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ABSTRACT
Given a collection of strings, goal of the approximate string
matching is to efficiently find the strings in the collection
that are similar to a query string. In this paper, we fo-
cus on edit distance as measure to quantify the similarity
between two strings. Existing q-gram based methods to
address this problem use inverted indexes to index the q-
grams of given string collection. These methods begin by
generating the q-grams of query string (disjoint or overlap-
ping) and then merge the inverted lists of these q-grams.
Several filtering techniques have been proposed so as to seg-
ment inverted lists to relatively shorter lists thus reducing
the merging cost. We use a filtering technique which we call
as “position restricted alignment" that combines well known
length filtering and position filtering to provide more ag-
gressive pruning. We then provide an indexing scheme that
integrates the inverted lists storage with the proposed filter
thus enabling us to auto-filter the inverted lists. We evalu-
ate the effectiveness of the proposed approach by thorough
experimentation.

1. INTRODUCTION
Strings form a fundamental data type in computer sys-

tems and string searching has been extensively studied since
the inception of computer science. Approximate string match-
ing or string similarity search takes a set of strings and a
query string as input, and outputs all the strings in the set
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that are similar to the query string. It is a central problem
to many real world applications in the field of information
retrieval, bioinformatics, data cleaning etc. There are many
functions to quantify the similarity of two strings, such as
Jaccard similarity, Cosine similarity, and Edit distance. In
this paper, our focus is on edit distance. The edit distance
of two strings is the minimum number of single-character
edit operations (i.e., insertion, deletion, and substitution)
needed to transform one string to another. For example, the
edit distance between “masachusatts" and “massachusetts"
is 2. Edit distance is useful when a search engine is required
to perform spelling corrections and/or needs to handle half-
word or phrase queries. It is also widely used in many bi-
ological tasks like genome matching, alignment, mass spec-
trometry and DNA sequencing.
Existing methods to address this problem can be broadly

classified into two categories. The first one is based on the
use of trie (suffix tree) data structure for indexing the set
of input strings. These methods rely on the fact that edit
distance between two strings is bounded by the edit distance
between their prefixes. This allows us to filter out strings
having prefix with edit distance higher than the required
threshold with respect to some prefix of the query string by
systematically navigating trie (suffix tree). However, these
methods are usually inefficient for long strings as they have
a small number of shared prefixes. Moreover navigation cost
of trie (suffix tree) suffers from exponential dependence on
the pattern length as well as the edit distance threshold in
worst case.
A more common approach to tackle the approximate string

matching is q-gram based and makes use of inverted indexes
to index the q-grams. A q-gram is a consecutive substring
of a string with size q that can be used as a signature of
the string. The key idea these methods exploit is that two
strings are similar only if their q-gram sets share enough
common grams. A lower bound on the number of common
grams depends on the length of the grams i.e., q as well
as the edit distance threshold. Thus, given a query string,
these methods first generate its q-grams, retrieve the cor-
responding inverted lists, and then merge the lists to find
strings similar to the query string. These methods also use
various filtering techniques to prune strings (length filtering



and position filtering being the most common), effectively
reducing the size of lists to be merged, and thus reducing
query time. However these methods have following limita-
tions:

• Most of the existing methods use “one-for-all" principle
and fix q at the time of index construction. As known
from the literature, a larger value of q results in a
smaller size of inverted lists, which may reduce the cost
of merging, thus improving the query performance [12].

• Applying filters to prune out the candidate strings dur-
ing query execution can be expensive in terms of com-
putational cost.

