in the database in a trie and support edit similar-
ity search by incrementally maintaining a set of candidate
nodes, or active nodes, during the query processing. [16]
introduces a trie-based method to support edit similarity
joins efficiently with additional pruning techniques such as
sub-trie pruning. Most recently, we have proposed two novel
trie-based approximate prefix match methods based on pre-
computation [20, 23].

1.3 Outline
In this paper, we present a trie-based system for support-

ing string similarity search and join efficiently over large
scale datasets. We use the trie structure for indexing as
it has the following advantages: (1) it typically occupies
smaller amount of space than strings; (2) it captures the
prefix-sharing property of strings and hence is able to share
computation; (3) it can be easily extended to support up-
dates; and (4) it does not need final verification.

In our proposed system, we integrate techniques such as
subtrie-pruning [4], improved edit distance computation [23],
and multi-threading, in order to engineer an efficient and
versatile systems for both string similarity search and join.

In the subsequent sections, we first describes the design of
the system, followed by the description of pruning techniques
and implementation details.

2. DETAILED DESCRIPTION
In this section, we present the detailed description of the

system. Firstly, we give the framework of the system. Then,
we demonstrate the detailed design and implementation to
deal with string similarity search and join, respectively.

2.1 Framework
As mentioned above, the system is based on the trie data

structure. Figure 1 shows an example trie constructed for
four data strings: {art, cab, map, mate}. At first, all the
strings in the dataset are indexed into a trie. Duplicate
strings are indexed into the same path in the trie but with
different string ids stored in the leaf node of the path. Each
node in the trie contains a range of the length of strings
stored underneath this node. For example, in Figure 1, a
range [3, 4] is stored in node n8 as the minimum length
of the descendant leaf nodes of n8 is 3 and the maximum
length is 4. Then, the index trie is probed incrementally
to compute active node set using Algorithm 1 and Algo-
rithm 2, respectively, to answer string similarity search and
join queries.

2.2 String Similarity Search
Algorithm 1 demonstrates the process for string similar-

ity search.1 In order to find similar strings for a given query
string, we first start from the root node of the trie, incre-
mentally compute the active node set of each prefix of the

1Detail of Function computeActiveNode can be found in [9].

∅n0

m n7

a n8

p n11t n9

e n10

cn4

an5

bn6

an1

rn2

tn3

Figure 1: Trie Index Example

query string [3]. More specifically, we compute the active
node set of empty string first given the edit distance thresh-
old, then for each prefix of length i of the query string (we
call it Qi, where 0 ≤ i ≤ |Q|; latter being the length of the
query string), we compute the active node set of Qi accord-
ing to the active node set of Qi−1. After the computation
of each active node set, several filtering methods such as
length filtering are adopted to further reduce the size of ac-
tive node set. These filtering methods are presented in the
next section. Finally, after we get the active node set of the
complete query string, we check add all the nodes in the
active node set that is a leaf node to the final result set.

Algorithm 1: SimiSearch(I, Q, τ)

Input : I : index trie which stores all the dataset
strings
Q : the query string
τ : the given edit-distance threshold

Output: R : R = {(s ∈ I.strings,Q)|ed(s,Q) ≤ τ}
r = I.root;1

AQ0 = Ar = {n|n ∈ I && |n| ≤ τ} ; /* get active2

node set of empty string */

for i = 1 to |Q| do3

Qi = prefix of length i of Q;4

AQi = computeActiveNode(Qi, pruning(AQi−1));5

for each leaf node nl ∈ AQ|Q| do6

R = R ∪ {(nl, Q)};7

2.3 String Similarity Join
A naive method to support join is to directly use the

similarity search algorithm on each string in the data or
query set. One immediate observation is that when search-
ing data strings with similarity search algorithm, most data
strings have shared prefixes. For example, string “abcdefg”
and “abcdhijk” both share prefix “abcd”. In this case, both
strings will have to calculate the active node set of prefix
“abcd” twice. Therefore, we can eliminate the redundant
calculation through trie traversal.

For self-join, as all the data strings have been indexed
into the trie, we can traverse the trie once to find all the

similar pairs as proposed in [4]. Algorithm 2 demonstrates
similarity self-joins. Similar to its search counterpart, the
trie is traversed from the root node to incrementally compute
active node set of each trie node. In order to avoid repeated
access of trie node, we traverse the trie in pre-order and store
the active node set of traversed trie nodes into a stack, and
pop the node out after all its descendant nodes are traversed.
In this manner, we make sure each trie node is processed
once and its active node set is computed once. During the
traversal, if a leaf node is encountered, all the nodes in its
active node set are checked. If anyone of the active nodes is a
leaf node, it is added into result set with the current probing
leaf node as a similar pair. An extra process is the filtering
process. Same as the filtering process in search, after the
calculation of each active node set, several filtering methods
such as length filtering and single branch filtering are used to
remove unnecessary active nodes so as to improve the time
and space efficiencies.

For non-self-join, we just build a trie for each of the two
datasets and traverse the one trie to search against the other
trie.

