
Trying to outperform a well-known index with a sequential
scan

Jan Hentschel, Thomas Meyer, Thomas Rommel
Otto-von-Guericke-University

Universitätsplatz 2
39106 Magdeburg, Germany

{Jan.Hentschel, Thomas.Meyer, Thomas.Rommel}@st.ovgu.de

ABSTRACT

The string similarity search is an important research area. It

enables applications to accept input errors and to detect

similarities between strings. This kind of search contains the

string similarity search problem. The time to solve this problem

depends on the number, the length and the size of the alphabet of

the data to search. It is possible to divide the data in data of

natural language and data of non-natural language. In data of

natural language, this paper analyzes a set of names of cities all

over the world. For non-natural language data the paper uses reads

from human genome. This paper wants to analyze, if it is possible

to outperform an index-based search by a sequential search

algorithm. The evaluation shows, that the index-based search has

a higher performance on the human genome reads, but not on the

geographical names.

General Terms

Algorithms, Performance

Keywords

Similarity Search, string similarity, edit distance, string matching

1. INTRODUCTION
Beside of the ability of an exact string search, nowadays most

applications needs a function for similarity search. Applications

search in data of natural language strings or non-natural language

strings. Natural language strings are human readable words. An

application that searches in this data has to be tolerant against

input errors, because the user could make typing errors or errors in

the spelling of a word. Nevertheless the application has to find all

relevant results in the data [7, 10]. Applications for non-natural

languages are for example applications, which search for similar

human genome reads [1].

It is necessary to solve the string similarity search problem, to

perform the similarity search in both areas. The input for this

problem is a query string, a similarity measure and set of data to

search. To solve this problem, the application has to determine all

the datasets, similar to the query with respect to the similarity

measurement [2].

Permission to make digital or hand copies of all or part of this

work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, to republish, to post

on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

EDBT/ICDT ’13, March 18 – 22 2013, Genoa, Italy

Copyright 2013 ACM 978-1-4503-1599-9/13/03 …$15.00.

This paper uses the unweighted edit distance as similarity

measurement. The used datasets are given by the “String

Similarity Seach/Join Competition” of the EDBT/ICDT 2013

Joint Conference. The datasets are names of cities as natural

language data and human genome reads for non-natural language

data. The paper will try several approaches to solve the problem in

an efficient way.

The aim of this work is to find out, if a sequential solution of the

string similarity search problem on the city-names and the

genome reads can outperform an index-based solution in its

execution time. Both algorithms will be improved by several

approaches.

The paper is structured as follows. The second chapter will

explain important terms and introduce several existing approaches

from scientific literature. The third and fourth chapter will present

approaches to improve the sequential and index-based search

algorithms. The fifth chapter will evaluate the implemented

applications for sequential and index-based search by measuring

the execution time. The sixth chapter summarizes the work and

mentions possible future work.

2. FOUNDATIONS AND RELATED WORK
This chapter explains important terms and gives a look to related

work in scientific literature. At first the string similarity search

problem will be explained. After that the edit distance is defined

and calculated by a sample. Furthermore the chapter explains two

approaches of existing related work. Finally it summarizes the

preliminary considerations and forms two hypothesis.

2.1 String Similarity Search Problem
The string similarity search problem returns each string of a set of

strings that has at least a given similarity for a given query. Let q

be query string, a set of strings, a distance function and the

threshold value for the distance [3, 9]. A string is part of the

result, if it fulfills the following conditions:

  

To solve this problem, the application hast to determine each

string , that does not exceed the threshold . The competition

rules give the edit distance as similarity metric. This distance

measurement will be explained in the following.

2.2 Edit Distance
The edit distance of two strings and is the minimal

number of insert, delete or replace operations to transform to .

Two strings are within edit distance , if [3, 9]. The

following example shows the calculation of the edit distance for

two strings. The input are the string “AGGCGT and “AGAGT”.

The operations insert, delete and replace are available to transform

the strings. Each execution of an operation has costs of 1. The

computation of the edit distance uses a matrix with

 rows and columns. Let be the length of string

 and be the length of string . The symbol at position of a

string is . is the entry of the matrix at row and column .

The entry is calculated as follows [5]:

 ,  

 Falls() dann  

 sonst  

Figure 1 shows the computation of the edit distance between the

two strings. The last step is to calculate the entry in , which

will contain the edit distance between string and string . In this

step the calculation uses condition (3), because both strings have

the same symbol at the last position. So, it will use the value of

 in entry . The calculated edit distance is 2.

This paper will use different approaches to calculate the edit

distance, in order to solve the string similarity search problem. It

will discuss filters, the use of an index and faster string similarity

algorithms. The basis and reference for the implementation of this

paper are related publications. These approaches will be explained

in the following.

