
Query Planning in
Mediator Based Information Systems

vorgelegt von
Diplom - Informatiker

Ulf Leser

Vom Fachbereich 13 – Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

- Dr. Ing. –

Promotionsausschuß: Prof. Dr. Hommel
Prof. Dr. Weber
Prof Dr. Freytag

Tag der wissenschaftlichen Aussprache: 28 Juni 2000

Berlin, 17 September 2000

D 83

mediation: a practice under which, in a conflict, the services of
a third party are utilized to reduce the differences or to seek a solution.
Mediation differs from "good offices" in that the mediator usually takes

more initiative in proposing terms of settlement. It differs from
arbitration in that the opposing parties are not bound by prior agreement

to accept the suggestions made.
Encyclopaedia Britannica

There can be no understanding
between the brain and the hands,
unless the heart acts as mediator.

From the movie “Metropolis”

Abstract

Information integration has gained new importance since the widespread success of the World
Wide Web. The simplicity of data publishing on the web and the promises of the emerging
eCommerce markets pose a strong incentive for data providers to offer their services on the
Internet. Due to the exponential growth rate of the number of web sites, users are already
faced with an overwhelming amount of accessible information. Finding the desired piece of
information is difficult and time-consuming due to the inherently chaotic organisation of the
Web.

For this reason, information integration services are becoming increasingly important. The
idea of such a service is to offer to a user a single point of access that provides him or her ex-
actly with the information he or she is interested in. To achieve this goal, the service dynami-
cally integrates and customises data from various data providers. For instance, a business in-
formation service would integrate news tickers, specialised business databases, and stock in-
formation. However, integration services face serious technical problems. Two of them are
particularly hard to overcome: The heterogeneity between data sources and the high volatility
that interfaces to data providers on the web typically exhibit.

Mediator based information systems (MBIS) offer remedies for those problems. A MBIS
tackles heterogeneity on two levels: Mediators carry out structural and semantic integration of
information stemming from different origins, whereas wrappers solve technical and syntacti-
cal problems. Users only communicate with mediators, which use wrappers to access data
sources. To this end, mediators and wrappers are connected by declarative rules that semanti-
cally describe the content of data sources. This decoupling supports the stability of interfaces
and thus increases the maintainability of the overall system.

This thesis discusses query-centred MBIS, i.e., MBIS in which mediators represent their
domain through a schema. The core functionality of a mediator is to receive and answer user
queries against its schema. Two ingredients are essential to accomplish this task: First, it re-
quires a powerful language for specifying the rules that connect mediators and wrappers. The
higher the expressiveness of this these rules, the more types of heterogeneity can be overcome
declaratively. Second, the mediator must be equipped with algorithms that are – guided by the
semantic rules – capable of efficiently rewriting user queries into queries against wrappers.

We contribute to both issues. We introduce query correspondence assertions (QCA) as a
flexible and expressive language to describe the content of heterogeneous data sources with
respect to a given schema. QCAs are able to bridge more types of conflicts between schemas
than previous languages. We describe algorithms that rewrite queries against a mediator into
sequences of queries against wrappers, based on the knowledge encoded in QCAs. Our algo-
rithms are considerably more efficient than previously published algorithms for query rewrit-
ing in MBIS. Furthermore, we define a formal semantics for queries in MBIS, which allows
us to derive statements about properties of rewriting algorithms. Based on this semantics, we
prove that our algorithm is sound and complete. Finally, we show how to reduce the main cost
factor of query answering in MBIS, i.e., the number of accesses to remote data sources. To
this end, we device algorithms that are capable of detecting and removing redundant remote
accesses.

Zusammenfassung

Die in den letzten Jahren rasant zunehmende Vernetzung von Informationssystemen hat neue
Perspektiven für die Informationsintegration geschaffen. Dies hat im wesentlichen zwei
Gründe: Zum einen die Verfügbarkeit einer kritischen Masse an Information, deren Integrati-
on einen echten Mehrwert darstellt, und zum anderen die Unübersehbarkeit und Unübersicht-
lichkeit der vorhandenen Informationsquellen, deren getrennte Handhabung für einen Einzel-
nen unzumutbar wird. Beide Aspekte zusammen bewirken einen zunehmenden Marktwert für
Services der Art ‚Integrierter Zugriff‘.

Wer Integration als Service versteht, plaziert sich als Vermittler (Mediator) zwischen In-
formationslieferanten und Informationskonsumenten. Der Integrationsservice selbst nimmt
beide Rollen ein: Für die eigentlichen Content Provider ist er Konsument, für den Endkonsu-
menten ist er Lieferant. Gegenüber seinen Konsumenten muß er einen Mehrwert erbringen,
z.B. einen transparenten Zugriff auf verschiedene Informationsquellen oder die semantische
Integration unterschiedlicher Informationsquellen in eine einheitliche Weltsicht.

Die Unterstützung zur Schaffung eines solchen Mehrwertes, d.h., die Unterstützung einer
hochwertigen Informationsintegration, ist eine Herausforderung für die Informatik. Abstrakt
gesprochen, ist das Ziel die Bereitstellung eines einheitlichen Zugriffs auf eine Menge von
heterogenen, autonomen und verteilten Informationsquellen. Sowohl Heterogenität als auch
Autonomie spielen dabei heute eine größere Rolle als noch vor einigen Jahren: Während man
damals unter Heterogenität oftmals nur unterschiedliche Dialekte relationaler Anfragespra-
chen verstand, wird man heute oft mit Datenquellen konfrontiert, die schlichtweg überhaupt
keine Anfragesprache im eigentlichen Sinne unterstützen. Quellautonomie bezeichnete da-
mals vor allem die Tatsache, daß man die Eigenschaften einer Quelle als gegeben und unver-
änderlich hinnehmen muß; heute verbindet man mit Autonomie vor allem das Problem der
Integration sich laufend ändernder Quellen. Typische Beispiele für anfragebeschränkte und
sich im stetigen Wandel befindliche Datenquellen sind Web-basierte Informationsdienste. Die
Bereitstellung eines kostengünstigen und wartbaren Integrationsservices muß daher durch
flexible und ausdrucksstarke Verfahren unterstützt werden.

Die vorliegende Dissertation beschreibt solche Verfahren. Sie konzentriert sich auf zwei
Komponenten einer Mediator-basierten Integrationsarchitektur. Zum einen stellt sie eine
Sprache zur Beschreibung des Inhalts von Datenquellen sowie Ihrer Schnittstellen vor, die
eine Abbildung auf ein einheitliche Schema ermöglicht. Zum anderen beschreibt die Arbeit
Algorithmen, die in der Lage sind, Anfragen an ein einheitliche Schema effizient in Aufrufe
der Datenquellen zu übersetzen. Die vorgestellten Algorithmen sind sowohl formal fundiert
als auch bisher veröffentlichten Verfahren bzgl. Komplexität und Flexibilität überlegen.

Die Ergebnisse der vorliegenden Arbeit unterstützen damit maßgeblich die Bewältigung
der oben genannten Probleme. Die Entkopplung der Quellbeschreibungen von den Algorith-
men zur Anfrageübersetzung erlaubt die flexible und schnelle Reaktion auf Änderungen in
Quellen. Die neu entwickelte Beschreibungssprache ist in der Lage, Web-basierte Informati-
onsdienste gleichermaßen wie relationale Datenbanken einzubinden, da sie nur minimale An-
nahmen über die von Datenquellen bereitgestellte Funktionalität macht. Dem Benutzer bleibt
die Heterogenität der Quellen gänzlich verborgen, denn der Mediator präsentiert sie gemäß
einer homogenen Weltsicht.

Acknowledgements
First of all I thank my two supervisors for their constant support and advice during the prepa-
ration of this thesis. Professor Weber and his department at the Technical University of Berlin
provided the indispensable shelter and scientific infrastructure. Professor Freytag of the Hum-
boldt University of Berlin co-supervised my work and improved it through many valuable
comments on technical issues.

I always very much enjoyed the lively and controversial discussions with my colleagues at
CIS, the department for Computer-Based Information Systems at the Technical University of
Berlin. Especially, I thank Dr. Ralf–Detlef Kutsche for continuous moral support and Susanne
Busse for the inspiring seminar on Mediator-Based Information Systems we held together in
1998.

This thesis would not have been written without the financial support of the Berlin and
Brandenburg Graduate School for Distributed Information Systems. Through the regular
evaluation of my ideas the graduate school was also a helpful forum to filter the good from
the bad.

Furthermore, I thank my diploma students Heiko Müller, Christoph Holzheuer, Oliver
Kinne, and Holger Last, whose questions forced me to work out the details of my ideas; my
temporary colleagues at the European Bioinformatics Institute, especially Patricia Rodriguez-
Tome, Kim Jungfer, Steffen Möller, and Philip Lijnzaad; Lutz Friedel, the best system admin-
istrator I ever had; Sabine Lembke for listening whenever it was necessary; and Hugues
Roest-Crollius at the Max-Planck-Institute for Molecular Genetics, who introduced me to the
problem of data integration in a heterogeneous and distributed environment.

Finally, I am particularly grateful to Felix Naumann, without whom this work would have
been only half the fun it was.

Table of Contents

1. INTRODUCTION 1
1.1 Motivating Example: Data Integration in Molecular Biology 3
1.2 Objective 5
1.3 Context 6

1.3.1 Information Integration 6
1.3.2 Schema Correspondences 7
1.3.3 Query Planning 8

1.4 Contributions 9
1.5 Structure of the Thesis 10
1.6 Notation and Terminology 11

2. QUERIES AND QUERY CONTAINMENT 13
2.1 Conjunctive Queries 13
2.2 Query Containment and Query Equivalence 19
2.3 Proving Query Containment 24

2.3.1 Problem Decomposition 24
2.3.2 The Search Space of Query Containment 29
2.3.3 Breadth-First Algorithm 31
2.3.4 Depth-First Algorithm 33
2.3.5 Comparing BFA and DFA 36
2.3.6 The “Frozen Facts” Algorithm 39

2.4 Summary and Related Work 41

3. CONCEPTS OF MEDIATOR BASED INFORMATION SYSTEMS 44
3.1 From Federated to Mediator Based Information Systems 45

3.1.1 Classification Criteria 45
3.1.2 Types of Federated Information Systems 46

3.2 Development Strategies 48
3.2.1 Top-Down 49
3.2.2 Bottom-Up 50

3.3 Architecture of a Mediator Based Information System 51
3.3.1 Wrappers in MBIS 52
3.3.2 Mediators in MBIS 54

3.4 Correspondence Specification Languages 56
3.4.1 Global-as-View 57
3.4.2 Local-as-View 59
3.4.3 Comparison 60

3.5 Summary and Related Work 61

4. QUERY CORRESPONDENCE ASSERTIONS 63
4.1 Basic Idea 63
4.2 Syntax and Semantics of QCAs 66
4.3 Semantics of User Queries in MBIS using QCAs 69

4.3.1 Materialising QCAs 69
4.3.2 Answering Queries using Materialised QCAs 73
4.3.3 Consistent Sets of QCAs 77

4.4 Executable Mediator Queries 79
4.5 Summary and Related Work 81

5. QUERY PLANNING USING QCAS 84
5.1 Planning User Queries 87

5.1.1 Plans and Query Plans 87
5.1.2 A Length Bound for Query Plans 94

5.2 Generate & Test Algorithm 97
5.2.1 Candidate Enumeration 97
5.2.2 Finding Query Transformers 99
5.2.3 Implementation and Complexity of the GTA 103
5.2.4 Computing Buckets 108

5.3 Improved Bucket Algorithm 110
5.3.1 Merging Candidate Generation and Test 111
5.3.2 Implementing the IBA 117
5.3.3 Complexity of the IBA 122
5.3.4 Comparing GTA and IBA 124

5.4 Redundancy in Query Plans 125
5.4.1 Finding Redundant Query Plans 126
5.4.2 Multiple Query Optimisation in MBIS 131

5.5 Summary and Related Work 139

6. METHODOLOGY 146
6.1 Integrating Different Types of Data Sources 147

6.1.1 Relational Databases 148
6.1.2 CORBA Based Data Sources 149
6.1.3 Web Based Data Sources 151

6.2 Bridging Heterogeneity through QCAs 152
6.2.1 Heterogeneity in MBIS 153
6.2.2 Semantic Heterogeneity 155
6.2.3 Structural Heterogeneity 159
6.2.4 Schematic Heterogeneity 160

6.3 MBIS in the Presence of Change 163
6.4 Summary and Related Work 166

7. DISCUSSION 168
7.1 Summary 168
7.2 Future Research Directions 169
7.3 Conclusions 171

REFERENCES 172

APPENDIX 182
List of Figures 182
List of Definitions 183
List of Algorithms 183
List of Lemmas and Theorems 184
List of Abbreviations 185
List of Symbols 186

1. Introduction

1. INTRODUCTION

Some of the great challenges for current computer science emerge from the need for integra-
tion. In software engineering, integration is necessary for the development of software sys-
tems that are built on top of existing components; in information systems, integration appears
as the task of building systems whose content is provided by and managed in other, pre-
existing, and autonomous information systems.