Algorithm 2: SimiJoin(I, n,A, τ)

Input : I : index trie which stores all the dataset
strings
n : current processing node.
A : current active node set.
τ : the given edit-distance threshold

Output: R : R = {(si ∈ I.strings, sj ∈
I.strings)|ed(s,Q) ≤ τ, i 6= j}

if n = I.root then1

A = Ar ; /* get active node set of empty2

string */

if n is leaf node then3

for each leaf node nl ∈ A do4

R = R ∪ {(nl, n)};5

for each node ni ∈ children(n) do6

Ai = computeActiveNode(ni, pruning(A));7

R = R ∪ SimiJoin(I, ni,Ai, τ);8

3. TECHNIQUES
In this section, we describe several techniques used in

the system, including improved edit distance computation,
length filtering used in similarity search and single branch
filtering used for join.

3.1 Edit distance computation
The standard method to compute the edit distance be-

tween two strings D and Q (of length n and m, respectively)
is the dynamic programming algorithm that fills in a matrix
M of size (n + 1) · (m + 1). Each cell M [i, j] records the
edit distance between the length i and j prefixes of the in-
put strings, respectively. The cell values can be computed
in one pass in row-wise or column-wise order based on the

following equation:

M [i, j] = min(M [i− 1, j − 1] + δ(D[i], Q[j]), (substitution)

M [i− 1, j] + 1, (insertion)

M [i, j − 1] + 1), (deletion)
(1)

where δ(x, y) = 0 if x = y, and 1 otherwise. The bound-
ary conditions are M [0, j] = j and M [i, 0] = i. The time
complexity is O(n ·m). In this paper, we use the convention
of placing the query string vertically and the data string
horizontally in the matrix, as shown in Figure 2(a).

Define a k-diagonal of the matrix as all the cells M [i, j]
such that i − j = k. To determine if D is within τ edit
distance from Q, the threshold edit distance algorithm in [15]
only needs to compute the k-diagonals of the matrix, where
k ∈ [−τ, τ], as shown in the green and yellow shaded area in
Figure 2(a). The complexity is O(τ ·min(n,m)).

We can see that when the edit-distance value in the k-
diagonal of the matrix is greater than the given threshold,
its actual value is meaningless to us. Therefore, we can
use a special character to replace all such values in the k-
diagonal, for example Figure 2(b), which is transformed by
replacing all the values in the k-diagonal in Figure 2(a) with
“#”. It is obvious that the computation of edit-distance can
be stopped after values in the third row is computed (when
length of query string = 2) as all the values in this row is
greater than the threshold, thus this two strings cannot be
similar strings. The method of incrementally computing ac-
tive node set of each prefix of the query string is similar
to compute edit distance values in k-diagonal of the ma-
trix. Usually in the k-diagonal, the complexity of comput-
ing values in the (j + 1)th column/row from values in jth

column/row is O(τ). However, since we can precompute all
the possible edit-distance transition state using the intuition
in [11], the transition cost can be improved to O(1) which
enhances computation performance substantially.

xx

a

b

0

1

2

1

1

2

a

2

c

d

3

4

3

4

1

2

3

4

d

3

2

2

3

3

a

b

#

0

1

1

1

#

a

c

d

1

#

#

d

#

#

#

0 1 2 3 0 1 2 3

Q
ue

ry

Data

0-diagonal1-diagonal

(-1)-diagonal

(a) Edit Distance Matrix and Diagonals (b) Edit Vectors (τ = 1)

0-diagonal

Figure 2: Edit Vector (τ = 1)

3.2 Filtering methods

3.2.1 Length Filtering
Length filtering is first proposed by Gravano et. al. in [5]

to deal with string similarity queries, but it is first used
in trie-based method in [4]. The basic idea is that after
computing one active node set, check all the active nodes
in the set to see if there is any node whose descendant leaf
nodes are all have length difference lager than τ with the
query string; if so, these nodes should be removed from the

active node set as they do not contain any leaf node which
is within edit-distance τ with the query string.

3.2.2 Extended Length Filtering
There is another extended way to use the length filter-

ing. When checking the minimum length difference between
query string and all the strings stored underneath a partic-
ular active node, instead of using the original edit distance
threshold τ , we can get a tighter bound by checking the
current edit distance between current active node with the
query string. More precisely, if the current edit distance
between query string and the string represented by the cur-
rent probing active node is τ1, where τ1 must be no larger
than τ , then the new threshold should be changed to τ − τ1,
which means if all the strings stored underneath the current
probing active node have length difference larger than τ−τ1
with the query string, then this active node can be deleted
from the active node set.

The above two filtering methods can be used in both ap-
proximate string search and join problem. By adopting these
two filtering methods, the size of the active node set in each
step can be reduced, and therefore, improves the search and
join performance.

3.2.3 Single branch filtering
The single branch filtering method is proposed in [4]. The

intuition of this method is that if two nodes in an active node
set belong to the same trie branch (i.e. they have ancestor-
descendant relationship), and they have exactly the same set
of descendant leaf nodes, then one of them can be pruned as
the including of this node will not introduce any new results
(usually the one who is ancestor is removed).