2.3 Related Publications
This subchapter will introduce several publications related to the

string similarity search problem. The approaches to solve the

problem will be explained in a short way.

Human genome reads consist of very long strings. Rheinländer et

al. show, that former use of similarity operations is very limited

and inefficient. That’s why they developed a new efficient

algorithm for similarity search named PETER. This algorithm

supports Hamming and edit distance. PETER uses a compressed

prefix tree for indexing data. Very long suffixes are stored in a

file, in order to hold the tree in main memory. The tree stores

information about the minimal and maximal length of the strings

and the frequency vector, a vector with the number of occurrences

for each symbol in the string. These information enable an early

filtering of the results. The algorithm can stop searching in a

branch, that can not contain correct results [8].

Navarro et al. consider the following problems. The first problem

is the size of the index using a suffix tree. The second problem is

the exponential dependency of the calculation effort to the length

of the strings and the edit distance. To solve the first problem,

they use a suffix array. This has the advantage, that the index can

only reach a maximum size of four times of the number of strings.

Furthermore suffix arrays are with exception of very short strings

faster than suffix trees. The second problem is solved by splitting

the query string and later integrating the particular results. It is

possible to reduce the exponential dependency of string length

and edit distance by this method.

All problems and experiences of that approaches are used as

basics for chapter 3 and 4.

2.4 Preliminaries
Human genome reads and city-names have very specific

properties. So it is useful to make preliminary considerations

about efficient approaches. Human genome reads have a large

string length and a very small alphabet. On the other hand city-

names have usually a smaller string length, but a larger alphabet.

The alphabet can vary by using different character sets and

languages. For example, adding the Chinese language will enlarge

the alphabet by adding all the symbols.

These properties enable the construction of two hypotheses for

efficient string similarity search. The paper will analyze these two

hypotheses.

 An index-based solution will have a higher performance

on human genome reads than a sequential solution,

because of the large string lengths.

 An optimized sequential solution can have a higher

performance on the city-names than an index-based

solution, because of the smaller string lengths.

The next chapters 3 and 4 will discuss approaches to improve the

sequential and the index-based solution for the string similarity

search.

3. RUDIMENTS FOR IMPROVING THE

SEQUENTIAL SOLUTION
This chapter will introduce several approaches to improve the

performance of the sequential solution. Starting with an initial

solution, it focuses on improving the calculation of the edit

distance, using value and reference semantic, simple data types

and program methods, parallelism and the management of

parallelism. Chapter 5 will evaluate these approaches. At first the

initial solution is discussed and based on that the improvements

will be explained.

3.1 Base Implementation
The first implemented solution should work and solve the string

similarity search problem without any errors. The used

programming language is C++. This language has the advantage

to focus on runtime and memory efficiency. Some other

programming languages like Java focus on simplicity and clarity

of the language instead of performance. So, it is not useful to use

such a language [11].

The procedure of the initial implementation consists of reading

the query and data sets, calculating the edit distance and writing

the results to a file. The results of this solution provide the

reference to verify the correct results of the following solutions

for the sequential and the index-based search. After verifying the

results, the execution times will show, if the implemented

approach could improve the previous solution or not. If the

implemented approach improved the performance it will be part

of the following solutions.

3.2 Faster Edit Distance Calculation
As described in chapter 2, the calculation of the edit distance is

very costly. Thus, the calculation should be improved by reducing

the calculation time.

The first idea tries to avoid the calculation of the edit distance:

 Consideration of string length: Let be a delta between

the length of string and the length of string ,

calculated as:

  

Delta will be compared with the given maximum edit

distance. If is greater than the given edit distance, the

application does not have to compute the edit distance.

Because the edit distance will be greater than the given

maximum edit distance. Thus, the current string cannot

be part of the correct results.

 Exact search: The given edit distance zero describes the

case of exact search. It is not necessary to compute the

edit distance. It is more efficient to compare each letter

of string and string , to determine if the string is a

result for the query.

If it is not possible to avoid the calculation, the solution should try

to abort the calculation early. This approach looks as follows:

 Consideration of diagonal: The diagonals of the edit

distance matrix have special properties. The diagonal

in Figure 1 shows, that the value of the edit distance is

rising or stagnating. This is a consequence of the rules

for calculating the edit distance described in chapter 2.

The calculation depends on one of the three surrounding

entries on the left and upper side. So there are overall

three diagonals and errors can be reduced by one of the

neighbor diagonals. Errors on the diagonal with entry

 cannot be reduced. At the end of the calculation

the entry will contain the edit distance between

string and string . Considering these facts, there are

the following two conditions for aborting the

calculation:

  

  

If the value on the diagonal with entry exceeds

the given edit distance, the application can abort the

calculation. For example in Figure 2 after the algorithm

calculated entry condition (6) is fulfilled, like that:

   

3.3 Values and References
In contrast to programming languages like Java, the programmer

in C++ has always to decide, if objects are used direct or indirect

with pointers or references. The scientific literature uses the terms

value and reference semantic. The value semantic is used on stack

objects. The size of an object is fixed and cannot be arbitrary

changed. The reference semantic is mostly used on heap objects.