We observe that the ability to store grams for multiple
values of q can allow us to select the appropriate value of q
based on the given edit distance threshold and achieve good
query performance over wide range of edit distance thresh-
old. Moreover, overhead of applying filters during query
execution can be avoided if inverted lists of the q-grams are
maintained so as to efficiently retrieve only those strings
which satisfy the filter conditions to be applied.
Our contributions: We first propose the use of suffix tree

leafs for encoding inverted lists of grams for all values of q.
We then use “Position Restricted Alignment” that combines
well known length filtering and position filtering to provide
more aggressive pruning. Finally we show how the leafs of
the suffix tree can be rearranged so that only the strings sat-
isfying the position restricted alignment are retrieved. This
enables us to auto-filter the inverted lists by integrating their
storage with the filter application.
Outline: We review related work in Section 2. Section 3

gives the preliminaries. Section 4 presents the proposed
framework for answering approximate string matching queries
whereas Section 5 focuses on “Position Restricted Align-
ment" based filtering. Section 6 discusses practical improve-
ments to the framework. We have conducted extensive ex-
periments to evaluate the proposed techniques and the re-
sults are reported in Section 7.

2. RELATED WORK
There are many studies on approximate string search, in

which given a set of strings, a query string, a similarity func-
tion, and a threshold, goal is to find all the strings having
similarities to the query string within the threshold. Sev-
eral algorithms [2, 12, 11] have been proposed for answering
approximate string queries efficiently. Their main strategy
is to use various filtering techniques to improve the perfor-
mance. Traditionally, fixed length q-grams are widely used
for answering edit similarity queries to utilize the effective-
ness of count filtering in pruning candidates. In [12] authors
have proposed to preprocess the string collection to obtain
a dictionary of high-quality grams of variable lengths based
on gram frequencies. Query partitioning using such a dic-
tionary can help to achieve better performance than using a
fixed length q-grams partitioning. However most of the ex-
isting algorithms assume a static q determined at the index
construction, whereas we make an attempt to adaptively
select the appropriate gram length based on the required
edit distance threshold on the fly during query execution.
Moreover, applying various filters is an independent step in
the existing algorithms. We alleviate the overhead of apply-
ing filters during query execution by integrating the filter

conditions with inverted lists storage during index construc-
tion itself. As these algorithms need to merge the inverted
lists of grams generated from the strings, efficient merging
techniques have also been developed [19, 11]. We use a sim-
ple “ScanCount" method [11] for merging the lists, which is
known to achieve a good performance when combined with
various filtering techniques.
Due to the difficulties in selecting appropriate edit dis-

tance threshold while querying, lot of research has been de-
voted to the problem of top-k string similarity search re-
cently. Given a collection of strings and a query string,
top-k string similarity search returns the top-k most similar
strings to the query string. Kahveci et al. [9] proposed the
solution which first converts a set of contiguous substrings
into a Minimum Bounding Rectangle (MBR) and then use
it to estimate the edit distance threshold of top-k answers.
Yang et al. [22] proposed a gram-based method that incre-
ments the edit threshold in steps and adaptively selects the
gram length to be used. Though the intuition behind using
different gram lengths is similar to our approach, we main-
tain a unified index as opposed to multiple inverted indexes
maintained in [22]. Recent studies on this problem also in-
cludes B+-tree based approach by Zhang et al. [23] and trie
based approach by Deng at al. [5]. The former traverses
the B+-tree nodes iteratively and computes a lower bound
of edit distances between the query and strings under the
node. This bound is then used to update the edit distance
threshold. Whereas the later traverses the trie and progres-
sively computes the edit distance between query string and
strings grouped by a common prefix.
A closely related and extensively studied problem is “string

similarity joins” [18, 7, 3, 1, 10, 21, 13, 6]. Given two sets of
strings, a similarity join finds all similar string pairs. The
approximate string searching problem could be treated as
a special case of similarity join. It is known that behavior
of an algorithm could be very different while answering ap-
proximate string matching queries from that of answering
join queries. Therefore, though the algorithms developed
for similarity joins can be adapted for edit similarity queries,
they might not be efficient. Approximate string matching
is an important problem and needs to be investigated sepa-
rately, which is the focus of this paper.
In the literature, “approximate string matching" also refers

to the problem of finding a pattern string approximately in
a text [15, 4] i.e., given a query string and a text string,
goal is to find all substrings of the text that are similar to
the query. The problem studied in this paper is different,
as we want to report the strings similar to a query string
from a given collection of strings. As most of the techniques
introduced for the former problem rely on suffix tree navi-
gation they lead to poor performance when adapted to our
problem.