Integrating heterogeneous components into a new system is the more complicated the more
heterogeneity exists between existing systems and the requirements for the new system. In
information systems, heterogeneity appears for instance in differently structured schemas,
different scopes and meanings of schema elements, and different access interfaces. Coping
with heterogeneity is always cumbersome. The necessary effort grows with the degree of
autonomy of systems being integrated. At worst, a developer is confronted with heterogene-
ous, autonomous, and independently evolving information systems.

In 1985, Heimbinger & McLeod first described an approach to achieve integration in such
an environment [HM85]. The authors introduced the term ”database federation” to emphasise
that participating systems on one hand need to cooperate – to solve a global “problem”, i.e., a
query – but on the other hand try to keep a high degree of autonomy. Since then, federated
database systems have been a highly active area of research (see [EP90; BE95; BBE98]).

In [SL90], Sheth & Larson summarise achieved results in the field and review at that time
existing research and commercial systems. From this survey, one can see that until the late
1980s most projects made the following assumptions: (a) The projects studied the integration
of data sources within a single organisation, such as the integration of personnel databases
from different departments. (b) They aimed at systems that allow read and write access to data
sources. (c) It was presupposed that data sources must be completely integrated, i.e., each
piece of information stored in a data source must also be accessible from the integrated sys-
tem. (d) The projects expected that data sources are full-fledged database systems.

These assumptions are not adequate for current applications of data integration. Informa-
tion system integration nowadays addresses worldwide distributed data sources, crosses or-
ganisational borders, and involves data sources that are not accessible through a query lan-
guage. On the other hand, integrated systems only require read access to only selected parts of
data sources, since their goal is to satisfy a certain information requirement.

The major incentive for current projects studying information integration is the ubiquitous
use of the World Wide Web (in the following: the web) as data publishing system. Through
the web, the number of freely accessible data sources has increased by magnitudes. Due to the
chaotic and confusing nature of the web, it is however difficult to dig up this wealth of infor-
mation. Integration services tackle at this point. For instance, companies such as Junglee1 in-
tegrate job offers taken from organisations web sites; projects such as the HyperView [FS98]
aim at providing alerting services for digital libraries by regularly checking publisher’s infor-

1

1 See http://www.junglee.com

1. Introduction

Wrapper WrapperWrapper

Mediator

Mediator

Relational database
management system

Bookstore Offers:
1. dff dffdfdsd asd s
 dkajskdjakd
2. sdfjsajs ad ddad
 sdfjsfjs
3. ajs ad ddad
4. ajs ad ddad

Bookstore Offers:
1. dff dffdfdsd asd s
 dkajskdjakd
2. sdfjsajs ad ddad
 sdfjsfjs
3. ajs ad ddad
4. ajs ad ddad

Information systems
with web interfaces

ORB

Component A

Component B

Information systems
with CORBA interfaces

Queries Data

Figure 1. A mediator based information system.

mation systems for new articles or books; integrated databases in molecular biology, such as
the Integrated X Chromosome Database [LWG+98], offer homogeneous access to informa-
tion taken from dozens of different sources; stock-watch services, such as Stockwatch.de2,
update their quotes in minute intervals by parsing web sites of stock markets all over the
world. Information integration in those scenarios constitutes a value on its own. Therein, “in-
tegration” is a product of high commercial value.

However, information integration is a difficult subject. The pure number of sources and the
high diversity in the types of interfaces through which they are accessible impose require-
ments that call for sophisticated techniques and methods. For instance, scalability, i.e., the
ability to perform sufficiently with a growing number of data sources, is very important if an
integration service wants to keep pace with the growing number of content providers. Another
example is maintainability, i.e., the ability of provide a stable system in the presence of an
continuously changing environment. Especially on the web, changes in data sources are all
too frequent and must be compensated. Finally, flexibility is vital to cover the manifold of
different data sources that are potential candidates for being integrated. For instance, a com-
pany’s intranet portal probably must access information stored in flat-files, applications with
low-level programming interfaces, web pages, or relational database management systems.

In [Wie92], Wiederhold proposed an integration architecture that meets these require-
ments. In this architecture, integration is accomplished by many small, manageable, and inter-
acting components. The most important such components are mediators and wrappers. Me-
diators are domain-specific, i.e., they offer integrated access to data from a certain domain.
Therefore, mediators dynamically collect information from wrappers, which encapsulate data
sources. A wrapper is source specific. Its task is to present the data and interfaces of its
wrapped data source in the form that a mediator requires. A set of cooperating wrappers and
mediators constitutes a mediator based information systems (see Figure 1).

2

2 See http://www.stockwatch.de

1. Introduction

This work focuses on query-centric mediator based information systems. In such systems,
a mediator administers its own schema and is capable of answering queries against this
schema. Users communicate with mediators by posing queries against their schemas. Therein,
users are shielded from the properties of underlying data sources. Mediators compute answers
to such user queries dynamically, i.e., the data is physically kept and managed in the data
sources and only accessed at query time. Typical application scenarios for mediator based
information systems are:

Travel information systems that allow the combined booking of flight- and train tickets,
car rental, hotel reservation, excursions, etc.

•

•

•

•

•

Scientific information systems that provide integrated access to experimentally obtained
data produced and published all over the world.
Company-intern information portals that offer a central point of access to corporate
knowledge, such as telephone lists, room reservation, knowledge bases, bug reports, etc.
Web portals that aim to gather under a single interface information for a specific audience,
where the information is originally stored and provided by autonomous content providers.
Shopping assistants and bargain finder on the web that dynamically compare offers from
different electronic shops.

To answer a user query, a mediator must translate that query into sequences of remote method
executions or remote queries. This task is called query planning. Query planning is not trivial
since it must deal with the structural and semantic heterogeneity between the mediator and the
autonomous data sources. For instance, query planning encompasses the translation of names,
the transformation of values, and the combination of information obtained from different
sources. Query planning is impossible without powerful languages for the specification of the
relationships between a mediator and the content and interfaces of data sources.

Query planning in the presence of heterogeneous data sources with restricted query capa-
bilities is one of the main current research areas in information integration. The present thesis
is devoted to this topic.

1.1 Motivating Example: Data Integration in Molecular Biology

Bioengineering is considered as one of the key technologies of the 21st century. Advances in
bioengineering are mainly based on research in molecular biology and aim, for instance, at the
identification of the causes of hereditary diseases or at the design of new drugs.

The principal object of analysis in molecular biology are DNA sequences (see Figure 2)
and protein sequences. The goal of the human genome project (HGP), which started in the
mid 1980s, is it to establish the complete sequence of the human genome. The HGP is a
highly distributed research project in which laboratories, companies, and national science or-
ganisation from all over the world participate [Fre91]. The main work carried out in the HGP
is experimental in nature [Pri96]. However, computers, and in particular databases, play an
increasingly important role. Researchers use computers to store experimental results, to derive
conclusions from experimental results, and to exchange data. Robbins, a former program di-
rector of the US’ national science foundation, puts it this way:

“If the informatics is not handled well, the HGI [human genome initiative] could
spend billions of dollars and researchers might still find it easier to obtain data by
repeating experiments than by querying the database. If this happens, someone
blew it.” (taken from [Fre91]).

3

1. Introduction

Figure 2. A string of DNA having the famous double-helix structure.

The different groups participating in the HGP mostly work un-coordinated and in competi-
tion for funding and academic honours. Apart from leading to a potential duplication of work,
the lack of coordination triggers a complex problem for everybody who tries to integrate data
from different sources: A large number of data sources has to be considered – a current list
contains more than 500 entries [DBBV00] – and all these data sources are heterogeneous wrt.
their access interface, syntax, and semantics. Furthermore, data sources have a large degree of
intensional overlap (see Figure 3) due to overlaps in the research goals. For a class of objects
there are very likely many sources containing related information.

Today, data integration in molecular biology is considered as “the most pressing problem”
[Rob95] in the field of genome research. There are a number of projects working on it. A sur-
vey of ongoing work may, for instance, be found in the proceedings of the workshops on “In-
terconnecting Molecular Biology Databases”, edited by Peter Karp [Karp94; Karp95c]. Most
of the projects concentrate on a small fraction of the domain, and physically integrate data
into a single database [LLRC98]. Since integrated databases in turn also act as data source
they add the problem of extensional overlap.

In the following list, we describe various aspects of the data integration problem in mo-
lecular biology and point out the solutions we present in this thesis:

The requirement is to provide comfortable access to all or most available information in
the field.

•

•

•

•

•

Our solution provides full location, language and schema transparency for users.

The data physically resides on computers distributed all over the world.
Our solution integrates data at query time and does not depend on data replication.

Data sources are heterogeneous in terms of the access mechanisms they offer, the schemas
they use to describe their data, the meaning they give to schema elements, and the format
in which data is eventually provided.
Our solution assigns the treatment of different forms of heterogeneity to different compo-
nents, separating technical and syntactic issues from semantic and structural problems. We
concentrate on the latter.

Data sources are intensionally and extensionally overlapping.
Our research focuses on intensional overlap. Intension is represented in schemas; exten-
sion is represented in instances. Only schemas are usually small enough to make a detailed
analysis feasible.

Data in different data sources may be inconsistent.
Extensional overlap between data sources may lead to inconsistent data values. We shall
not try to remove or resolve inconsistencies. Instead, we collect all available values for a
specific piece of information.

4

1. Introduction

X-chromosome

St. Louis Genome
Centre

Gene families

Gene function

Figure 3. Intensional overlap between data sources.

Each oval represents a data source.

Data sources evolve frequently and independently. •

•

•

Our solution is highly flexible wrt. change. This flexibility is achieved through a loose
coupling combined with declarative descriptions.

The approach to data integration we develop in this thesis is by no means restricted to
molecular biology. Instead, it is completely domain independent. However, the motivation for
its development was largely taken from experienced or published problems in integrating mo-
lecular biology data sources, as reported by Leser et al. [LLRC98] and Robbins [Rob92].

1.2 Objective

We study the problem of query planning in mediator based information systems. Query plan-
ning is the task of computing answer to global queries in systems that integrate autonomous,
heterogeneous, and distributed data sources. We consider query planning as an abstraction of
the data integration problem found in many domains, such as molecular biology. We develop
solutions for the two major challenges entailed by query planning:

One challenge emerges from the conflict between the requirement for a high degree of
transparency for a user, and the existing heterogeneity between data sources. Query proc-
essing must hide heterogeneity, which, for instance, requires source selection, query de-
composition and translation, and result integration. Methods for query processing must
pay special attention to the highly dynamic nature of many data sources.
Our solution for this problem is based on a declarative rule language for the description of
data sources, called query correspondence assertions. We provide an algorithm that effi-
ciently answers queries using such rules.

The other challenge is simply performance. Performance has two components: The
amount of time necessary for query planning inside a mediator, and the time necessary to
receive answers from data sources. The query planning time benefits from efficient algo-
rithms; the data collection time benefits from avoiding remote queries as much as possi-
ble.
To achieve sufficient performance for query answering, we present an efficient algorithm
for query planning, the improved bucket algorithm. Furthermore, we investigate methods
to reduce remote query executions based on multiple query optimisation.

5

1. Introduction

We only consider data sources that are accessible for computer programs, for instance through
the World Wide Web. We use the word “data sources” to abstract from the hardware, proto-
col, program, etc. that grants the access.

1.3 Context

This section gives an overview of research in the area of database integration and summarise
our contributions. Technical discussions of related work may be found at the end of each
chapter. Since the number of publications in database integration is enormous, we cannot
claim to be complete. Interested readers are referred to: [BE95; Kim95; Con97; Hull97;
Ull97; BBE98; PS98].

1.3.1 Information Integration

Information integration is tackled by a number of different research communities. Examples
include cooperative information systems [DDJ+98], agent technology [KB98], federated da-
tabases [SL90], broker and trader architectures [JP99], intelligent information integration
[AHK+95], and mediator based systems [Wie92].

The integration architecture we apply is mediator based. In the following, we briefly char-
acterise several approaches to information integration. Our goal is to highlight the distinguish-
ing properties of mediator based information systems.

Federated information systems.
We use the term “federated information systems” (FIS) to denote all systems that provide in-
tegrated access to a set of heterogeneous, autonomous and distributed data sources, where
“integrated access” only means the provision of a single point of access. The architecture of a
FIS is depicted in Figure 4. Applications and users access a set of heterogeneous data sources
through a uniform access layer. This layer could offer a federated schema, a uniform query
language, a uniform set of source and content descriptions as metadata sets, etc.