The size of an object is not fixed and the programmer can change

it. Furthermore it is possible to reference an object several times

and to manage it by different methods. In addition to the actual

object the reference semantic uses a reference, e. g. a pointer. The

creation and deletion of such a pointer costs time. Thus, it is

useful to use smaller objects direct and to manage larger objects

by references [11].

Figure 1. Calculation of edit distance

Figure 2. Aborting the calculation of edit distance

The use of the reference semantic has the following advantages:

 Speed: The reference semantic gives the reference of an

object to a called method. The value semantic copies the

entire object [11]

 Flexibility: For example to order objects, the reference

semantic only has to copy the pointer to the correct

position, not the entire object. It could use a pointer for

each sort key [11].

 Memory Efficiency: The reference semantic uses

memory for the current number of objects. The value

semantic always allocates memory for the possible

maximum number of objects [11].

So, the implementation should use the value semantic for smaller

objects and the reference semantic for larger objects, in order to

optimize the execution time.

3.4 Simple data types and program methods
The area of data types and functions offers some potential for

improvements in every programming language. As a basic

principle simple data types should be used, because the execution

time, due to a lower memory usage, is crucial lower. With these

data types it is possible to work faster as with complex data types.

For example, the access of an object used in an array is faster than

an object used in a vector. The same goal should be achieved with

the usage of simple methods. To reduce execution time, it makes

sense to implement existing methods in a new way. The

comparison of two strings or the minimum of two numbers could

be implemented in a new way to reduce some overhead. That the

reason why the usage of simple data types and the implementation

of simple calculations will be reviewed.

3.5 Parallelism
Parallelism is one of the important instruments to gain more

performance [14]. Beside the development of an optimal

parallelism strategy and its management, the choice of a

parallelism library is crucial in C++. C++ itself offers parallelism

with C++ 11 [15], but this mechanism in the most common

compilers is implement in a dissatisfied way. To choose the right

library some core questions must be considered, for example:

 What role plays portability?

 How familiar are the developers with C++ respectively

how much time can be invested to become familiar with

the appropriate library?

 Does the library fit in the existing implementation?

The point about portability is one of the main exclusion criterions.

For a Linux-based implementation all Windows-specific libraries

are not valuable. Additionally the portability between different

Linux distributions is important. Beside the portability the time

investment for the developers to become familiar with a new

library and the integration into the existing implementation should

be considered. The time investment can vary from library to

library. The same is true for the integration into the existing

implementation.

The parallelism feature of C++ 11 will not be covered in any

detail, because GCC 4.7 as a compiler does not support most of

the appropriate features1.

After some research the following libraries were considered:

 Boost2

 Qt3

 Intel Threading Building Block4

The Boost library offers a simple integration and good portability.

The time investment is minimal. Because the threading library of

Boost was the foundation of the parallelism specification5 of C++

11 it is a generic approach. Qt is another library which offers,

beside the creation of user interfaces, a parallelism library. Beside

the platform independence the time investment for the developers

is minimal, because of the great documentation. The Qt library

has the disadvantage that its parallelism library is object-oriented

and not easy to integrate in a non-object-oriented approach. To

use the library classes have to inherit from the QThread6 object

[16]. The last library is the Intel Threading Building Block library.

It offers, like Boost and Qt, portability, but a developer has to

investment more time to become familiar with it. In contrast it

promises good performance and a better parallelism management

[13, 17].

Because of the wide spread, the simple integration, and its good

documentation Boost will be used for the parallelism

implementation. It does not offer the best performance, but it can

be used and integrated with no additional effort.

3.6 Parallelism management
Beside the usage of the right parallelism library the definition of a

parallelism strategy is crucial for the performance. There are three

variants how a thread can be closed. In this context the following

three hypotheses will be evaluated:

1. Open and close many threads as possible.

2. Open exactly one thread per CPU core.

3. An intelligent management of threads where threads are

only opened and closed when it’s needed.

The first point has the lowest implementation effort. One thread

will be opened per query to calculate the result. This has some

disadvantages. On the one hand it is a waste of resources, because

every thread object in Boost will be created on the stack, which

gives some problems if you open a lot of threads at the same time.