3. PRELIMINARIES
Let Σ be an alphabet. For a string s of the characters in

Σ, we use “|s|" to denote the length of s, “s[i]" to denote the
i-th character of s (starting from 1), and “s[i...j]" to denote
the substring from its i-th character to its j-th character.

3.1 Suffix Trees, Compressed Suffix Trees
Given a string s[1...n], a substring s[i...n] with 1 ≤ i ≤

n is called a suffix of s. The lexicographic arrangement
of all n suffixes of s in a compact trie is called the suffix



tree of s [20], where the ith leftmost leaf represents the ith
lexicographically smallest suffix. Each edge in the suffix
tree is labeled by a character string and for any node u,
path(u) is the string formed by concatenating the edge labels
from root to u. For any leaf v, path(v) is exactly the suffix
corresponding to v. Given a gram Q, a node u is defined as
the locus node of Q if it is the closest node to the root such
that Q is a prefix of path(u). Therefore all distinct strings
in which given gram i.e. Q appears as a substring along
with the position of occurrence can be reported by simply
scanning the leafs in the range [l...r], where l and r represent
the left-most and right-most leafs in the subtree rooted at
node u respectively. The range [l...r] is called suffix rage of
Q. Similarly generalized suffix tree (GST) is a compact trie
which stores all suffixes of all strings in a given collection S
of strings. Large space overhead of suffix tree prohibits its
use in practice. Instead we use a space efficient version of
suffix tree known as Compressed suffix tree (CST). Several
variants of CSTs have been proposed till date, we use the
one by Ohlebusch et al. [16].

3.2 Wavelet Tree
Let A[1...n] be an array of length n, where each element

A[i] is a symbol drawn from a set Σ. The wavelet tree
(WT) [8] for A is an ordered balanced binary tree on Σ,
where each leaf is labeled with a symbol in Σ, and the leaves
are sorted alphabetically from left to right. Each internal
node u represents an alphabet set Σu, and is associated with
a bit-vector Bu. In particular, the alphabet set of the root
is Σ, and the alphabet set of a leaf is the singleton set con-
taining its corresponding symbol. Each node partitions its
alphabet set among the two children (almost) equally, such
that all symbols represented by the left child are lexicograph-
ically (or numerically) smaller than those represented by the
right child. For the node u, let Au be a subsequence of A
by retaining only those symbols that are in Σu. Then Bu

is a bit-vector of length |Au|, such that Bu[i] = 0 if and
only if Au[i] is a symbol represented by the left child of
u. Indeed, the subtree from u itself forms a wavelet tree
of Au. Note that Bu is augmented with a data structure
with small overhead [17] to support constant-time bit-rank
and bit-select operations. Moreover we do not store Au’s
explicitly to reduce the space requirement. The following is
a useful lemma on wavelet trees.

Lemma 3.1. The wavelet tree of A can be maintained in
n log |Σ|(1 + o(1)) bits, such that given a range [l, r] and a
symbol π ∈ Σ as the input, all those i ∈ [l, r] with A[i] = π
can be reported in O((1 + output) log |Σ|) time.

By using multiple wavelet trees and the above lemma, we
shall answer more sophisticated orthogonal range searching
queries as follows:

Lemma 3.2. A given set of n 3-dimensional points in an
[0, n − 1] × [0, α − 1] × [0, β − 1] grid can be maintained
in n(logα + log β)(1 + o(1)) bits such that all those points
with its x-coordinate within [l, r], and π ∈ [0, α − 1] and
π′ ∈ [0, β − 1] as its y and z coordinates respectively can be
reported in O((1 + output)(logα+ log β)) time, where l, r, π
and π′ are input parameters.

Id Strings Length
s1 AAACTGTGC 9
s2 AACTGTC 7
s3 CTAATCT 7
s4 GCGTC 5
s5 GCGTCGT 7
s6 TCAACCGTACG 11
s7 TCCTATAAA 9

Table 1: A collection S of strings

3.3 Approximate String Matching
Given a string r and a collection of strings S, an approxi-

mate string query finds all strings in S similar to r. In this
paper, we use edit distance to quantify the similarity be-
tween two strings. Formally, the edit distance between two
strings r and s, denoted by ed(r, s), is the minimum number
of single-character edit operations (i.e., insertion, deletion,
and substitution) needed to transform r to s. In this pa-
per two strings are similar if their edit distance is not larger
than a specified edit-distance threshold τ . We formalize the
problem of approximate sting matching as follows.