Distributed databases.
Distributed databases [OV99] are FIS where all data sources are database systems with only
little autonomy. The distribution of data over sources is determined by design, for instance to
achieve high availability or good performance.

In contrast, the types of FIS we are considering consist of autonomous data sources that
evolve independently. Data distribution is not centrally organised but inherently chaotic.

Federated database systems.
Federated database systems (FDBS) [SL90] also assume that data sources are database sys-
tems. They allow for a higher degree of source autonomy than distributed databases. Tightly
coupled FDBS provide access to their data sources through a single, unified schema. The pro-
cess of creating this schema, called schema integration, is the focus of research in FDBS
[NS96]. Typically, the federated schema is created such that it completely covers the export
schemas of all data sources.

FDBS fail in two points wrt. the requirements described in Section 1.1. First, we mostly
assume data sources to be non-database systems. Second, we shall see that schema integration
does not offer sufficient flexibility if sources evolve independently.

6

1. Introduction

Uniform access language, uniform access schema, uniform metadata set, etc.

Data Sources

deration layer

User

Fe

Structured
file

Document
collection

RDBMS Flat file

Application User Application

Qu

Qu

eries

eries
Data

Data

Figure 4. Architecture of a federated information system.

Mediator based information systems.
In the last years, mediator based information systems (MBIS) have been applied successfully
in many domains [Wie92]. The two main types of components of a MBIS are mediators and
wrappers: Wrappers encapsulate data sources to provide access in a predefined manner. A
mediator accepts queries against its mediator schema and computes answers by sending ap-
propriate queries to wrappers. MBIS provide full location, language and schema transparency
for users. In contrast to FDBS, mediator schemas are not derived from export schemas but
designed independently. The main advantage is greater flexibility in the presence of change;
the main disadvantage is a higher degree of heterogeneity requiring more complex query
translation methods.

We only deal with structured MBIS, i.e., we do not consider semistructured data sources.
This implies that all wrappers provide the content of their wrapped data sources according to
an explicitly and previously defined schema, the wrapper schema.

1.3.2 Schema Correspondences

The main task of a mediator inside a MBIS is to answer queries against its schema by using
only queries executable by wrappers. Finding sequences of such wrapper queries is called
query planning. Query planning relies on knowledge about the relationships between ele-
ments of the mediator schema and elements of the wrapper schemas. Such relationships are
called schema correspondences and are expressed using a correspondence specification lan-
guage (CSL).

Previously developed CSLs either use the “Local-as-View” (LaV) or the “Global-as-View”
(GaV) approach [Hull97]. LaV languages only admit a correspondence to connect a single
relation of a wrapper schema with a query on the mediator schema, i.e., each relation of a
wrapper schema (the “local” component) is defined as a view on the mediator schema. GaV
languages only admit correspondences that connect a single relation of the mediator schema
(the “global” component) with a query on a wrapper schema, i.e., they define each relation of
a mediator schema as one or more views on wrapper schemas.

7

1. Introduction

1.3.3 Query Planning

Query planning in MBIS is different from conventional query planning in relational database
management systems (RDBMS) due to the heterogeneity involved. In RDBMS, a query is
posed against a single schema and “directly” executed by appropriately combing the data
stored in the relations of that schema. In MBIS, a query is formulated in terms of the mediator
schema and must be translated into sets of queries against wrapper schemas before execution.
The higher the degree of heterogeneity between those schemas, the more complex is query
planning.

Query planning in RDBMS.
In classical database optimisation, a plan is a specific way to execute a given query, determin-
ing for instance the order of join executions and the selection of appropriate join algorithms.
The results of all plans are identical and only differ in performance. Cost-based query optimi-
sation selects the best plan based on cost criteria, and all other plans are discarded (see
[SAC+79; Cha98]).

Query planning in MBIS.
Mediators cannot directly execute a user query, but must first rewrite it into sequences of que-
ries against wrapper schemas. In our framework, a plan is such a sequences of executable
wrapper queries. A plan is correct if it only produces correct answers, where the correctness
of an answer is essentially determined through the previously defined schema correspon-
dences. Since different correct plans differ in the wrapper queries they use, it follows that dif-
ferent plans produce different results. If more than one correct plan exists, the answer to the
user query is defined as the union of the results of all correct plans.

Rewriting queries into sets of correct plans is the focus of our work. To decide upon the
correctness of a plan we need a description of the result of each wrapper query in that plan in
terms of the mediator schema. We shall define a plan as correct for a user query if the expan-
sion of the plan is contained in the user query, where the expansion of a plan is the conjunc-
tion of the descriptions of its wrapper queries in terms of the mediator schema.

Answering queries using views.
The complexity of query planning in MBIS correlates to the type of CSL that is used. Query
processing in GaV languages is similar to view expansion in SQL; in contrast, query process-
ing in LaV languages is more complex. This thesis mainly deals with the problems of query
planning imposed by the LaV approach. To give an intuitive understanding of the nature of
those problems, we draw an analogy.

Imagine a data warehouse consisting of a set of materialised views against one operational
source database D [Wid95]. The views are updated regularly; their extension is stored in the
warehouse, and their definition, i.e., the queries they perform on D, are known. Since there is
only one source, all view definitions address the same schema. Now, imagine that D has a
fatal crash and is destroyed. Can we still answer a query against the schema of the destroyed
D that is not identical to any of the views? Figure 5 illustrates this situation. A user query u
addresses arbitrary relations of the schema of D, but at query time, only a set materialised
views, v1, v2, and v3, is available.

This problem is known as “answering queries using only views” [LMSS95]. Basically, the
answer is “yes”, if both the view definitions and the query are conjunctive queries. The gen-
eral idea to answer a query using only views is the following: We enumerate all conjunctions
of view definitions and insert appropriate joins. For each conjunction we check whether it is
equivalent to the query by testing query containment in both directions. Query containment is
tested by searching a containment mapping [ASU79b], i.e., a mapping from the symbols of

8

1. Introduction

Query addressing the
source schema

Relations of the
source schema

Materialised views

u ← rel1,rel2,rel3;

v3v2v1

rel3rel5rel4rel2

????????????

Figure 5. Answering a query using materialised views.

rel1

one query onto the symbols of the other query that fulfils certain properties. If a containment
mapping exists, the problem is solved and the query can be answered; if no containment map-
ping exists, the query cannot be answered using only the views.

The analogy to information integration is the following: Consider the materialised views to
be spread over different data sources. A mediator schema takes the role of the schema of D –
although an instance of this schema never existed. We only model elements of wrapper sche-
mas as views on D. We can then essentially use the same procedure as described above to
answer queries against the mediator schema.

Describing data sources as views on a global schema and answering queries against this
schema by finding appropriate view combinations was first suggested by Tsatalos et al. in
[TSI94]. This technique is fundamental for our work.

1.4 Contributions

We make three main contributions:

A new correspondence specification language, called query correspondence assertions
(QCAs), which is more powerful and more flexible than previous approaches.

•

•

•

An improved algorithm for query planning in MBIS. The best known algorithm so far has
complexity O((n+k)k), where n is the number of views and k is the length of the query
to be planned. In contrast, our improved bucket algorithm has complexity O(nk). We also
give an average case analysis of several algorithms for query planning and query contain-
ment. Such an analysis was, to our best knowledge, not accomplished before.
We suggest a post-processing for query plans based on multiple query optimisation. This
processing dramatically reduces the number of queries that have to be shipped to data
sources to compute the answer to a user query.

QCAs.
The correspondence specification language we propose and use in this thesis is query corre-
spondence assertions (QCAs). QCAs are a combination of the GaV and LaV approach, i.e.,
QCAs allow correspondences to relate queries against the mediator schema to queries against
a wrapper schema. We shall give examples showing that both the LaV and the GaV approach
are not able to describe situations that are expressible through QCAs. Query planning with
QCAs is in first place identical to query planning in LaV. However, QCAs also allow for effi-
cient multiple query optimisation.

9

To place our query planning algorithms on solid ground we formally define the semantics
for user queries in MBIS based on QCAs. Surprisingly, this fundamental issue is disregarded

1. Introduction

or only fuzzily described in many projects, which impedes their comparability [Mot95]. The
challenge in defining a proper semantics for global queries lies in the possible occurrence of
inconsistency between data sources, which renders a valuation-based approach as in central
databases impossible [GM99].

Improved bucket algorithm.
We in detail discuss ways to prove query containment, including worst-case and average-case
analysis. We highlight the difference between query containment and query planning in MBIS
by showing that query planning sometimes requires modifications of plans. The necessity to
consider plan transformations was mentioned in several publications before but never ana-
lysed in detail. We prove that it does not increase the complexity of query planning, although
it does add considerable difficulties to the algorithms.

We describe and analyse two algorithms for query planning. The generate & test algorithm
(GTA) is easy to capture and therefore more suitable to prove properties of query planning.
The improved bucket algorithm (IBA) is more complicated but at the same time considerably
more efficient, as revealed by a detailed complexity analysis. Its main achievement, compared
to the GTA, is a better exploitation of the problem structure, which helps to avoid redundant
computation. We formally prove soundness and completeness of both query planning algo-
rithms wrt. our semantics of global queries.

Multiple query optimisation.
Query planning algorithms potentially generate a large number of plans to answer a user
query. However, those plans are often redundant or share subplans that only need to be exe-
cuted once. We approach this problem through multiple query optimisation [Jar85; SSN94].
We give three methods for the treatment of redundancy in or between query plans: (a) We
show that redundant query plans can sometimes be removed entirely. (b) We describe a linear
algorithm for the detection of identical subplans. (c) We also include a more complex algo-
rithm for the detection of subsumed subplans. Although essentially all published query plan-
ning algorithms based on LaV correspondences face the problem of redundancy, no other
project has yet investigated it.

1.5 Structure of the Thesis

This thesis is structured as follows:

Chapter 2 defines basic concepts such as queries and schemas and introduces query con-
tainment. We discuss three algorithms for testing query containment, analysing two of
them in detail.

•

•

•

•

Chapter 3 discusses various approaches to information integration and characterises
MBIS. We define formal abstractions of mediators and wrappers to facilitate our discus-
sion of query planning. Finally, we introduce correspondence specification languages and
show where current languages fail.
Chapter 4 introduces query correspondence assertions and defines their syntax. We also
give a formal semantics for user queries in MBIS based on QCAs.

10

Chapter 5 discusses query planning algorithms. We start by showing that query planning
indeed implements the previously defined semantics, and prove that we only have to con-
sider a finite number of query plans. We then describe and analyse in detail the generate &
test algorithm and the improved bucket algorithm. The detection and removal of different
forms of redundancy is handled in a separate section.

1. Introduction

• Chapter 6 concentrates on methodological issues of MBIS. We discuss issues of the con-
struction of wrappers, focussing on the derivation of wrapper schemas, and show the
flexibility and power of QCAs in bridging heterogeneity in schemas. Finally, we argue
that the usage of QCAs leads to particularly robust systems by separately investigating the
consequences of different types of changes in MBIS.
Chapter 7 summarises our contributions and gives future research directions. •

•

•

•

•

•

•

•

•

•

•
•
•

•

1.6 Notation and Terminology

Terminology.
A precise characterisation of MBIS shall be given in Section 3.3. In the meantime, we define
some necessary terminology (see Figure 1 for illustration):

In this thesis, the word “user” refers to any type of client of a mediator, may it be an ap-
plications, another mediator or a human being.
The word “data source” refers to any type of system that a mediator uses to obtain data.
Data sources may, for instance, be databases, web based information systems, and files.
We assume that data sources are remote wrt. the mediator, i.e., reside on a different host,
but are accessible through a network.
We only deal with structured MBIS, i.e., we assume a mediator to have a schema, the me-
diator schema. We use the term “global schema” for the pendant of mediator schemas in
FIS that are not MBIS. Furthermore, each wrapper has a schema, called wrapper schema.
The queries a user poses against a mediator schema are called user queries. Answering
user queries is the goal of a mediator.
The queries that are executed by wrappers are called wrapper queries. Mediators answer
user queries by collecting data through the execution of wrapper queries.
Queries against mediator schemas that are used to describe wrapper queries are called
mediator queries (see Chapter 4). A mediator uses mediator queries to rewrite user queries
into sets of wrapper queries.

Notation.
We make the following syntactical conventions:

Small case letter variables stand for singular things, upper case letters for sets: “v” is a
variable, “V” a set of variables, “q” is a query, “Q” a set of queries, etc.
In definitions and proofs, “v” in general stands for a variable, “c” for a constant, and “s”
for a symbol, which may be either a variable or a constant.
We use “reli” for relation names, and “a”, “b” .. and “x”, “y” ... for symbols, “l” for
literals, “q” for queries, “p” for plans, and “h” for mappings.
We use “r” (rule) for query correspondence assertions.
We use DATALOG notation for queries.
We shall often construct queries by concatenating other queries. In such cases, we use the
delimiters “<” and “>” to separate a constructed query from the rest of a term. For in-
stance, “cond(<q1,...,qn>,V)” denotes the function cond with two parameters.
The first is a query constructed as the conjunction of the queries q1, ..., qn and the second
is a set of variables.