On the other hand queries can be executed very fast and open and

close a thread can take more time than the execution of the query

1 http://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html,

Access: 01/12/2013

2 http://www.boost.org/, Access: 01/12/2013

3 http://qt.digia.com/, Access: 01/12/2013

4 http://software.intel.com/en-us/intel-tbb/, Access: 01/12/2013

5http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2007/n2184.html, Access:

01/12/2013

6 http://doc.qt.digia.com/qt/threads.html, Access: 01/12/2013

itself. The evaluation will show the dimensions of the

performance reduction. Open a thread per CPU core is a good

alternative to point 1. With this strategy a thread will not be open

per query. This guarantees a balance in the work of every CPU

core. The implementation effort is a little bit bigger as in the

solution of point 1. Crucial for the success of this strategy is a

balanced distribution of queries on the different cores. This can be

done through a simple partitioning. The most promising approach

is an intelligent management of opening and closing threads

where threads are only opened and closed when they are needed.

This guarantees that resources are not wasted. To use this

approach rules have to be defined for opening and closing threads.

Two example rules are:

 Open a thread when the average usage over all cores is

more than 70%.

 Close a thread when the average usage over all cores is

less than 30%.

When following this approach the locking problem has to be

considered. An example: There are two threads . Thread

likes to open a new thread, because rule number one is matched.

Thread at the same time likes to close a thread, because the

average usage is decreased nearly at the same time. There are

several solutions to this problem. A well-known is the master-

slave principle [12, 18]. In this solution one thread is responsible

for opening new threads and closing threads. On the one hand

with that solution there is one additional thread which is only

responsible for the management of the other threads without

executing a single query. On the other hand the locking problem is

solved and with an effective management the usage of the

resources for the master thread can be neutralized.

Within the scope of this work the best parallelism strategy will be

evaluated through several tests.

3.7 OVERVIEW ABOUT THE

RUDIMENTS FOR IMPROVING THE

SEQUENTIAL SOLUTION
All the presented rudiments for improving the sequential solution

will be implemented step-by-step. Figure 3 shows a model of the

six approaches. The results of the first solution will be used for

the comparison in the other approaches. This guarantees the

correctness of the results and that the approach improves the

performance. There are several measurement points in the

implementation to monitor the different modules of the

implementation. It is possible to reject an approach if it does not

return the correct results or if the execution time is not reduced.

Figure 3. Overview about the rudiments to improve the

sequential solution

http://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html
http://www.boost.org/
http://qt.digia.com/
http://software.intel.com/en-us/intel-tbb/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2184.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2184.html
http://doc.qt.digia.com/qt/threads.html

4. RUDIMENTS FOR IMPROVING THE

INDEX-BASED SOLUTION
This paragraph describes the index-based solution. It will describe

the different steps to improve the performance of the index-based

solution.

4.1 Base implementation
At first a solution will be implemented, which solves the string

similarity search problem through the usage of an index. From

this solution other approach will be evaluated.

As a base implementation the solution of the sequential search

will be used. Improvements like the better calculation of the edit

distance, the usage of pointers and references, and the usage of

simple data types and program methods are already included in

this first solution.

A prefix tree will be used for a fast search in the data. This has the

advantage that the complexity of query depends on the depth of

the tree instead of the number of data sets [6, 8]. The depth is

equals to the length of the longest string in the data set.

At first the data sets will be read from the file. After this the prefix

tree will be created through adding every single string. Next the

query file be read and the queries will be executed. The important

time measurement for comparing the sequential with the index-

based search is the time needed for calculating the results that

means the time frame between reading the files have finished and

the end of calculating all results for the given queries. As a

specialty compared to the base implementation additional

information will be stored in the nodes. This information allows

an early cancellation of following the branches who not will

return a correct result. To realize that the minimal and maximal

length of a data set will be stored in the nodes, which can be

reached [8].

In the base implementation for the index-based search a node with

the prefix must fulfill the following conditions to consider its

child nodes for the query x:

  

  

The prefix of string y at the position (i + 1) is described through

 . Because the edit distance of and in a prefix tree,

based on the step-by-step descent in the tree can only be

calculated to a position i a tolerance value must be calculated.

 compensates the loss of information from not knowing the

length of y. The edit distance may not be greater as the sum of the

allowed edit distance k and the delta . Delta means the

maximum reachable variance of the length of the query x to the

maximum length respectively the minimum length of

the result y. If the value is lower than the variance the current

branch of the tree must not be included for the calculation of the

result.

The base implementation is required to give a correct result back.

If this goal is achieved other steps will be executed to improve

performance.

4.2 Compression
Another improvement is the compression. The main goal of this

approach is to create only as many nodes as needed in the prefix

tree. That decreases the memory usage and enables through fewer

calculations of the edit distance a faster similarity search. The

following example in Figure 4 shows the compression.

The words “Berlin”, “Bern”, and “Ulm” will be inserted to the

prefix tree. After the insertion is completed the prefix tree will be

compressed. During that process nodes with only a single child

node can be merged. After the compression the sample prefix tree

only includes half of the nodes of the normal tree.