Definition 3.3. Given a non-negative integer τ , a string
s and a collection of string S, an approximate string query
finds all pairs (r, s) with s ∈ S such that ed(r, s) ≤ τ .

For example, consider the strings in Table 1. Suppose
threshold τ = 2. Then strings s1 and s2 are similar to
query string r = “AACTGTGC′′ as their edit distance is
not larger than τ .

4. A FRAMEWORK FOR APPROXIMATE
STRING QUERY

This section gives overview of the proposed framework
and describes the naive way of applying the known length
and position filters.
We begin by partitioning the given query string r, into

τ+1 disjoint segments. Here for simplicity we assume |r| >=
τ+1. The idea behind such a partitioning is that, if a string
s has no substring that matches a segment of r, s cannot
be similar to r. Following lemma formally summarizes this
idea.

Lemma 4.1. Given a string r with τ + 1 segments and
a string s, if s is similar to r within threshold τ , s must
contain a substring which matches a segment of r.

A common partitioning technique is to divide the query
string into τ + 1 segments each with length b|r|/(τ + 1)c
except the last |r| mod (τ + 1) segments which have length
d|r|/(τ+1)e. For example, consider a string r = AACTGTGC
and suppose τ = 2. We partition it into 3 segments, with
first segment of length b8/3c = 2 and last 2 segments having
length d8/3e = 3. Thus r has three segments {“AA′′, “CTG′′,
“TGC′′}. Since strings s4, s5 have no substrings matching
segments of r, they are not similar to r. We introduce the
notation r(i) to represent the ith segment of r after parti-
tioning. We refine this partitioning technique later in Sec-
tion 6.1.
To be able to efficiently search the segments of the query

string, we build a GST on the string collection S. Let n be
the total length of the strings in the collection S. In addition



to GST, we maintain two arrays s_ids and s_pos each of
length n. s_ids[i] stores the identity of the string to which
the ith lexicographically smallest suffix belongs to i.e. suf-
fix corresponding to ith leftmost leaf of GST. Whereas the
starting position of that suffix in the corresponding string
i.e. string with id s_ids[i] is maintained in s_pos[i]. These
two arrays essentially stores the information about the leafs
of GST and thus eliminate the need to compute the same
during query answering. A straight forward approach to
find candidate strings that are potentially similar to r is to
enumerate all the strings which have at-least one of the seg-
ments of r as its substring. This can be achieved by simply
scanning the array s_ids[li...ri], where [li...ri] represents the
suffix range of ith segment of r i.e. r(i) for 1 ≤ i ≤ τ + 1.
We can reduce the number of potential candidates by ap-

plying well known length filtering and position filtering:

• Length filtering: The length of a string s that is within
edit distance τ from query string r is bounded by the
equation: ||r| − |s|| ≤ τ

• Position filtering: Let s be the string which has edit
distance less than or equal τ with respect to string r.
Without loss of generality let s contains a substring
s(i) that matches segment r(i). By Lemma 4.1, there
is at-least one such segment since ed(r, s) ≤ τ . Also
let segment r(i) has starting position r(i)sp in r and
substring s(i) has starting position s(i)sp in s. As
noted in [13], if alignment of two strings produced by
matching s(i) and r(i) gives edit distance less than or
equal to threshold τ then |r(i)sp − s(i)sp| ≤ τ .