11

In queries, we use variable names that abbreviate attribute names, such as “gn” for
“genename” or “cl” for “clonelength”.

1. Introduction

Algorithms.
The analysis of algorithms is an essential part of this thesis. In particular, we often want to
prove that an algorithm is sound and complete for a given problem, and we want to derive the
complexity of algorithms. However, soundness and complexity is difficult to prove for im-
plementation–near algorithms, while a detailed complexity analysis requires some level of
detail.

To escape this problem, we distinguish between two types of algorithms. The first type is a
textual description of the solution for a problem. Algorithm 1 (testing query containment),
Algorithm 6 (the GTA for query planning), Algorithm 8 (the IBA for query planning), and
Algorithm 11 (testing replaceability of query plans) are of this type. For those algorithms we
prove soundness and completeness.

The second type are implementations of algorithms of the first type, and are given in
pseudo code. For instance, Algorithm 2 implements Algorithm 1, Algorithm 5 together with
Algorithm 7 and Algorithm 2 implement Algorithm 6, and Algorithm 10 implements
Algorithm 8. For those algorithms we carry out a detailed worst-case and average-case analy-
sis, and derive their complexity.

We therein do not prove the complexity of algorithm of the first type, i.e., the complexity
of a problem. For instance, we show that Algorithm 1 (page 28) is sound and complete for the
query containment problem for certain queries. We then device two algorithms (Algorithm 2
and Algorithm 3) that implement Algorithm 1 and show that both are exponential in the
length of the queries.. This does not imply that no implementation of Algorithm 1 exists that
has a lower complexity.

12

2. Queries and Query Containment

2. QUERIES AND QUERY CONTAINMENT

This chapter provides technical background. In Section 2.1 we define essential notations re-
garding the relational data model and conjunctive queries. In Section 2.2 we introduce query
containment and query equivalence. Both concepts are fundamental for this thesis. We pro-
vide extensive examples to easy understanding of their properties and peculiarities. Further-
more, we introduce containment mappings as the main tool for proving query containment.

Section 2.3 describes three algorithms for testing query containment. The first two build on
a decomposition of the query containment problem into a set of literal containment problems.
A containment mapping from one query into another query is composed from containment
mappings from the literals of the first query into literals of the second query. We prove
soundness and completeness of this approach in Section 2.3.1.

Finding proper combinations of containment mappings between literals is a search prob-
lem. We characterise the search space in Section 2.3.2. We propose two algorithms, which
differ in how they traverse the search space: one algorithm performs a breadth-first search
(Section 2.3.3), the other algorithm performs a depth-first search (Section 2.3.4). Both algo-
rithms are analysed wrt. their average-case and worst-case behaviour and their complexity.
Section 2.3.5 presents a comparison of both algorithms based on simulations.

In Section 2.3.6 we describe a third method for proving query containment that is not
based on containment mappings. We include this method because it opens interesting perspec-
tives on the nature of the containment problem. Many of the results mentioned in Section 2.4
for queries that extend conjunctive queries base on this method.

2.1 Conjunctive Queries

We use the relational data model throughout this thesis. Queries are given in a logical nota-
tion. In the following, we define basic terms such as schema, relation, arity of a relation, con-
junctive queries, etc. Readers familiar with the relational data model may skip this section.

Definition (D2.1)-(D2.2) (Schema, instance, database, relation).

(D2.1) Let var be a set of variable symbols, const be a set of constant symbols, relE be
a set of relation symbols, and att be a set of attribute symbols. var and const
must be disjoint.
• A schema Σ is a finite set of relations from relE where every relation has a fi-

nite set of attributes from att.
• The size of Σ is the number of relations it contains, written |Σ|.

13

2. Queries and Query Containment

• The arity of a relation rel is the number of attributes of rel, written ar-
ity(rel).

• An instance of a schema Σ, written IΣ, is a finite set of tuples for the relations of
Σ, where each value of each tuple is taken from const.

• A database D is a tuple containing a schema and an instance of this schema,
written as D=(Σ,IΣ).

• A literal l is an expression of the form rel(s1,...,sn), where rel is a n-
ary relation symbol and si∈(var ∪ const). We say that rel is the relation
of l.

(D2.2) Let D=(Σ,IΣ), and let rel∈Σ.
• The extension of rel in D is the set of tuples for rel contained in IΣ, written as

IΣ|rel.
• The intension of rel in D is the set of all possible tuples corresponding to real-

world objects represented by rel.

Remark:
The intension of a relation is the set of all possible objects that are intended to be stored in
this relation. This is essentially an intuitive concept in the head of the schema designer, which
may be infinite, fuzzily described, or may be without any strict borders. We do not try to for-
malise this concept. We usually represent the intension of a relation rel by the name “rel”
itself, in the sense that rel is a name for a real-world concept, i.e., the intension of rel
[Web82]. This implies that two relations with the same name in different schemas are in first
place assumed to have the same intension, if not specified otherwise. In contrast, the exten-
sion of a relation depends on the actual instance of a database and is always a finite set of tu-
ples.

In the following, we define different classes of queries: The class of conjunctive queries

without conditions (CQ, for conjunctive query), the class of conjunctive queries with only
simple conditions (CQS), and the class of queries with complex conditions (CQC). These
classes are defined such that CQ ⊂ CQS ⊂ CQC.

The reason for distinguishing different classes of conjunctive queries is that the problems
we study in this work require different algorithms for different types of queries. For instance,
the existence of a containment mapping is a sufficient and necessary conditions to show that a
CQS query is contained another CQS queries, but it is only sufficient – and not necessary – for
CQC queries (see Section 2.3).

Definition (D2.3)-(D2.6) (Conjunctive queries, simple and complex conditions).
Let Σ be a schema. Let relQ be a set of query symbols disjoint from var, const, relE and
att.

(D2.3) The language CQΣ comprises all conjunctive queries of the form:

q(v1,...,vk) ← l1,l2,...,ln;
where:
• q∈relQ.
• The li are literals of relations in Σ.

14

2. Queries and Query Containment

• v1,...,vk are called exported variables of q.
• q must be safe, i.e., all exported variables must appear in at least one literal of q.

(D2.4) The language CQ comprises all conjunctive queries of the form: ∑
C

q(v1,...,vk) ← l1,l2,...,ln,c1,...,cm;

where q without the c’s is a CQΣ query and each c is a condition of the form ”s1
op s2” where:
• s1∈var and s2∈const∪var.
• Any variable in a condition must be bound, i.e., the variable must also appear in

a literal of q.
• The set of allowed operations is: op ∈ {‘<’,‘≤’,‘>’,‘≥’,’=’}.
• A condition “s1 = s2”, where both operands are variables or both operands are

constants, is not allowed (see below).

(D2.5) The language CQ is the subset from CQ where no condition contains two vari-
ables.

∑
S

∑
C

(D2.6) Let q be a query:
• export(q) returns the set of exported variables of q.
• The size of q, written as |q|, is the number of literals in q.
• variables(q) returns the set of all variable symbols occurring in q.
• constants(q) returns the set of all constants occurring in q.
• sym(q) = variables(q) ∪ constants(q), i.e., the set of all symbols

occurring in q.
• cond(q) denotes the conjunction of all conditions c1,...,cm of q.
• cond(q,v), v ∈ variables(q), is the conjunction of all conditions of q

that contain no other variable than v. cond may be extended to sets of variables.
• The length of a set C of conditions, written |C|, is the number of conjuncts in C.

Remarks:
The “S” in CQ is an abbreviation for “simple conditions”, the “∑

S C” in CQ for “complex
conditions”.

∑
C•

•

•

•

•

The focus of this work is on CQS queries. Many problems for which we find satisfying
solutions for queries with simple conditions are considerably harder if complex conditions
are allowed. For instance, the method we shall use for proving query containment is not
complete for CQC queries but for CQS queries (see Section 2.3). The semantics of global
queries in MBIS we shall define in Section 4.3 is only applicable for CQS queries, but not
for QCC queries. Finally, the query planning algorithms we shall present in Chapter 5 are
sound and complete for CQS queries, and sound but not complete for CQC queries.
We do not distinguish between the symbol of the head predicate of a query and the query
itself.
relQ and relE correspond to EDB – extensional - and IDB – intensional – predicates in
DATALOG.
The expression before the “←” is the head of q, the expression after “←” is the body of q.

15

2. Queries and Query Containment

• We do not require that all variables in the body of a query are distinguished. A variable
appearing more than once implies an equi-join between the connected literals. On the
other hand, equalities are not allowed as conditions. Throughout this work, equi-joins are
treated separately from other conditions, although an equi join is in fact a condition.
We exclude the case that both operands of a condition are constants since this either
evaluates to true - then it can be ignored - or to false - then the query always computes
the empty result, independent of the database content.

•

•

•
•

•
•

As abbreviation, we use the symbol “-“ instead of a variable symbol in the body of a
query, indicating that the value of this attribute is irrelevant: it is not exported, it is not
constrained by any condition, and it is not used for a join. Every “-“ in a query can be re-
placed by a fresh variable name without affecting the semantics of the query.
If the schema is clear from the context, we omit the superscript “Σ”.
All functions for queries can be restricted to subqueries or single literals.

The current syntax allows semantically identical CQ queries to be written in different
forms. For instance, the query:
q(a,b) ← rel(a,b,c,d),c=”thisthing”,d=5;

is equivalent to:
q’(a,b) ← rel(a,b,”thisthing”,5);

In some cases, we need a unique way of writing down queries. Therefore, we define two
forms of queries.

Definition (D2.7)-(D2.8) (Embedded and normal form of queries).
Let Σ be a schema and q ∈ . ∑

CCQ

(D2.7) q is in normal form if q does not contain a ”-“ and no literal contains a constant.

(D2.8) q is in embedded form if q does not contain a ”-“ and no condition is of the form “v
= c”, where v ∈ variables(q) and c ∈ const.

Remarks:
Any conjunctive query (CQ) is in embedded form.
Any query in embedded form can be transformed into normal form. The reverse is not true
since it might require “exported constants”. In this sense, CQC is more powerful than CQ
even if only equalities are allowed as conditions.

So far, we only defined the syntax of queries. Now, we define what it means to execute a

query against a given database. This definition follows the standard definition [AHV95] using
inner-join semantics.

Definition (D2.9)-(D2.12) (Valuation, extension and intension of a query).
Let D = (Σ,IΣ) and Σ = (rel1,...,relk). Let S ⊆ const x var.

(D2.9) A valuation v for S is a function:
v: sym(S) ↦ const

16

v must be the identity on constants and is extended to queries in the natural fashion.

2. Queries and Query Containment

(D2.10) The extension of a query q ∈ in D, written q(D) is: ∑
CCQ

 q(D) = { v(export(q)) |
 v is a valuation over sym(q) ∧
 ∀ l ∈ q: v(l) ∈ IΣ|l ∧
 v(cond(q)) ⇒ true};

(D2.11) The intension of a query q ∈ CQ is the union of the extensions of q in every possi-
ble database for Σ.

∑
C

(D2.12) Let V ⊆ export(q). Then q|V(D) denotes the extension of q in D restricted to the
variables in V.

Remark:
Intuitively, the intension of a query q is the set of all tuples corresponding to real-world ob-
jects in any database for Σ that fulfil the conditions of q. Using this definition, we can derive
and prove statements about the relationship of intensions of different queries. For instance, the
intension of the query “q1(x) ← rel(x,y),y<100” is provably a subset of the intension
of the query “q2(x) ← rel(x,y)” since any real-world object that is returned by q1 must
also be returned by q2. The intension of a query is the set of all possible answers; the exten-
sion of a query is the set of all answers that are computed in a given database.

Example 2.1.
Figure 6 is an entity-relationship diagram for genome mapping. We briefly explain the fun-
damentals of chromosomal mapping, since examples of this domain will be used throughout
this work. The interested reader is referred to [LRTL93; Pri96; LLRC98].

The human genome consists of 24 chromosomes. A chromosome is a string over a four let-
ter alphabet, the DNA. Human chromosomes are between 50 and 250 million base pairs (MB)
long. Revealing the “string” of each chromosome is the final goal of the human genome pro-
ject (see Section 1.1).

However, there is no known technique that could extract a chromosome from a cell and
read it from start to end. Instead, chromosomes first have to be mapped (see Figure 7). Map-
ping is a fragile and complex technology. Essentially, it depends on the isolation of chromo-
some fragments of various lengths, and on subsequent experiments that determine the relative
position of those fragments to each other.