4.3 Parallelism management
Similar to the sequential search an index-based search can profit

from a parallelized execution. Because the parallelization of the

index-based search has the same requirements as the sequential

solution the same strategies can be used. For more information

have a look at chapter 3. In the paragraphs 5 and 6 parallelism and

its management is discussed in detail.

4.4 Overview about the rudiments for

improving the index-based solution
Figure 5 gives an overview about the rudiments to improve the

index-based solution.

It has to be mentioned that, beside the improvements discussed in

this chapter, the improvements of the sequential search are

included in the base implementation.

The process is similar to the one from the sequential solution. The

results of the base implementation will be compared in every

single step to guarantee the correctness of it. To prove a faster or

slower execution time several measurement points are included in

the implementation.

5. EVALUATION OF THE SEQUENTIAL

AND INDEX-BASED SOLUTION
This chapter will evaluate the sequential and index-based solution.

At first the evaluation environment will be described. Based on it

the presentation, the explanation, and the evaluation of the results

of the time measurement will be compared with each other.

5.1 Evaluation environment
As an evaluation environment an Ubuntu Desktop 12.10

virtualized in Hyper-V as a standard installation will be used. The

environment consists of eight gigabyte RAM and a virtualized

Intel i7@2.19 GHz processor with eight processor cores. Because

of a better comparison, all of the following measurement results

are received from this environment.

Figure 4. Compression of a prefix tree

Figure 5. Overview about the rudiments for improving the

index-based solution

5.2 Proceeding of the evaluation
The process of the evaluation is as follows. Starting point are the

same data sets for the measurement in every single area. The data

sets and their properties are listed in Table I.

All in all there are three measurements for every approach on the

appropriate data sets. The execution of 100, 500, and 1,000

queries will be measured. All time values are similar to the actual

execution and not the CPU time, because the usage of parallelism

can lead to other measurement results when using the CPU time.

For the sequential and index-based solution only the time will be

measured to calculate the results.

If not described in another way the following is true for the

following paragraphs: If the execution time of an approach is

better than the execution time of the previous approach the new

approach will be included in the final implementation.

In the next paragraphs the best sequential and index-based

solution for the city names data set will be determined. Based on

this the results will be compared with each other to make a

decision which solution is better. This proceeding will be repeated

for the DNA sequences.

5.3 Evaluation of the sequential solution on

the city names data set
In this paragraph the sequential solution on the city names data set

will be evaluated. The goal of this evaluation is to choose the

solution with the fastest execution time for the string similarity

search problem. The measurement results of every single step are

summarized in Table III of the appendix.

5.3.1 Base implementation
The following time measurements are from the base

implementation which is used as a reference for the correctness

and improvement of the other approaches. This implementation

does not use any of the described improvement approaches. To

execute 100 queries this implementation takes 16.92 sec., for

executing 500 queries 84.80 sec., and for executing 1,000 queries

166.22 sec.

5.3.2 Calculation of the edit distance
As explained in section 3, there are different approaches to the

calculation of the edit distance implemented. It takes 3.71 sec to

execute 100 queries, 17.81 sec to execute 500 queries, and 34.20

sec to execute 1,000 queries. It was possible to reduce the

execution time to one seventh.

5.3.3 Value or reference
A reduction in the execution time could also be achieved by

deciding on a specific use of the value semantic or reference

semantic in C++. For example, when passing large objects, they

must not be copied completely. This is a C++ specific

optimization, which is not available in many other programming

languages. To execute 100 queries this implementation takes 2.88

sec., for executing 500 queries 15.13 sec., and for executing 1,000

queries 29.31 sec.

5.3.4 Simple data types and program methods
The use of simple data types and implementation of simple

program methods promises additional performance gains. It takes

2.20 sec to execute 100 queries, 11.54 sec to execute 500 queries

and 21.64 sec to execute 1,000 queries. In comparison to the base

implementation, the execution time is only one eleventh.

5.3.5 Parallelism
If properly implemented, parallelism can achieve performance

gains. In this first implementation of parallelism, the first strategy

of parallelism is implemented. A thread will be created for each

query and closed after the completion. To execute 100 queries this

implementation takes 13.13 sec., for executing 500 queries 64.95

sec., and for executing 1,000 queries 129.35 sec. In comparison to

the last implementation, the execution time is much higher. This

approach will not be discarded. It should be considered in more

detail in the next approach.

5.3.6 Management of parallelism
Management of parallelism allows adjustment of parallelism. It

prevents the wasting of resources and promises a further

performance improvement. Several configurations are tested for

their performance gains. Different kind of threads will be opened

for all three sets of queries. The use of 4, 8, 16 and 32 threads are

considered and examined. The creation of eight threads

corresponds to the second strategy and the creation of different

kind of threads corresponds to the third strategy. The results of the

measurement are shown in Table II of the appendix. The creation

of eight threads represents the optimum. This solution is better

than the solution of the fourth approach.