The above filters can be easily applied by scanning the
s_ids and s_pos arrays simultaneously. While scanning
for the suffix range [li...ri] for segment r(i), we ignore the
string s_ids[j] if its length is not in the range [max(0, |r| −
τ ])...|r| + τ ] to apply length filtering. Similarly we ignore
the string s_ids[j] if its corresponding starting position i.e.
s_pos[j] is not in the range [max(0, r(i)sp − τ)...r(i)sp + τ ]
to apply position filtering. Here we note that a particular
string smay appear multiple times in the suffix range [li...ri]
i.e. there can be more than one possible alignments of r and
s based on matching of segment r(i). A string s becomes a
possible candidate due to segment r(i) if at-least one of its
alignment satisfies the position filtering. Out of the strings
listed in Table 1 that have substring matching with at-least
one of the segments of query string r = “AACTGTGC′′,
string s6 can be pruned using length filtering whereas string
s7 can be pruned using position filtering. Thus, we are now
left with only s1, s2 and s3 as candidate strings.
Finally, each candidate string that satisfies both filters de-

scribed above is subjected to verification that involves com-
puting its actual edit distance with the query string. Though
number of interesting optimizations to the verification pro-
cess have been proposed so far [13], we use verification algo-
rithm by Ukkonen along with simple early termination cri-
teria. We defer more details about optimizing verification
step to Section 6.3.

5. POSITION RESTRICTED ALIGNMENT
In this section, we describe the position restricted align-

ment, which provides more aggressive filtering than applying
both position and length filtering independently. Recall the
terminologies from the previous section. Let us assume that

we have two strings r and s with r(i) and s(i) as their sub-
strings respectively such that r(i) = s(i). Further r(i)sp

and s(i)sp represents the starting positions of r(i) and s(i)
within r and s respectively. Now we partition the string s
into ←−s (i), s(i),−→s (i) , where ←−s (i) and −→s (i) are the parts of
s respectively on the left and right side of the segment s(i).
Similarly r is partitioned into ←−r (i), r(i),−→r (i), where ←−r (i)
and −→r (i) are the parts of r respectively on the left and right
side of the segment r(i). Then position restricted alignment
filtering is based on the following observations:

ed(r, s) ≤ τ

if and only if,

ed(←−r (i),←−s (i)) + ed(−→r (i),−→s (i)) ≤ τ

We note that ed(←−r (i),←−s (i)) captures the essence of po-
sition filtering whereas ed(−→r (i),−→s (i)) captures the essence
of length filtering. Continuing the example from previous
section, we are left with candidate strings {s1, s2, s3} after
applying length and position filtering. If we apply position
restricted alignment we can decide to prune string s3, which
satisfies both length as well position filter. We note that po-
sition restricted alignment is more tight filtering condition
and will filter out any string that can be filtered by either
length filtering or position filtering.
By expanding the above equation using simple length fil-

tering we derive the following results.

||←−r (i)| − |←−s (i)||+ ||−→r (i)| − |−→s (i)|| ≤ τ

|r(i)sp − s(i)sp|+ |(|r| − r(i)sp)− (|s| − s(i)sp)| ≤ τ

By solving the above inequality, we can obtain O(τ2) so-
lutions in the form of (s(i)sp, |s|) pair. Let C be the set of all
such possible pairs. Therefore, our task is now reduced to
finding the strings such that pair (s_pos[j], |s_ids[j]|) ∈ C
and j ∈ [li...ri], where [li...ri] is the suffix range of parition
segment r(i). To answer such a query efficiently we use the
data structure described in Lemma 3.2. For us to be able
to use the data structure, we simply map the ithe left-most
leaf of GST to a 3 dimensional point (i, s_pos[i], |s_ids[i]|).
Though the idea behind position restricted alignment is

similar to the one proposed in [13], there are primarily two
distinctions with respect to our work: (1) In [13], authors
goal is to answer similarity join queries assuming fixed edit
distance threshold (τ), whereas our indexing technique is
independent of τ . (2) The algorithm in [13] needs to access
multiple inverted lists and then apply the filtering condition,
whereas we do not need to apply the filter at the time query
execution.

6. PRACTICAL IMPROVEMENTS
This section describes how the framework proposed in ear-

lier sections can be extended to incorporate more filtering
techniques to improve query performance. We also briefly
discuss the verification process that our framework uses to-
wards the end of the section.

6.1 Incorporating count filtering
Instead of partitioning the string r into τ + 1 segments,

we can decide to partition it into τ + k segments for k ≥ 1.