3.3 Implementation details

3.3.1 Trie index
In the framework, we employ trie as the index structure.

As we require the trie structure to efficiently support both
traversal and random accesses, we use the STL map as the
data structure to implement the trie node. With STL map
in each trie node, the traversal of all children of one node re-
quires O(n) time while search one particular child node will
only require O(log(n)) time (n is the number of children).

3.3.2 Multi-thread Optimized Search and Joins
Most current hardware systems are equipped with multi-

core CPUs. In the mean time, almost all the latest op-
erating systems support multi-threaded programming. Al-
though current techniques for String Similarity Search and
Join are very efficient, it is clear that multi-thread based im-
plementation can improve the performance by several times
of magnitude. Therefore, we use multi-thread in the imple-
mentation of the system.

1. We support multi-threaded similarity search by a sim-
ple extension. We first construct a lock-protected query
pool which contains all the unfinished queries. Then
we setup several search threads and each search thread
will independently acquire a query job and process its
it and then output its results.

2. We use the following simple method to support multi-
threaded similarity join. We first sort the data by

alphabetic order. Then based on the data distribu-
tion, we partition the data into t (i.e., the number of
threads) partitions logically. Within each partition, we
assign each partition to one worker thread.

4. REFERENCES
[1] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all

pairs similarity search. In WWW, 2007.

[2] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive
operator for similarity joins in data cleaning. In ICDE,
2006.

[3] S. Chaudhuri and R. Kaushik. Extending
autocompletion to tolerate errors. In SIGMOD
Conference, 2009.

[4] J. Feng, J. Wang, and G. Li. Trie-join: a trie-based
method for efficient string similarity joins. VLDB J.,
21(4):437–461, 2012.

[5] L. Gravano, P. G. Ipeirotis, H. V. Jagadish,
N. Koudas, S. Muthukrishnan, and D. Srivastava.
Approximate string joins in a database (almost) for
free. In VLDB, 2001.

[6] M. Hadjieleftheriou and C. Li. Efficient approximate
search on string collections. PVLDB, 2(2):1660–1661,
2009.

[7] M. Hadjieleftheriou and D. Srivastava. Approximate
string processing. Foundations and Trends in
Databases, 2(4):267–402, 2011.

[8] T. Kahveci and A. K. Singh. Efficient index structures
for string databases. In VLDB, pages 351–360, 2001.

[9] G. Li, S. Ji, C. Li, and J. Feng. Efficient fuzzy full-text
type-ahead search. The VLDB Journal, 20(4):617–640,
2011.

[10] X. Lin and W. Wang. Set and string similarity
queries: A survey. Chinese Journal of Computers,
(10):1853–1862, 2011.

[11] W. J. Masek and M. Paterson. A faster algorithm
computing string edit distances. J. Comput. Syst. Sci.,
20(1):18–31, 1980.

[12] J. Qin, W. Wang, Y. Lu, C. Xiao, and X. Lin.
Efficient exact edit similarity query processing with
the asymmetric signature scheme. In SIGMOD, 2011.

[13] D. Sokol, G. Benson, and J. Tojeira. Tandem repeats
over the edit distance. Bioinformatics, 23(2):30–35,
2007.

[14] B. S. T. Bocek, E. Hunt. Fast Similarity Search in
Large Dictionaries. Technical Report ifi-2007.02,
Department of Informatics, University of Zurich, April
2007. http://fastss.csg.uzh.ch/.

[15] E. Ukkonen. Algorithms for approximate string
matching. Information and Control, 64(1-3):100–118,
1985.

[16] J. Wang, J. Feng, and G. Li. Trie-join: Efficient
trie-based string similarity joins with edit. In VLDB,
2010.

[17] W. Wang. Similarity joins as stronger metric
operations. SIGSPATIAL Special, 2:24–27, July 2010.

[18] W. Wang, J. Qin, C. Xiao, X. Lin, and H. T. Shen.
VChunkJoin: An efficient algorithm for edit similarity
joins. IEEE Trans. Knowl. Data Eng., 2012.

[19] W. Wang, C. Xiao, X. Lin, and C. Zhang. Efficient
approximate entity extraction with edit constraints. In

SIMGOD, 2009.

[20] C. Xiao, J. Qin, W. Wang, Y. Ishikawa, K. Tsuda, and
K. Sadakane. Efficient error-tolerant query
autocompletion. Submitted for publication.

[21] C. Xiao, W. Wang, and X. Lin. Ed-Join: an efficient
algorithm for similarity joins with edit distance
constraints. PVLDB, 1(1):933–944, 2008.

[22] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient
similarity joins for near duplicate detection. In WWW,
2008.

[23] X. Zhou, J. Qin, C. Xiao, W. Wang, X. Lin, and
Y. Ishikawa. LEVA: An ef̈ıň ↪Acient query processing
algorithm for error tolerant autocompletion.
Submitted for publication.