5.4 Evaluation of the index-based solution on

the city names data set
The previous section has shown how the iterative optimizations

were able to improve the sequential scan on the city names data

set. This section also follows an iterative optimization to improve

the index-based search on the city names data set. The

measurement results of every single step are summarized in Table

V of the appendix.

5.4.1 Base implementation
The following results are from the base implementation for the

index-based solution on the city names data set. The

implementation represents the first implementation of an index

based on a prefix tree. It takes 8.14 sec to execute 100 queries,

42.26 sec to execute 500 queries and 77.95 sec to execute 1,000

queries.

Table I. Overview about the data sets and their properties

#Data

sets
#Symbols Length

Edit

distance

City

names
400,000 ca. 255 max. 64 0, 1, 2, 3

DNA 750,000 5 ca. 100 0, 4, 8, 16

5.4.2 Compression
The compression is the first step to improve the index-based

solution. As described in Chapter IV, the number of tree nodes is

reduced. To execute 100 queries this implementation takes 7.26

sec., for executing 500 queries 38.79 sec., and for executing 1,000

queries 73.43 sec.

5.4.3 Management of parallelism
The last step implements the management of parallelism. The

implementation of the sequential scan is re-used and adapted

according to the conditions. The use of 4, 8, 16 and 32 threads are

considered and examined. The results of the measurement are

shown in Table IV of the appendix. The creation of 33 threads

was not able to reduce the execution time. The use of 32 threads

represents the optimal index-based solution for the city name data

set.

5.5 Comparison of the sequential solution

with the index-based solution on the city

names data set
The results of the measurement can be stated as follows. The

execution time for the sequential scan could be reduced by

different kinds of approaches. Considering 100, 500 and 1000

queries, the execution time could be reduced by 91 to 97 percent.

The execution time for the index-based solution could be reduced

by 81 to 82 percent. In comparison of the sequential solution with

the index-based solution on the city names data set, the sequential

solution needs between 4 and 58 percent of the time of the index-

based solution.

An optimized sequential scan is faster than an index-based

solution on a set of short strings. The hypothesis is supported.

Figure 6 illustrates the best sequential solution with the best

index-based solution. The following sections evaluate approaches

to improve the sequential and index-based solution on the DNA

data set.

5.6 Evaluation of the sequential solution on

the DNA data set
The implementation of the sequential solution for the DNA data

set is the same as the implementation of the sequential solution for

the city names data set. The test cases are similar to those of the

sequential solution. The results of measurement for the

management of the parallelism are shown in Table VI in the

appendix. The optimal number of threads is 32. It is different to

the city names data sets.

Figure 6. Comparison of the sequential solution with the

index-based solution on the city names data set

The measurement results of every single step are summarized in

Table VII of the appendix. The last approach with 32 Threads

represents the best solution and should be considered for this

reason further. This solution will be compared to the best index-

based solution.

5.7 Evaluation of the index-based solution on

the DNA data set
The index-based solution shows that the implementation of a

compression and the use of parallelism management can improve

the performance of an index-based solution on DNA data sets.

The results of measurement for the management of the parallelism

are shown in Table VIII in the appendix. The optimal number of

threads is 16. This approach represents best solution in

comparison to the previous approaches. All results of

measurement are shown in Table IX in the appendix.

5.8 Comparison of the sequential solution

with the index-based solution on the DNA data

set
The results of the measurement can be stated as follows. The

execution time for the sequential scan could be reduced by

different kinds of approaches. Considering 100, 500 and 1000

queries, the execution time could be reduced by 99 percent. The

execution time for the index-based solution could be reduced by

91 to 92 percent. In comparison of the sequential solution with the

index-based solution on the city names data set, the index-based

solution needs between 9 and 19 percent of the time of the

sequential solution. An index-based solution is faster than an

optimized sequential solution on a set of large strings. The second

hypothesis is supported. Figure 7 illustrates the best sequential

solution with the best index-based solution.

6. CONCLUSION AND FUTURE WORK
The aim of this paper was to outperform an index-based solution

with a sequential scan. Different kind of approaches like

improving the calculation of the edit distance, using value

semantic or reference semantic, using simple data types and

implementing simple program methods, implementing parallelism

and management of parallelism were considered to implement a

sequential solution. The index-based solution is based on this

knowledge. Furthermore a compression of the prefix-tree and the

management of parallelism were examined. It was determined that

the index-bases solution takes less time to compute the results on

the DNA data set, but it takes more time on the city name data set.