One type of such fragments are clones. A clone is a continuous piece of DNA that is
somehow isolated from a cell and then implanted into an organism, for instance in a bacteria,
for proliferation. Clones are classified depending on the organisms that are used to host them,
such as yeast for YACs (yeast artificial chromosomes) or bacteria for BACs (bacterial artifi-
cial chromosomes). The type of a clone correlates with its length: YACs are between 200 kilo
bases (KB) and 2 MB long, BAC between 50 and 150 KB, etc. Clones are extracted at ran-
dom positions of a chromosome, and related through each other through hybridisation ex-
periments: If two clones hybridise with each other we can conclude that their sequence over-
laps.

After a sufficient number of such experiences it is in principle possible to compute a com-
plete map of a chromosome build out of such overlapping clone fragments. Hence, we can
assign each clone a fixed position (entity clone and map, connected through cloneloca-
tion). However, since hybridisation is a technique of pitiful low accuracy, different sets of

17

2. Queries and Query Containment

n

n
nn

mm
m

m n

1

Contains

Clonealias

Clonesequence

Map

MID
mapname
maptype
mapsize
hromosomec

Gene

GID
genename

genedescription

Alias

aliasname

Genesequence

genepart

Clonelocation

position

Clone

CID
clonename
clonetype

clonelength

Sequence

SID
basepairs

Figure 6. Entity-relationship diagram of a mediator schema.

experiments will lead to different maps. We need a m:n relationship between clones and
maps.

Clones are distributed worldwide by shipping collections of them, so called libraries. Un-
fortunately biologists often rename a clone upon its reception, for instance to be ion confor-
mance with laboratory specific naming conventions. This leads to a high number of alias’s
for each single clone [LLRC98].

Not the entire chromosome if of interest. Only some parts are actually used by the human
organism: the genes. A gene is a (not necessarily continuous) fragment of a chromosome that
is sometimes during the lifetime of the organism read and, usually, “translated” into a protein.
Finding genes is the real goal of most research in molecular biology. Genes are identified
through different techniques, which all usually result in a short part of the gene sequence.
To find the entire sequence, those sequences are compared with clonesequence’s. If a
match is found, the position and complete sequence of the gene is disclosed through the posi-
tion and sequence of the clone.

 map(mid, mapname, maptype, mapsize, chromosome);
 clonelocation(mid, cid, position);
 clone(cid, clonename, clonetype, clonelength);
 clonealias(cid, alias);
 contains(cid, gid);
 gene(gid, genename, genedescription);
 genesequence(gid, sid, genepart);
 clonesequence(sid, cid);
 sequence(sid, basepairs);

Table 1. Exemplary relational schema, corresponding to the schema illustrated in Figure 6.

Table 1 contains a relational schema corresponding to the diagram of Figure 6. The rela-
tions map, clone, sequence and gene contain entities, the other relations represent rela-
tionships between entities. Queries against this schema are for instance:

• Give the names of all gene contained in the clone ‘yWXD1’:
genes(gn) ← clone(cid,‘yWXD1’,-,-),contains(cid,gid),gene(gid,gn,-);

18

• Give me all gene parts plus sequence and the appropriate gene name for genes that are
contained in a clone smaller than 100 KB, which are placed on a map of chromosome ‘X’:

2. Queries and Query Containment

AFM261zh5

AFM078za1

AFM072za5

AFM116xg1

AFM207zg5

AFM249vh5

AFM056yb8

AFM234tf8

AGCTATCACA
CTGCATTAAA
TCCTCGATCT
TTGCTGCCCC
TACCTTGGCT
AGTTATATAC
ACACACACAC
CACACACAC
ACACACACAC
ACACACACAC

Ideogram Sequenz

69201 kB

67762 kB

79219 kB

79488 kB

83378 kB

87842 kB

88721 kB

90097 kB

Gene Clone STS-Marker

878_E_6
769_F_2

936_C_9
813_C_1

hhm
i8D
5

hhm
i25F5

hhm
i13F3

ICRFy900F0638
ICR
Fy900G

0924

ATP7A
PG
K2

PG
K1

PO
U
3F4

kB

kB

0

160.000
Figure 7. Fraction of a physical map of the human X chromosome.

Xp22.33
Xp22.31

Xp22.13
Xp22.11

Xp21.2

Xp11.4

Xq12

Xq13.2

Xq21.1

Xq21.31
Xq21.33
Xq22.2
Xq23

Xq25

seqs(gn,gp,bp) ←
map(mid,-,-,-,’X’),clonelocation(mid,cid,-),clone(cid,-,-,cl),
contains(cid,gid),gene(gid,gn,-),genesequence(gid,sid,gp),
sequence(sid,bp,-), cl<100;

2.2 Query Containment and Query Equivalence

In this section we define query containment and query equivalence, i.e., whether or not the
result of one query is contained in or identical to the result of another query. We give neces-
sary and sufficient conditions for query containment. Query containment is the fundamental
concept behind the query planning methods described in Chapter 5.

Definition (D2.13)-(D2.14) (Query equivalence and containment).
Let q1,q2 ∈ CQC for a schema Σ.

(D2.13) q1 is equivalent to q2, written q1 ≡ q2, iff:

q1 ≡ q2 ⇔ ∀ D = (Σ,IΣ): q1(D) = q2(D)

(D2.14) q1 is contained in q2, written q1 ⊆ q2, iff:

q1 ⊆ q2 ⇔ ∀ D = (Σ,IΣ): q1(D) ⊆ q2(D)

Theorem (T2.1) (Query equivalence versus query containment).

(T2.1) q1 ≡ q2 ⇔ q1 ⊇ q2 ∧ q1 ⊆ q2

19

Some authors use the term “semantic query containment” instead of simply “query con-
tainment” [LRO96a]. This does not refer to any intuitive semantics of relations or queries, but
can be justified to emphasise that containment is not primarily a syntactic property, and that it
is independent of the actual values in a database. A query that is contained in another query

2. Queries and Query Containment

can be syntactically quite different, as we shall see later. In this thesis we use the term “query
containment”.

Testing query containment does not require to enumerate and check all possible databases.
Instead, we can test query containment syntactically using containment mappings.

Definition (D2.15)-(D2.16) (Symbol mapping, containment mapping).
Let q1,q2 ∈ CQC for a schema Σ, and let q1, q2 be in embedded form.

(D2.15) Let S1,S2 ⊆ const ∪ var. A mapping h: S1 ↦ S2 is a symbol mapping from S1 to
S2 if the following holds:
• h is a function, and
• h is the identify on constants.

S1 is the origin of h, written org(h), and S2 is the image of h, written img(h).

(D2.16) A containment mapping h (CM) from q2 into q1 is a symbol mapping h: sym(q2)
↦ sym(q1) such that:

(CM1) ∀ v ∈ export(q2): h(v) ∈ export(q1)
(CM2) ∀ c ∈ constants(q2): h(c) = c
(CM3) ∀ l ∈ q2: ∃ l’ ∈ q1: h(l) = l’
(CM4) cond(q1) ⇒ h(cond(q2))

Remarks:
•
•

•

•

•

h is the identity on relation symbols if extended to literals as in (CM3).
Condition (CM2) is already captured by the definition of symbol mapping. However, in
the following we need both the definition of symbol mapping and the four conditions for
containment mappings. Therefore the redundancy.
We purposely define a containment mapping from q2 into q1, and not vice versa. The rea-
son becomes clear after the following theorem.
We use the following notation for mappings: h = [x→a,b→z] is a mapping that maps
the symbol x into a and b into z.
Condition (CM2) is not necessary for queries in normal form, since then no constants ap-
pear in the literals of the queries. The semantics remains the same, since constants in nor-
mal form queries appear as conditions being captured by (CM4).

The following theorems connect containment mappings and query containment.

Theorem (T2.2)-(T2.5) (From containment mapping to query containment).
Let q1, q2 be two queries against a schema Σ.

(T2.2) Let q1,q2 ∈ CQ . The existence of a containment mapping from q∑
S 2 into q1 is a nec-

essary and sufficient condition for showing q1 ⊆ q2.

(T2.3) Let q1,q2 ∈ CQ . The existence of a containment mapping from q∑
C 2 into q1 is a suf-

ficient, but not necessary condition for showing q1 ⊆ q23.

20

3 More precisely: The condition remains necessary if q1∈CQC and q2∈CQS. Only if q2∉CQS the condition is not
necessary any more.

2. Queries and Query Containment

(T2.4) Let q1,q2 ∈ CQ . Testing whether q∑
S 2 ⊆ q1 is NP-complete in the size of q1 and q2.

(T2.5) Let q1,q2 ∈ CQ . Testing whether q∑
C 2 ⊆ q1 is complete in . ∏p

2

Proof:
The proofs can be found in the literature. Theorem (T2.2) and (T2.4) were originally proven
by Chandra & Merlin [CM77] and also appear in [ASU79b; Ull89]. Theorem (T2.5) was
proven by van der Meyden [vdM92]. A characterisation of the complexity class may be
found in [Pap94].

∏p
2

One has to be careful not to confuse the direction of the CM: q1 is contained in q2 if there
is a containment mapping from q2 into q1, i.e., from the “more general” query to the “more
restricted” query.

We show by counterexample that the existence of a containment mapping is not a neces-
sary condition for a CQ query to be contained in another query. ∑

C
∑
CCQ

Example 2.2.
Consider the following two queries:
q1() ← rel(a,b),rel(b,a);

q2() ← rel(a,b),a≤b;

q1 ⊆ q2 because for every pair of values (a,b) for which both tuples (a,b) and (b,a)
are present in the extension of rel, the query “rel(x,y),x≤y” succeeds: Either with the
valuation v(x) = a, v(y) = b or with v(x) = b, v(y) = a. But there exists no contain-
ment mapping from q2 into q1 since the conditions of q1 do not imply the conditions of q2.

Complex conditions introduce an interaction between literals and conditions that is not en-

tirely captured through the notion of containment mapping. A modification of the definition
of containment mapping for queries with arithmetic comparisons that also contains a neces-
sary condition for query containment may be found in [ZO93].

The existence of a containment mapping h from q2 to q1 implies the following facts:

• Since h is a function, every symbol of q2 is mapped to exactly one symbol in q1. The re-
verse does not hold: the same symbol in q1 may be the image of several symbols in q2.

• Wherever there appears a constant in q2, the same constant appears (at least) at the same
position in q1.

• Every relation that appears in the body of q2 also appears in the body of q1. The reverse
does not hold: q1 may contain relations not appearing in q2.

• Every exported variable of q2 is mapped to an exported variable of q1. Therefore, q1 ex-
ports at least all variables that q2 exports.

• Every symbol in q2 that is neither a constant nor an exported variable may be mapped to
any symbol in q1.

• There exists at most one CM between two literals (up to variable renaming), but there can
exist more than one CM between two queries. Consider the following two queries:

q1(a,b,z) ← rel(a,b),rel(z,z);
q2(x,y) ← rel(x,y);

21

2. Queries and Query Containment

q1 ⊆ q2 can be proven with h1 = [x→a,y→b] and with h2 = [x→z,y→z].

We formally prove some less obvious properties of query containment.

Lemma (L2.6)-(L2.7) (Transitivity and monotony of query containment).
Let q1, q2, q3 ∈ CQ . Let l∑

C 1,..,ln be a set of literals for relations from Σ.

(L2.6) Query containment is monotone: q1 ⊆ q2 ⇒ <q1,l1,...,ln> ⊆ q2.

(L2.7) Query containment is transitive: q1 ⊆ q2 ∧ q2 ⊆ q3 ⇒ q1 ⊆ q3.

Proof:
(L2.6): Let q1’=<q1,l1,...,ln>, and let h be the CM from q2 into q1. h is also a CM
from q2 into q1’ using only the literals from q1. We test the four conditions that show
that h is a containment mapping:

•

•

• export(q1’) ⊇ export(q1) ⇒ ∀v ∈ export(q2): h(v) ∈ export(q1’)
• q1’ has the same constants as q1 at all positions used as mapping target in h, i.e., ∀c

∈ const(q2): h(c)=c
• q1’ has all target literals of q1;
• q1’ does not introduce new conditions on variables of q1.

(L2.7): Let h1 be the CM from q2 into q1, and let h2 be the CM from q3 into q2. Let h =
h2 ◦ h1. We show that h is a containment mapping from q3 into q1.
• h maps each exported variable from q3 onto an exported variable from q1 via an ex-

ported variable of q2;
• h maps each constant from q3 onto the same constant in q1 via the same constant in

q2;
• h maps each literal of q3 onto a literal of q1 via a literal of q2;
• Implication is transitive.