As a consequence, a string s qualifies as a candidate only if
it has substrings matching at-least k segments of the query
string r. Requirement to share k ≥ 1 segments of the query
string can help us achieve more effective pruning than simply
restricting k to be 1. Lemma 4.1 can now be rewritten to
reflect the generalized count filtering as follows.

Lemma 6.1. Given a string r with τ + k segments and
a string s, if s is similar to r within threshold τ , s must
contain substrings that match at-least k segments of r for
k ≥ 1.

Before we describe the partitioning that incorporates the
count filtering as summarized in the lemma above we high-
light the necessary changes required to obtain candidate
strings based on count filtering. We use a simple “Scan-
Count” algorithm proposed in [11], so as to select only those
strings for verification that satisfy the count filtering. We
maintain an array of counts for all the string ids in S. For
each segment r(i) we first obtain the candidate strings re-
sulting due to alignment of r(i) and increment the count
corresponding to each of the candidate string by 1. Then
the string ids that appear as a candidate due to at least k
segments can be reported.
Here restriction that each segment r(i) can contribute

only once towards a string s in count array poses overhead
since string id can appear in the suffix range [li...ri] multiple
times and more than one alignment can satisfy the position
restricted alignment condition as well. Though such a re-
striction can be easily handled theoretically by using chain-
ing idea in [14], it has the potential to offset any advantage
obtained by splitting the query strings into k > 1 partitions.
Therefore, we decide to enforce the uniqueness restriction
in reporting candidate strings per segment r(i) selectively.
Otherwise, we let the candidate string to be reported mul-
tiple times per segment r(i), thus resulting in inflated count
value and possibly qualifying a string as a candidate incor-
rectly. We note that a string that incorrectly qualifies as a
candidate will be pruned during final verification and will
not be incorrectly reported as an answer.

Dilemma of choosing k: On one hand, by increasing the
length of segments, we can hope to make the segment dis-
tinct enough so that it does not appear multiple times in the
same string. This reduces the number of strings incorrectly
reported as a candidate thus saving the expensive verifica-
tion operation. On the other hand by decreasing k, we will
have a lower threshold on the number of segments shared by
similar strings, causing a less selective count filter to elim-
inate dissimilar string pairs. We use a heuristic technique
that initializes k = 1. We then increment k till following
condition is satisfied: b|r|/(τ + k)c = b|r|/(τ + k+ 1)c. This
simple technique tries to maximize the selected value of k
while ensuring minimum length of the segments of r remain
unchanged and thus offers a useful middle ground for selec-
tion of k.

Dynamic partitioning: Encouraged by the research ef-
forts in variable length partitioning so far [12], we form a
dictionary of strings based on which an informed decision
can be made for query string partitioning. We construct this
dictionary by navigating GST in depth first search manner.
Inline with the existing approaches, we assume the availabil-
ity of two length bounds qmin and qmax to limit the dictio-
nary size as well its construction time. We assign a weight to

each node u in GST given by dist(u)/(r− l+1), where [l...r]
represents the suffix range of node u and dist(u) represents
the number of distinct strings that have path(u) as one of
its suffix. In another words, dist(u) is the number of dis-
tinct string ids in the subarray s_ids[l...r]. Intuitively, the
weight of the node tries to estimate the overhead involved in
reporting only the unique candidate strings if u is the locus
node of a segment of string r. Along with two length bounds
we assume a user defined threshold 0 ≤ UQmin ≤ 1 is given.
Then string represented by path(u) is added to the dictio-
nary while navigating the GST if following two conditions
are satisfied.

• dist(u)/(r − l + 1) < UQmin

• qmin ≤ |path(u)| ≤ qmax

• string corresponding to node v i.e. path(v) does not
exists in the dictionary such that v is a proper ancestor
of node u

Based on such a dictionary we now follow the procedure
described below to obtain the proposed dynamic partition-
ing of the query string r. It is a greedy algorithm that initial-
izes the segment with the minimum length of b|r|/(τ + k)c
and keeps incrementing it by one character at a time till
it does not belong to dictionary or it is not possible to ex-
tend this segment any further without reducing the length
of yet to produce segments below desired minimum length
i.e. b|r|/(τ + k)c.