Figure 7. Comparison of the sequential solution with the

index-based solution on the city names data set

0

5

10

15

100 queries 500 queries 1000 queries

se
co

n
d

s

City names data set

Best sequential solution Best index-based solution

0

200

400

600

800

1000

100 queries 500 queries 1000 queries

se
co

n
d

s

DNA data set

Best sequential solution Best index-based solution

The topic of this work provides further needs for research. The

following area can be examined:

 Sorting: Can a pre-sorting by length or alphabet reduce

the execution time?

 Dictionary Compression: The use of a compression

dictionary in the DNA region could achieve

improvements. An alphabet of five symbols makes it

possible to represent a symbol with three bits. This

makes it possible to store symbols more efficiently and

to accelerate the computation time of the edit distance,

because fewer bits in sum must be compared.

 Frequency vectors: Addition information about the

number of occurrence could calculate. For the DNA

data set, the number of occurrence of the symbols A, C,

G, N and T is needed. For the city names data set, the

number of occurrence of the symbols A, E, I, O and U is

needed. On this basis, it is possible to implement an

early filtering.

 Programming languages: The same approach could be

implemented with a different programming language, to

examine their effectiveness in this domain.

 Library for parallelism: The parallelism approach could

be implemented with a different library. For example,

the Qt and the Intel Threading Building Blocks library

are two interesting alternatives for parallelism.

 Management of parallelism: A possibility of

improvement is to implement an intelligent management

of parallelism. The opening and closing of threads has

to be dependent on the system workload.

 Number of data records: Has the number of data records

an effect on the best solution?

Finally, this work has produced promising results. There are a lot

of other approaches, which could be examined in the future.

7. REFERENCES
[1] J. Buhler, “Provably sensitive Indexing strategies for biosequence

similarity search,” in Proceedings of the sixth annual international
conference on Computational biology, New York, NY, USA: ACM,
2002, pp. 90-99.

[2] E. Chávez and G. Navarro, “A Metric Index for Approximate String
Matching,” in Proceedings of the 5th Latin American Symposium on
Theoretical Informatics, London, UK, UK: Springer-Verlag, 2002,
pp. 181-195.

[3] D. Fenz, D. Lange, A. Rheinländer, F. Naumann, and U. Leser,
“Efficient similarity search in very large string sets,” in Proceedings
of the 24th international conference on Scientific and Statistical
Database Management, Berlin, Heidelberg: Springer-Verlag, 2012,
pp. 262-279.

[4] G. Navarro and R. Baeza-yates, “A Hybrid Indexing Method for
Approximate String Matching,” Journal of Discrete Algorithms, vol.
1, p. 2000, 2001.

[5] G. Navarro, R. Baeza-yates, Erkki Sutinen, and Jorma Tarhio,
“Indexing Methods for Approximate String Matching,” IEEE Data
Engineering Bulletin, vol. 24, p. 2001, 2000.

[6] E. Hunt, M. P. Atkinson, and R. W. Irving, “Database indexing for
large DNA and protein sequence collections,” The VLDB Journal,
vol. 11, no. 3, pp. 256-271, 2002.

[7] J. Kärkkäinen and J.C. Na, “Faster Filters for Approximate String
Matching,” in Proceedings of the Workshop on Algorithm
Engineering and Experiments, ALENEX 2007, New Orleans,
Louisiana, USA, January 6, 2007: SIAM, 2007.

[8] A. Rheinländer, M. Knobloch, N. Hochmuth, and U. Leser, “Prefix
tree indexing for similarity search and similarity joins on genomic
data,” in Proceedings of the 22nd international conference on
Scientific and statistical database management, Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 519-536.

[9] E. S. Ristad and P. N. Yianilos, “Learning String-Edit Distance,”
IEEE Trans. Pattern Anal. Mach. Intell, vol. 20, no. 5, pp. 522-532,
1998.

[10] J. Zhou, J. Sander, Z. Cai, L. Wang, and G. Lin, “Finding the
Nearest Neighbors in Biological Databases Using Less Distance
Computations,” IEEE/ACM Trans. Comput. Biol. Bioinformatics,
vol. 7, no. 4, pp. 669-680, 2010.

[11] H. Helmke, F. Höppner, and R. Isernhagen, Einführung in die
Software-Entwicklung: Vom Programmieren zur erfolgreichen
Software-Projektarbeit. München: Hanser, 2007.

[12] R. Bündgen, M. Göbel, and W. Küchlin, “A master-slave approach
to parallel term rewriting on a hierarchical multiprocessor”, Lecture
Notes in Computer Science, vol 1128, pp. 183-194, 1996.

[13] G. Contreras and M. Maronosi, “Characterizing and improving the
performance of Intel Threading Building Block, “ Workload
Characterization, 2008. IISWC 2008. IEEE International Symposium
on, vol., no., pp. 57-66, 2008.