To specify a containment mapping, we must give a mapping for every symbol that appears

in a query. If a query uses the abbreviation symbol ‘-‘, we first replace each occurrence of ‘-’
with a fresh variable symbol. We construct this symbol by appending the relation of the lit-
eral, an integer indicating the position of this relation in the query, and an integer indicating
the position of the ‘-‘ symbol in the literal.

Example 2.3.
Consider the following queries:
q1(cn,cl) ← clone(cid,cn,ct,cl),clone(cid,cn,ct,cl);
q2(cn,cl) ← clone(cid,cn,ct,cl);
q3(cn,cl,gn) ← clone(cid,cn,-,cl), clone(cid,-,-,cl), contains(cid,gid),

gene(gid,gn,-);
q4(cn,cl,gn) ← clone(cid,cn,-,cl), contains(cid,gid),gene(gid,gn,-);

22

We show that q1 ≡ q2 and q3 ≡ q4. q1 has one literal twice; one is obsolete and can be re-
moved, which yields q2. In the second case, clone also appears twice. The self-join between
clone in q3 will produce the same result for all tuples (cn,cl) as the clone literal in q4.
For instance, h1 is a containment mapping from q2 into q1, and h2 is a containment mapping
from q4 into q3:

2. Queries and Query Containment

h1 = [cid→cid,cn→cn,cl→cl,ct→ct];
h2 = [cid→cid,cn→cn,clone13→clone13,cl→cl,gid→gid,gn→gn, gene13→gene13];

Both mappings are bijective. In the first case, the reverse mapping is a containment mapping
from q1 to q2. Hence, q1 ≡ q2. In the second case, we have mapped the clone literal from q4
into the first clone literal from q3. This is necessary since mapping it to the second literal
would imply cn→clone22, which conflicts with the requirement that every exported vari-
able is mapped to an exported variable (condition (CM1) from Definition (D2.16)). The re-
verse mapping h2’ maps both clone literals from q3 into the (only) clone literal from q4:
h2’ = [cid→cid,cn→cn,clone13→clone13,cl→cl,clone22→cn,clone23→clone13,

gid→gid,gn→gn,gene13→gene13,gene14→gene14];

Example 2.4.
Consider the following CSS queries:
q1(cn,cl) ← clone(cid,cn,ct,cl);
q2(cn,cl) ← clone(cid,cn,ct,cl),cl<150;
q3(cn1,cn2) ← clonelocation(mid,cid1,-),clonelocation(mid,cid2,-), clo-

ne(cid1,cn1,-,-), clone(cid2,cn2,-,-);
q4(cn1,cn2) ← clonelocation(mid,cid1,-),clonelocation(mid,cid2,-), clo-

ne(cid1,cn1,-,cl), clone(cid2,cn2,-,cl);

q2 ⊆ q1 since the conditions from q2 imply true. q2 will return only clones with are smaller
than 150 KB, which is a set that is a subset of all clones, for any possible database.
q3 searches for two clones that are placed on the same map. q4 in contrast searches for two

clones that are on the same map and also have the same length. The result of q4 is always a
subset of the result of q3, since every valuation for q4 is also a valuation for q3, but not vice
versa. Therefore, q4 ⊆ q3, which we can show with the following containment mapping h:
h = [mid→mid,cid1→cid1,clonelocation13→clonelocation13,cid2→cid2, clonelo-

cation23→clonelocation23,cn1→cn1,clone13→clone13,clone14→cl,
cn2→cn2,clone23→clone23,clone24→cl];

No reverse containment mapping exists since this would imply cl→clone14 and
cl→clone24.

Query equivalence is not always as easy to see as in the examples we considered so far.

The following example is adapted from [AHV95], pp. 119.

Example 2.5.
Consider the following two queries:
q1(x,y,z) ← rel(x2,y1,z),rel(x,y1,z1),rel(x1,y,z1),rel(x,y2,z2),rel(x2,y2,z);
q2(x,y,z) ← rel(x2,y1,z),rel(x,y1,z1),rel(x1,y,z1),rel(x2,y2,z);

q1 is equivalent to q2 with the fourth occurrence of rel removed. Therefore, q1 ⊆ q2. We
may prove q2 ⊆ q1, which implies q1 ≡ q2, with the following containment mapping h:
h = [x2→x2,y1→y1,z→z,x→x,z1→z1,x1→x1,y→y,y2→y1,z2→z1];

h maps: r1→r1, r2→r2, r3→r3, r4→r2, r5→r1 (superscription indicate the position of the
literal in the query). The fourth occurrence of rel in q2 is not used.

23

2. Queries and Query Containment

It does not suffice to consider only the bodies of queries to check containment or equiva-
lence. The following is an example of two queries that are not equivalent, because they export
different sets of variables.

Example 2.6.
Consider the following two queries:
q1(cn,bp) ← clone(cid,cn,-,-),clonesequence(cid,sid),sequence(sid,bp);
q2(cn,sid) ← clone(cid,cn,-,-),clonesequence(cid,sid),sequence(sid,bp);

There does not exist a CM that maps exported variables as required. For the same reason, q3
and q4 are not equivalent, although q3 ⊆ q4:
q3(cn,bp) ← clone(cid,cn,-,-),clonesequence(cid,sid),sequence(sid,bp);
q4(cn) ← clone(cid,cn,-,-),clonesequence(cid,sid),sequence(sid,bp);

2.3 Proving Query Containment

We study the problem of proving that a query q1 is contained in query q2 by computing a
containment mapping from q2 into q1. To this end, we decompose the “query containment”
problem into a set of “literal containment” problems. Containment mappings between single
literals are then combined into containment mapping between queries. We shall use a similar
decomposition strategy in Chapter 5.

2.3.1 Problem Decomposition

First, we define the decomposition of query containment into literal containment, and the
composition of containment mappings between single literals to a containment mapping be-
tween queries. Then, we formally show that this approach is a sound and complete method for
proving query containment.

Definition (D2.17)-(D2.18) (Matching and covering literal).
Let Σ be a schema.

(D2.17) Let l1, l2 be two literals for relations from Σ. l2 matches l1 iff:
• The relations of l1 and l2 are identical.
• There exists a symbol mapping from l2 to l1 that maps each constant in l2 to

the same constant in l1.

(D2.18) Let q1,q2 ∈ CQ , and let l∑
C 1,l2 be literals with l1 ∈ q1 and l2 ∈ q2. l2 covers l1

with mapping h, written l2 ≥h l1, iff:
• l2 matches l1 with mapping h.
• h maps each exported variable from l2 to an exported variable in l1.
• cond(q1, variables(l1)) ⇒ h(cond(q2, variables(l2))).

24

2. Queries and Query Containment

Remarks:
We purposely use the order “l2 matches l1” to be consistent with the direction of con-
tainment mappings.

•

•

•
•
•

l2 can match l1 with at most one symbol mapping. The fact that l2 matches l1 does not
imply the reverse. Testing whether l2 matches l1 is possible in O(arity(l2)).
If l2 covers l1, then the mapping between them is unique.
If l2 covers l1, we also say that l1 is a target of l2.
Testing the first two conditions of covers is possible in time complexity O(arity(l2)).
Testing the third condition is linear for q1,q2 ∈ CQS, and polynomial for q1,q2 ∈ CQC
[LS93].

We use the notion of covers to decompose the problem of finding a containment mapping

between two queries into the problem of finding partial containment mappings (PCM) be-
tween single literals of those queries.

Definition (D2.19)-(D2.20) (Partial and complete containment mapping).
Let q1,q2 ∈ CQ . Let L be a subset of the literals of q∑

C 2, and let S = sym(L).

(D2.19) The mapping h: S ↦ sym(q1) is a partial containment mapping from q2 into q1
iff h is a containment mapping from the query <L,cond(q2,S)> into q1.

(D2.20) A partial containment mapping is a complete containment mapping if it is a contain-
ment mapping, i.e., L contains all literals of q2.

Lemma (L2.8) (From covered literals to PCMs).

(L2.8) Let q1,q2 be two queries, and l1, l2 two literals with l1 ∈ q1, l2 ∈ q2 and l2 ≥h l1.
Then h is a PCM from q2 into q1.

The proof is straight-forward and omitted.
Suppose we want to test q1 ⊆ q2, and that we found PCMs from every literal of q2 into q1.

To prove the containment, we have to show that those PCMs can be combined in such a way
that their union is a containment mapping. This is not evident, because partial mappings can
be incompatible, as shown in the following example.

Example 2.7.
Consider the following two queries. q1 searches for clones that have their own name as alias:
q1(cid) ← clone(cid,cn,ct,cl),clonealias(cid,cn);
q2(cid) ← clone(cid,’yWXD1’,ct,cl),clonealias(cid,’C15’);

Suppose we want to test whether q2 ⊆ q1. Clearly, there exists a PCM from the first literal of
q1 into the first literal of q2, and another PCM from the second literal of q1 into the second
literal of q2. However, those mappings cannot be combined into a complete containment
mapping from q1 into q2 because the variable cn is once mapped into the constant ‘yWXD1’
and once into the constant ‘C15’.

Therefore, before we combine PCM, we have to check carefully is they are compatible.

25

2. Queries and Query Containment

Definition (D2.21)-(D2.23) (Compatibility and union of PCMs).
Let q1,q2 ∈ and h∑

CCQ 1, h2 be two PCMs from q2 into q1 defined over the symbol sets
S1,S2 ⊆ sym(q2), respectively.

(D2.21) h1 and h2 are reconcilable iff ∀ s ∈ S1 ∩ S2 : h1(s) = h2(s)

(D2.22) The union of two reconcilable PCMs h1 and h2, written, h = h1 ∪ h2, is the PCM h:
S1 ∪ S2 ↦ sym(q1) with:

• ∀ s ∈ S1, s ∉ S2 : h(s) = h1(s);
• ∀ s ∈ S2, s ∉ S1 : h(s) = h2(s),
• ∀ s ∈ S1 ∩ S2 : h(s) = h1(s) = h2(s);

(D2.23) h1 and h2 are compatible, written as h1~h2, iff:
• h1 and h2 are reconcilable.
• Let h = h1 ∪ h2. Then cond(q1,h(S1 ∪ S2)) ⇒ h(cond(q2,S1 ∪ S2)).

Remarks:
Testing reconcilability of PCMs is possible in O(max(|S1|,|S2|)) for q1,q2 ∈ CQC. •

•

•

•

Union is commutative (h1 ∪ h2 = h2 ∪ h1) and associative (h1 ∪ (h2 ∪ h3) = (h1 ∪
h2) ∪ h3), assuming that the mappings h3 and h2 ∪ h3, and h3 and h1 ∪ h2, are recon-
cilable.
Compatibility is symmetric (h1 ~ h2 ⇔ h2 ~ h1) and, together with the union operation,
in one direction distributive (h1 ~ (h2 ∪ h3) ⇒ (h1 ~ h2 ∧ h1 ~ h3)). The reverse direc-
tion does not hold (see Example 2.8).
Testing compatibility for CQS queries is O(|S1|+|S2|). For CQC queries, it is polyno-
mial in |cond(q1,S1)| + |cond(q2,S2)|.

Example 2.8.
To see that distributivity only holds in one direction, consider the queries:
q1(a1,b1,c1,d1) ← rel1(a1,b1),rel2(a1,c1),rel3(a1,d1),c1<d1;
q2(a2,b2,c2,d2) ← rel1(a2,b2),rel2(a2,c2),rel3(a2,d2),c2>d2;

Consider the PCMs h1 = [a1→a2,b1→b2], h2 = [a1→a2,c1→c2] and h3 = [a1→a2,
d1→d2]. Clearly, h1 ~ h2 and h1 ~ h3, but h1 ≁ (h2 ∪ h3) since the implication “c1 > d2
⇒ c1 < d2” is false. h2 and h3 are not compatible.

Before we use PCMs between literals to construct containment mappings between entire

queries, we show that, whenever a set of PCMs is pairwise compatible, then each PCM of the
set is also compatible to the union of the other PCMs. We prove this lemma for two reasons:
First, it facilitates the following Lemma (L2.10). Second, it is necessary for an improvement
of the algorithms described in Section 2.3 (see remark after Theorem (T2.16)).

26

2. Queries and Query Containment

S1

S3

S2

T1 T2

T3

T5 T6

T4

T7

Figure 8. Decomposition of a set of conditions in seven subsets.

Lemma (L2.9) (Connecting partial mappings).
Let q1,q2 ∈ CQC and let h1, h2, h3 be three partial mappings from q2 into q1.

(L2.9) h1 ~ h2 ∧ h1 ~ h3 ∧ h2 ~ h3 ⇒ h1 ~ (h2 ∪ h3).