Input: Dictionary D, string r, segment count (τ + k)
Output: Set R of partitioned segments of r

R = empty set
i = 1, pos = 1
len = b|r|/(τ + k)c, rem = |r| mod (τ + k)
while (pos ≤ |r| − len+ 1) do
r(i) = r[pos...pos+ len]
j = 0
while (rem > 0 AND r(i) ∈ D) do
j = j + 1
rem = rem− 1
r(i) = r[pos...pos+ len+ j]

end while
i = i+ 1
pos = pos+ len+ j

end while

Other than directing the query string partitioning, the
dictionary also allows us to selectively enforce the unique-
ness restriction in reporting candidate strings for segment
r(i). Each segment r(i) in the final partitioned set R that
also belongs to the dictionary, implies that the suffix range
of r(i) contain multiple occurrences of same string ids and
hence overhead of applying the uniqueness restriction can
pay off by reducing the number of incorrectly reported can-
didate strings and thereby avoiding their verification cost.
We note that the choice of user defined parameter UQmin

greatly affects the quality of partitioning as well as play an
important role in balancing the overhead of applying unique-
ness restriction with the verification cost of incorrectly re-
ported candidate strings. We leave the strategy of selecting
good value for UQmin as a future work and decide its value
empirically for the work in this paper.



6.2 Filtering based on frequency distance
The frequency distance based filtering was first introduced

by Kahveci and Singh [9]. The intuition behind this filtering
is that if two strings are similar, then the frequency of the
alphabet symbols in two strings should also be similar. For
the formal application, we first define the frequency vector.
Given a string s from the alphabet Σ, frequency vector f(s)
is defined as f(s) = [c1, ..., c|Σ|], where ci is the count of ith
alphabet of Σ. Below, we first define the edit distance and
then Theorem 6.3 captures the relation between frequency
distance and edit distance as established in [9].

Definition 6.2. Let r and s be two strings from the same
alphabet Σ. Let f(r) and f(s) be the frequency vectors of r
and s respectively. The frequency distance of r and s to be

fd(r, s) = max{posDistance, negDistance},

where

posDistance =
∑

f(r)i>f(s)i

f(r)i − f(s)i

and

posDistance =
∑

f(r)i<f(s)i

f(r)i − f(s)i

Theorem 6.3. Let r and s be 2 strings from the same
alphabet Σ. Then we have

fd(r, s) ≤ ed(r, s).

Frequency distance based filter can be particularly useful
for long strings with small alphabets e.g. DNA strings. In
addition to the various index components described earlier
we also maintain the frequency vector for each string in the
collection S. Such a storage does not result in too much of
space overhead with restricted alphabet size and relatively
long strings. Also applying this filter can be much faster
than the verification process even with the optimizations.

6.3 Improving the verification
The classic dynamic programing algorithm of edit distance

of strings r, s takes O(|r| × |s|) times and space. This algo-
rithm computes a matrixM , whose [i, j]th entry records the
edit distance between substrings r[0...i] and s[0...j]. As we
only need to determine whether ed(r, s) ≤ τ , computing the
entire matrix M is not necessary. We use verification al-
gorithm by Ukkonen with time complexity of O((τ + 1) ×
min(|r|, |s|)). It relies on the following theorem.

Theorem 6.4. In order to check inequality ed(r, s) ≤ τ ,
it is enough to computer the entries on diagonal of the ma-
trix satisfying −∆ ≤ j − i ≤ |r| − |s| + ∆ if |r| ≤ |s|
or |r| − |s| − ∆ ≤ j − i ≤ ∆ if |s| > |r|, where ∆ =
(τ − ||r| − |s||)/2.

A straightforward early-termination method is to check
if all elements in one row are larger than τ . Then by dy-
namic programming algorithm all the values in the rows yet
to computed must be larger τ . This simple technique do
not add much computational overhead and was found to be
effective during experimentation.