[14] J. Chen and W.W. Lii, “Multi-Threading Performance on
Commodity Multi-core Processors,” In Proceedings of International
Conference on High Performance Computing in Asia Pacific Region,
2007.

[15] M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell,
“Clarifying and compiling C/C++ concurrency: from C++11 to
POWER,” in Proceedings of the 39th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, New
York, NY, USA, ACM, 2012, pp. 509-520.

[16] K.B. Wheeler, R.C. Murphy, and D. Thain, “Qthreads: An API for
programming with millions of lightweight threads,“ Parallel and
Distributed Processing, 2008. IPDPS 2008. IEEE International
Symposium on, vol., no., pp. 1-8, 2008.

[17] K. Wooyoung and M. Voss, “Multicore Desktop Programming with
Intel Threading Building Blocks,” Software, IEEE, vol. 28, no. 1.,
pp. 23-31, 2011.

[18] S. Sahni and G. Vairaktarakis, “The master-slave paradigm in
parallel computer and industrial settings,” Journal of Global
Optimization, vol. 9, Issue 3-4, pp. 357-377, 1996.

8. APPENDIX

Table II. Management of parallelism in the sequential solution

on the city name data set

Number of threads

Number of queries

100

queries

500

queries

1.000

queries

4 threads 1.29 sec 3.98 sec 7.21 sec

8 threads 1.46 sec 3.57 sec 5.93 sec

16 threads 2.29 sec 3.86 sec 6.17 sec

32 threads 4.56 sec 5.48 sec 6.98 sec

Table III. Evaluation of the sequential solution on the city

name data set

Approach

Number of queries

100

queries

500

queries

1.000

queries

1) Base

implementation
16.92 sec 84.80 sec 166.22 sec

2) Calculation of the

edit distance
3.71 sec 17.81 sec 34.20 sec

3) Value or

reference
2.88 sec 15.13 sec 29.31 sec

4) Simple data types

and program methods
2.20 sec 11.54 sec 21.64 sec

5) Parallelism 13.13 sec 64.95 sec 129.35 sec

6) Management of

parallelism
1.46 sec 3.57 sec 5.93 sec

Table IV. Management of parallelism in the index-based

solution on the city name data set

Number of threads

Number of queries

100

queries

500

queries

1.000

queries

4 threads 2.39 sec 11.79 sec 20.99 sec

8 threads 1.70 sec 8.17 sec 14.78 sec

16 threads 1.50 sec 7.93 sec 14.31 sec

32 threads 1.53 sec 7.58 sec 14.19 sec

Table V. Evaluation of the index-based solution on the city

name data set

Approach

Number of queries

100

queries

500

queries

1.000

queries

1) Base

implementation
8.14 sec 42.26 sec 77.95 sec

2) Compression 7.26 sec 38.79 sec 73.43 sec

3) Management of

parallelism
1.53 sec 7.58 sec 14.19 sec

Table VI. Management of parallelism in the sequential

solution on the DNA data set

Number of threads

Number of queries

100

queries

500

queries

1.000

queries

4 threads 126.17 sec 573.94 sec 1,136.40 sec

8 threads 88.94 sec 476.01 sec 841.55 sec

16 threads 83.73 sec 415.25 sec 848.47 sec

32 threads 89.53 sec 413.98 sec 827.32 sec

Table VII. Evaluation of the sequential solution on the DNA

data set

Approach

Number of queries

100

queries

500

queries

1.000

queries

1) Base

implementation
≈ half day ≈ 1 day ≈ 2 days

2) Calculation of the

edit distance
278.45 sec 1,767.40 sec 3,191.10 sec

3) Value or

reference
269.45 sec 1,746.70 sec 3,110.12 sec

4) Simple data types

and program methods
267.42 sec 1,512.36 sec 2,833.03 sec

5) Parallelism 88.18 sec 434.66 sec 905.89 sec

6) Management of

parallelism
89.53 sec 413.98 sec 827.32 sec

Table VIII. Management of parallelism in the index-based

solution on the DNA data set

Number of threads

Number of queries

100

queries

500

queries

1.000

queries

4 threads 118.31 sec 545.35 sec 1,094.73 sec

8 threads 76.60 sec 419.59 sec 823.76 sec

16 threads 71.78 sec 367.95 sec 753.01 sec

32 threads 72.62 sec 370.21 sec 768.96 sec

Table IX. Evaluation of the index-based solution on the DNA

data set

Approach

Number of queries

100

queries

500

queries

1.000

queries

1) Base

implementation
876.48 sec 4,355.42 sec 8,686.65 sec

2) Compression 352.24 sec 1,737.44 sec 3,450.47 sec

3) Management of

parallelism
71.78 sec 367.95 sec 753,01 sec