Proof:
Let S1, S2, S3 ⊆ sym(q2) be the symbol sets for which h1, h2, h3 are defined respectively.
We show that the mapping h = h1 ∪ h2 ∪ h3 is a containment mapping from q2 into q1.
Since h1-h3 are PCMs, conditions (CM1) - (CM3) follow immediately. To show (CM4), let S
= S1 ∪ S2 ∪ S3. We divide S into seven disjoint subsets Ti, 1 ≤ i ≤ 7, as illustrated in Figure
8. For the sets T1-T6, which only contain symbols appearing in at most two of the three partial
mappings, (CM4) must hold since the mappings are pair-wise compatible to each other. For
T7, we must check those conditions in q1 and q2 that use a set of variables T with (a) T ∈ S1
∩ S2 ∩ S3 and (b) T ∉ S1 ∩ S2, T ∉ S1 ∩ S3, T ∉ S2 ∩ S3. However, no such condition ex-
ists since any condition has at most two variables.

Suppose we want to test q1 ⊆ q2. The previous definitions suggest that we can build com-
plete containment mappings by chaining PCMs from the literals of q2 into the literals of q1.
This is indeed the case, as shown by the following lemmas. Lemma (L2.10) shows that this
approach is complete, i.e., whenever a containment mapping from q2 into q1 exists, then there
exist compatible PCMs for each literal of q2 into some literal of q1. Lemma (L2.11) shows
that the approach is sound, i.e., whenever there exist compatible PCMs for each literal of q2
into some literal of q1, then their union is a containment mapping from q2 into q1.

Lemma (L2.10)-(L2.11) (From partial to complete containment mappings).
Let q1,q2 ∈ CQ and let l∑

C i,j be the j’th literal of qi. Let n1 = |q1| and n2 = |q2|.

(L2.10) Let h be a containment mapping from q2 into q1. Then there exist n2 partial con-
tainment mappings h1,...,hn2 with the following properties:

• hj is a partial containment mapping from l2,j into some l1,j’, 1 ≤ j ≤n2, 1 ≤
j’ ≤ n1;

27

• All hj are pair-wise compatible to each other.

2. Queries and Query Containment

(L2.11) Suppose that there exist n partial containment mappings hj from q2 into q1 such that
each hj maps l2,j into some l1,j’. Furthermore, suppose that all these hj are pair-
wise compatible to each other. Then the union of all hj’s is a complete containment
mapping from q2 into q1.

Proof:
(L2.10) Let gj be the mapping that is equal to h restricted to sym(l2,j). gj certainly
exists and is a PCM from l2,j into l1,j’ for some j’≤|q1| since (CM3) must hold for
h. Let gl, gk be two arbitrary such mappings, l ≠ k. gl and gk must be reconcilable since
their origins are both subsets of sym(q2) and h is a function. The union g = gl ∪ gk is a
restriction of h to S = sym(l2,l) ∪ sym(l2,k). We must prove:

•

•

cond(q1,g(S)) ⇒ g(cond(q2,S))

Since h is a containment mapping, the implication cond(q1,h(sym(q2))) ⇒
h(cond(q2,sym(q2))) must hold. From this implication we can, simultaneously on
both sides, remove in consecutive steps all conditions for each symbols s ∈ sym(q2) \ S
without destroying the implication.

(L2.11) If we can prove that the union of two compatible PCMs is again a (partial) con-
tainment mapping, then the theorem follows by induction.
Consider two PCMs hl, hk from q2 into q1 with origins Sl and Sk and hl ~ hk. This im-
plies that hl and hk are reconcilable. To show that hl ∪ hk is a containment mapping, it
suffices to check that (CM4) holds for every s ∈ Sl ∪ Sk. But exactly this is required in
the definition of compatibility.

Now, we devise a method for testing whether q1 ⊆ q2.

Algorithm 1. Testing query containment.

Input: Two queries q1,q2 ∈ CQ . ∑
S

Output: If q1 ⊆ q2: true, else false.
Algorithm: For each literal li of q2, compute the set Li of all target literals in q1. Pick one
literal of each Li. Check if the corresponding PCMs are pair-wise compatible to each other. If
yes, report true. If all combinations of covered literals have been tested unsuccessfully, re-
port false.

The following theorems formally prove soundness and correctness of the previous algo-

rithm. In the next section, we give examples for how the algorithm works.

Theorem (T2.12)-(T2.13) (Soundness and completeness of Algorithm 1).
Let q1,q2 be two queries against Σ.

(T2.12) q1,q2 ∈ CQ . If Algorithm 1 reports true, then q∑
C 1 ⊆ q2.

(T2.13) q1,q2 ∈ CQ . Algorithm 1 reports true iff q∑
S 1 ⊆ q2.

28

2. Queries and Query Containment

Proof:
(T2.12): Following Lemma (L2.8), each element of Li induces a PCM from li into some
literal of q1. If a combination of such elements is pair-wise compatible to each other, then
their union is a complete containment mapping from q2 into q1, as shown in Lemma
(L2.11). This proves q1 ⊆ q2.

•

• (T2.13): Assume that q1 ⊆ q2 with containment mapping h and that Algorithm 1 reports
false. We prove that this leads to a contradiction.
If h exist, then, according to Lemma (L2.10), there must exist PCMs for each literal of l2
such that they all are pair-wise compatible. However, since Algorithm 1 has tested all pos-
sible combinations, we can conclude that no such mappings exist. This proves that q1 ⊈
q2 for queries. ∑

SCQ

2.3.2 The Search Space of Query Containment

Algorithm 1 tests whether a query q1 is contained in a query q2. It proceeds in two steps.
First, it computes all PCMs from literals of q2 into literals of q1. Each literal of q2 is assigned
a set Li of target literals in q1. Second, it enumerates the cartesian product of the elements of
the different target sets. If all PCMs of one such combination are compatible, then q1 is con-
tained in q2; otherwise, q1 is not contained in q2.

The second step of the algorithm is a search. We may visualise the search space as a tree,
as shown in Figure 9. The i’th level of the tree represents the target set Li of the i’th literal
of q2 (any literal of q1 can be the target of several literals from q2). Each inner node of the
tree represents a bag of literals from q1 taken from different target sets. Each path from the
root to a leaf represents a bag of literals from q1 that contains one target for each literal of q2.

Since target literals are associated to PCMs (a gi,j in Figure 9 is the PCM from li into a
literal of q1), each leaf represents a potential containment mapping from q2 into q1, which is
the union of the PCMs associated to the targets on the path to that leaf. However, if any two
PCMs on a path are incompatible, their combination cannot yield a containment mapping. If
such an incompatibility is detected, the subtree beneath this path can be pruned.

One can device several strategies to traverse the search space. We describe two such
strategies. In Section 2.3.3, we present the breadth-first algorithm (BFA). In Section 2.3.4, we
present the depth-first algorithm (DFA).

While traversing the search space, both algorithms build PCMs of increasing length, i.e.,
covering an increasing number of literals from q2. Consider the transition from a node x on
level i to a node y on level i+1. Let x be associated to the PCM h1, obtained by building the
union of the PCMs on the path to x. h1 hence covers the first i literals of q2. Let y be associ-
ated to the PCM h2 from li+1 into some literal of q1. To check whether the transition from x
to y is valid, we test whether h1 ~ h2. If yes, we associate h1 ∪ h2 to y; if not, the subtree
beneath y is removed.

To finish this section, we give some examples that illustrate this approach. In the follow-
ing, “q.relj” denotes the j-th literal of query q, indicating that this is a literal for the rela-
tion rel.

29

2. Queries and Query Containment

...

∅

k1,m1k1,2k1,1 ...

cut:
incompatible

{k1,1,k2,1} {k1,1,k2,m2}... {k1,m1,k2,m2}

g1,1 g1,2 ... g1,m1

g2,1 g2,2 g2,m2 g2,1 ... g2,m2 ... g2,m2

{k1,1,k2,1,...,kn,1} {k1,m1,k2,m2,...,kn,mn}

...

Targets for l1:
{k1,1, k1,2,..., k1,m1}

Targets for l2:
k2,1, k2,2,..., k2,m2}{

Targets for ln:
kn,1, kn,2,..., kn,mn}{

Figure 9. Search space for testing query containment.

Example 2.9.
Consider the following queries.
q(a,b) ← rel1b),rel2(b,c),c<100,b<c;
q1(v,w,x,y) ← rel1(v,w),rel1(x,y),rel2(y,v),v<500;
q2(x,y) ← rel1(x,’c’),rel2(’d’,y);
q3(v,w,x,y) ← rel1(v,w),rel2(x,y);
q4(x,y) ← rel1(x,y),rel2(y,z),z<50,z<y;

We examine containment of each qi in q:
• q1 ⊈ q: Clearly, q.rel11 ≥h1 q1.rel11 and q.rel11 ≥h1 q1.rel12 with h1 = [a→v,

b→w] and h2 = [a→x,b→y]. All those variables are exported. Furthermore, q.rel2
2

matches q1.rel2
3, but ∄ h3: q.rel2

2 ≥h3 q1.rel2
3 because h3 needs to map [c→v]

– but v < 500 does not imply v < 100, which is h3(c < 100). q1 contains no literal
that is covered by q.s2.

• q2 ⊈ q: We find q.rel11 ≥h1 q2.rel11 and q.rel2
2 ≥h2 q2.rel2

2 with h1=[a→x,
b→’c’] and h2=[b→’d’,c→y]. h1 and h2 are not compatible, since h1(b) ≠
h2(b).

• q3 ⊈ q: We find q.rel11 ≥h1 q3.rel11 and q.rel2
2 ≥h2 q3.rel2

2 with h1 = [a→v,
b→w], h2 = [b→x,c→y]. Again, h1 and h2 are incompatible since h1(b) ≠ h2(b).
q3 lacks the join.

• q4 ⊈ q: We see q.rel11 ≥h1 q4.rel11 and q.rel2
2 ≥h2 q4.rel2

2 with h1 = [a→x,
b→y] and h2 = [b→y,c→z]. These two mappings are reconcilable, but not compati-
ble, since (z < 50 ∧ z < y) ⇏ (z < 100 ∧ y < z). Note that the conflict between
the conditions z < y and y < z does not occur in single PCMs, but only in their union.

30

2. Queries and Query Containment

2.3.3 Breadth-First Algorithm

The breadth-first algorithm (BFA) (see Algorithm 2) for proving query containment traverses
the search space described in the previous section in a breadth-first manner. To see that, let
the body of q2 consist of the literals l1,...,ln. In each step of the outer-most foreach loop
(lines 2-15), the algorithm builds all possible PCMs from queries qi into q1, where qi is
“l1,...,li,cond(q2,variables(l1,...,li))”, i≤n, i.e., the conjunctive query made
of the first i literals of q2 plus all conditions of q2 that contain only variables occurring in
those literals. The algorithm stops and reports false as soon as it finds a qi for which no
partial mapping exists (line 11-13).

In the following, we analyse Algorithm 2. Therein, we measure the number of times that
the algorithm performs a compatibility check between two PCMs. This number correlates
with the number of nodes in the search tree.

Theorem (T2.14)-(T2.16) (Analysis of the BFA).
Let q1,q2 ∈ CQC, k1 = |q1|, k2 = |q2|. For the average case analysis, we make the follow-
ing assumptions. Let z, 0 ≤ z ≤ k1, be the average number of literals of q1 covered by a lit-
eral of q2. Furthermore, let pcom, 0 ≤ pcom ≤ 1, be the probability that two arbitrary PCMs
are compatible.

(T2.14) In the worst-case, the BFA performs compatibility tests. ()∑
=

=
2

1
1

k

i

iwc
BFA kC

(T2.15) In the average-case, the BFA performs C compatibility tests. ()(∑
−

=

=
1

0

2k

i

i
com

iac
BFA pzz)

(T2.16) The complexity of the BFA is ()()21
kkO .

Proof:
Let loop1 be the outer-most loop (lines 2-15), loop2 the second (lines 4-14) and loop3 the
inner-most (lines 6-10).

(T2.14): In the worst case, we must assume that |L|=k1 and that all compatibility tests
are successful. loop1 is traversed k2 times. In its first run, loop2 will be traversed once
and loop3 k1 times. In the next round of loop1, loop2 is passed k1 times, each time cy-
cling k1 times through loop3. Line 7 is passed k1 times in the first pass of loop1, k12 in
the second, k13 in the third, etc. The formula follows immediately.

•

• (T2.15): Let si be the size of R after the i’th traversing of loop1. In the first run of
loop1, line 7 is passed z times and the test succeeds in pcom percent of the cases. There-
fore, s1 = zpcom. In the second run, line 7 is passed zs1 times, and s2 = pcoms1z =
(pcom)2z2. We get:

() ()()∑
−

=

=+++=
1

0

22
2k

i

i
com

i
comcom

ac
BFA pzzzpzzzpzC K

For z = k1 and pcom = 1, this formula coincides with the worst-case complexity.