7. EXPERIMENTAL RESULTS
We have implemented our method and conducted an ex-

tensive set of experimental studies on the Human genome
data set provided by “String Similarity Search/Join Com-
petition 2013". We use a set of 5000 queries (provided along
with the data set) and perform experiments with edit dis-
tance threshold values in the set {4, 8, 12, 16}. All the al-
gorithms were implemented in C++ and compiled using
GCC 4.4 with -O3 flag. Public code libraries at http://
www.uni-ulm.de/in/theo/research/sdsl.html and http:
//pizzachili.dcc.uchile.cl/indexes.html are used to de-
velop some of the components in the proposed index. All the
experiments were run on a Ubuntu machine with an Intel
core i5 (quad core) 1.6GHz processor and 8GB RAM. We
consider four variants of the the proposed indexing scheme
as follows:

• I-GST : This is the index as described in Section 4 and
makes use length and position filtering independently.

• I-PRA: This is the index as described in Section 5. It
uses aggressive position restricted alignment for filter-
ing out candidate strings and also make use the wavelet
tree based index storage so that cost of applying filters
at the query time can be avoided.

• I-CF−: This is the index as described in Section 5 and
utilizes the count filtering introduced in Section 6.1. It
also employes the dictionary to dynamically partition
the query string. However, it applies uniqueness con-
strain while reporting the candidate strings of each
segment r(i) of query string. We set the parameter
UQmin = 0.85 for this index.

• I-CF+: This index is exactly same as the previous one
i.e. I-CF− with one modification. I-CF+ selectively
applies the uniqueness constrain while reporting the
candidate strings of a segment based on the dictionary.

• I-FDF : This is the index that further improves I-
CF+ index by incorporating the frequency distance
filtering.
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Figure 1: Effect of position restricted alignment

7.1 Effect of position restricted alignment
As a part of this experiment, we evaluate the effective-

ness of “position restricted alignment" against the length



and position filter applied independently. For this purpose
we compare index I-GST with variant I-PRA and use the
number of GST leafs remained after applying the filtering
conditions by each of them as measure of performance. As
shown in the Figure 1, position restricted alignment is able
to filter out up to 40% of the leafs that could not be filtered
out using either length or position filtering. We also high-
light that I-PRA do not have to apply the the filter during
execution and hence also improves the query time.
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Figure 2: Effect of count filtering: Number of can-
didate strings
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Figure 3: Effect of count filtering: Total query time

7.2 Effect of count filtering
In this experiment we evaluate the effectiveness of apply-

ing count filtering by partitioning the query string into τ+k
segments for k > 1. As noted in the Section 6.1, applying
count filtering requires candidate strings due to each pari-
tion of query r to be reported uniquely. To isolate the effect
of overhead due to the requirement of unique reporting, we
compare three variants I-PRA, I-CF− and I-CF+. We
use number of candidate strings subjected to verification as
well as the total query time for comparing these three index
variants. Figure 2 and 3 show the benefits offered by count
filtering along with the dynamic partitioning technique as
I-PRA needs to verify more strings and hence higher query
time as compared to other two index variants. Compari-
son of I-CF− and I-CF+ reveals that in general applying

uniqueness constrain requires lot of overhead as a result sav-
ings achieved by reducing the number of candidate strings to
be verified might not be translated in query time improve-
ment. Therefore we need to be judicious while making a
decision to report only unique candidate strings for a par-
ticular segment partition of query r.

7.3 Effect of frequency distance filtering
This experiment is intended to weigh the benefits of ap-

plying frequency distance filtering against the overhead of
applying the same. We compare index variant I-CF+ with
I-FDF as they differ only in one aspect; former does not
employ the frequency distance filtering whereas the later
does. Figure 4 reveals that though such filtering can effec-
tively reduce the number of candidate strings, the overhead
involved makes it an attractive option only for large values
of edit threshold τ . We observed that, for small values of τ ,
most of the candidates are filtered out by position restricted
alignment and count filtering beforehand. As a result over-
head of applying frequency distance filtering does not help
to improve the query performance in such scenario.
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Figure 4: Effect of frequency distance filtering
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