31

2. Queries and Query Containment

• (T2.16): The complexity of the algorithm depends on the worst case. The cost of comput-
ing union and compatibility of two PCMs is at most polynomial in the size of the map-
pings and therefore negligible. Accordingly, the complexity is:

() () (22
2

112
1

1
kk

k

i

i)k(O)k(kOkO ==

∑
=

)

Hence, the BFA is exponential in the size of q2. This is what we expected due to the com-
plexity of query containment.

Algorithm 2. Breadth-first implementation of Algorithm 1 (BFA).

Input: Two queries q1, q2;
Output: true, if q1⊆q2, else false;

1: R = {[]}; % Set of incrementally built mappings
2: foreach l∈q2 % Set of all literals of q2
3: L = {h |∃l’∈q1 ∧ l≥hl’}; % Set of partial mappings of literals
 % from q1 covered by l
4: foreach g∈L
5: foreach h∈R
6: R = R \ h;
7: if compatible(h,g) then % Try to combine h and g
8: R = R ∪ (h ∪ g);
9: end if;
10: end for;
11: end for;
12: if R=∅ then % No mapping can exist
13: return false;
14: end if;
15: end for;
16: return true; % Every h∈R is a CM from q2 into q1

Remarks:
The worst-case makes quite extreme assumptions: (a) |L| = k1 implies that all literals of
q1 and q2 are from the same relation. (b) Mappings are never incompatible in an early
stage, which would cut the search space drastically. (c) In the last pass of loop1, all tests
except the very last one fail, since, if a previous test succeeded, we could stop immedi-
ately (and report true).

•

•

•

In general . For instance, if both queries have 4 literals (kwc
BFA

ac
BFA CC << 1 = k2 = 4), the

worst-case predicts that compatibility has to be tested 424 times. If we however assume
that each literal of q2 covers only two literals of q1 (z = 2), and that two PCMs have a
80% chance of being compatible (pcom = 0.8), we perform only 19 tests.
Lemma (L2.9) shows that the following, slightly more efficient algorithm is also feasible.
It avoids a great number of executions of compatible, but without removing the enu-
meration of an exponential number of combinations. We save some (cheap) compatibility
tests, but we still have to visit each node in the search tree. The complexity of the algo-
rithm remains the same.
The modified algorithm would work as follows: First, compute sets Li that contain all lit-
erals of q1 covered by the i’th literal of q2. Test compatibility between each pair of ele-

32

2. Queries and Query Containment

ments from different L’s, and store the result in a matrix. Enumerate combinations of tar-
gets as in the BFA. However, do not compute compatible and the union in line 8 and 9
– instead, use the matrix to look-up the compatible result between the new PCM and all
PCMs already contained in the current combination. If a complete mapping is finally
reached, compute the union of all partial mappings.
Lemma (L2.9) proves that this is a valid approach. The number of executions of com-
patible is reduced to O(|q1|2), and therefore this algorithm is more efficient than the
BFA. However, the focus of this work is query planning, not query containment. Both
problems are related, but not identical. The difference will become clear in Chapter 5, and
we shall show that Lemma (L2.9) does not hold for query planning. Therefore, our plan-
ning algorithms will build upon the BFA.

2.3.4 Depth-First Algorithm

The breadth-first strategy is not optimal for testing query containment. To show that one
query is contained in another it suffices to find one containment mapping, even though many
may exist. Certainly, the BFA could be improved by stopping as soon as one complete map-
ping is found. But still, the BFA would compute all incomplete combinations of target literals
(see Figure 9: the BFA visits all nodes of the levels 1 to n-1 before a complete mapping can
be found). Using a depth-first strategy, there are good chances that a complete containment
mapping is found early on, without expanding all branches of the search tree (in Figure 9,
depth-first potentially computes only the left-most path).

Algorithm 3. Depth-first implementation of Algorithm 1 (DFA).

Input: Two queries q1, q2;
Output: True, if q1⊆q2, else false;

1: R = new stack();
2: L = {l | l∈q }; % set of all literals of q2

3: l = L.first();
2

4: H = {h | ∃l’∈q1 ∧ l≥hl’} % set of PCMs into covered literals
5: R.push([], H, L\l); % Start point
6: repeat
7: (h,H,L) = R.pop(); % Takes last PCM constructed
8: if H=∅ then % No mapping can survive this level
9: return false;
10: else
11: g = H.first();
12: R.push(h, H\g, L); % Remains to be tested at this branch
13: if compatible(h,g) then
14: if L = ∅ then
15: return true; % All literals are mapped; finish
16: else
17: l = L.first();
18: H’ = {h | ∃l’∈q1 ∧ l≥hl’};
19: R.push(h∪g, H’, L\l); % Expand that PCM next
20: end if;
21: end if;
22: end if;
23: until R = ∅;

33

2. Queries and Query Containment

Algorithm 3 shows the depth-first algorithm (DFA) for proving query containment. Its cen-
tral data structure is a stack R consisting of 3-tuples. Each such tuple corresponds to a node in
the search tree. The first element of a tuple is the partial mapping for the subquery from the
root of the tree to the current node (h). The second element is the set of children that have not
been examined yet, i.e., the set of further potential extensions of the subquery (H and H’). The
third element is the set of literals of q2 that have not yet been considered in the subquery (L).
R is ordered by the size of the third element in ascending order.

The algorithm first chooses an arbitrary literal l of q2. It then expands the corresponding
PCM with one of the possible PCM for the next literal (line 11). If both are compatible, there
are two possibilities: Either we have already reached a leaf in the tree, which means that we
can finish. The algorithm tests this by checking if the set L of literals from q2 that have not
yet been mapped to a target in q1 is empty (line 14-15). Or we are at an inner node of the tree.
In this case, we push a new node on the stack, corresponding to the union of the two PCMs
(line 19). We must also push the actual node again if there are children that we did not con-
sider yet (line 12). In the next repeat - loop, the new node is popped and expanded.

Consider Figure 9. The DFA will start by following the left-most path as long as possible,
and backtrack whenever it fails. Therefore, it uses a depth-first strategy.

Theorem (T2.17)-(T2.19) (Analysis of the DFA).
Let q1,q2 ∈ CQC, k1 = |q1|, k2 = |q2|. For the average case analysis, we make the same
assumptions as in Theorem (T2.15).

(T2.17) In the worst-case, the DFA performs C compatibility tests. ()∑
=

=
2

1
1

k

i

iwc
DFA k

(T2.18) In the average-case, the DFA performs: C compatibility

tests. h = ceiling(log

() ∑
=

+−≤
h

i

iac
DFA zhk

1
2

z(navg)). navg will be defined in the proof.

(T2.19) The complexity of the DFA is ()21kkO .

Proof:
The worst-case complexity of the DFA is the same as for the BFA. To see this, assume that all
mappings in Figure 9 are compatible except g and g . In this case, the DFA and the
BFA explore the entire search tree. Therefore, Theorem (T2.17) follows from Theorem
(T2.14), and Theorem (T2.19) follows from Theorem (T2.16).

11 −− nm,n nm,n

Theorem (T2.18) postulates an upper bound indicating that the average case is by magni-
tudes better than the worst case, and also by far better than the average case for a breadth-first
strategy. We prove this bound in two steps: (1) We estimate how many paths have to checked.
(2) We estimate how many compatibility tests are necessary until the final path is reached.
(1) We compute the number navg of paths through the search tree we have to check in the
average case. Recall that pcom is the probability that two arbitrary PCMs are compatible. The
probability that a path in the search tree results in a complete mapping is hence p = (pcom)k2,
since it entails that all mappings along the path must be compatible with each other. Let pi be
the probability that the i’th path is the first successful one, and let q = 1-p. Hence, p1 = p.
The chance that the second path is successful while the first path is not is:

qpppp == 12

34

2. Queries and Query Containment

for the third it is:
p3 = q2p

For the k’th path, we get:
pk = qk-1p

Let Xi, be the random variable defined as :

=
else

path successful first the is path thi' the

:

:i
Xi 0

navg is equal to the sum over the expected values of the Xi, E(Xi). Assuming uniform distri-
bution, we get:

()∑ ∑ ∑ ∑
∞

=

∞

=

∞

=

∞

=

−− =
−

==−==
11 1 1 0

11 1
1

1
i i i

iiii
i pq

qiqiqpiq)X(E

The expected value of Xi is independent from the number of “tests” of our random variable,
i.e., leaves in the search tree. Therefore, the sum goes from 1 to infinity. However, an ex-
pected value that is higher than the total number of leaves, which is zk2, is meaningless4.
Therefore, we get:

 ≤

=
−−

elsez

zpifp
n

k

k

avg 2

211

(2) We want to compute how many compatibility tests must be carried out before we reach a
successful leaf. We only give an upper bound here. Consider Figure 10, and suppose that the
node in the circle is the first successful leaf. To reach this point, we must have already carried
out all the compatibility tests “left” of this node. As an upper estimation for their number, we
use the number of tests left of the thick line plus the tests on the path to the root of this sub-
tree. The total height of the entire tree is k2, and it has zk2 leaves. For the i’th leaf, the height
of the subtree is h = logz(i). The total number c of comparisons in a tree of height h is:

∑
=

=
h

i

iz)h(c
1

This is exactly the formula for the worst-case complexity of the entire problem, i.e., for a
query containment problem with k2 = h and k1 = z. Therefore, we make similar “mistakes”
again - not all tests are necessary, since branches might be cut before the lowest level is
reached, and no branch “right” from the successful leaf is ever expanded (space between the
dotted and the full line in Figure 10). The difference is that we, by definition, know that no
leaf before the navg’th is successful.

The average number of compatibility tests is now bound by:

() ∑
=

+−≤
h

i

iac
DFA zhkC

1
2 , with ()()avgz nlogceilingh =

where k2-h is the number of tests necessary to reach the root of the subtree. Since navg will
be higher for smaller pcom, the error increases the smaller pcom is.

35

4 Imagine throwing a dice n times. What is the average number of throws until a “four” appears ? This value is
independent of n. If we now ask how many times we have to throw the dice until a “four” appears, but know that
we will anyway stop after the n’th throw, an expected value larger than n can never be realised.

2. Queries and Query Containment

...

∅

k1,m1k1,1k1,1 ...

k2,2 k2,m2 k2,1...

...
k2,m2

g1,1 g1,2 ... g1,m1

g2,2 g2,m2 g2,1 g2,m2

k3,1

navg
success

...

Figure 10. Search tree of height 3 with subtree used as upper bound.

1
failed

g2,1

k2,1

2.3.5 Comparing BFA and DFA

To compare the performance of the DFA with the performance of the BFA, we give exem-
plary data in Table 2 for different values for z and pcom. We test q1 ⊆ q2 with k2 = |q2| and
k1 = |q1|. Figure 11, Figure 12, and Figure 13 plot average-case and worst-case values for
varying instantiations of k1, k2, pcom, and z. Note that the assumption z=3 is already quite
extreme, since it implies that every literal of q2 appears, on the average, three times in q1.

Consider Table 2. Since both and C are independent from kac
BFAC

C

ac
DFA 1 (which is however

implicitly contained in the assumption on z) we mostly choose k1 = zk2. For the first two
rows with z = 1, is not meaningful since only one leaf exists. In the third case, C >

 since the error in is very high for p

ac
DFAC ac

DFA
ac
BFAC ac

DFAC com = 0.5. In those rows, it is more reasonable
to focus on the difference between and C , which sheds some light on the on-first-
sight frightening complexity of query containment.

ac
BFA

wc
BFA

k1,k2 z,pcom p,navg,h wc
DFA

wc
BFA CC = ac

BFAC ac
DFAC

3,3 1,0.5 0.13,-,- 39 1.75 -
6,6 1,0.9 0.53,-,- 56000 4.69 -
6,3 2,0.5 0.13,7.69,3 258 6 14
12,6 2,0.9 0.53,1.89,1 3260000 82 7
12,6 3,0.99 0.94,1.06,1 3260000 1092 8

Table 2. Comparison of the worst case, average cost of BFA and average cost of DFA. Most figures are
rounded. ‘-‘ indicate that the value is meaningless for the given parameters.

The last two rows prove our conjecture that a depth-first strategy outperforms a breadth-
first approach. Depth-first is the better the greater is pcom, since successful leaves are found
very early.

The depth-first and the breadth-first algorithm behave equally if q1 ⊈ q2. Proving that no
containment mapping exists requires the exploration of the entire search space. This does not
imply that the worst-case number of compatibility tests will be performed, since many
branches will be pruned early due to incompatibility. Consider the third row of Table 2. The

36

2. Queries and Query Containment

main cost reduction lies in the assumption about z. In the worst case, 258 leaves have to be
tested; with z = 2, the tree has only 23 = 8 leaves and 14 nodes, of which breadth-first in the
average has to test 6, assuming pcom = 0.5. The forth row says that the search space has 26 =
64 leaves and 127 nodes, of which BFA in average visits 82. DFA in contrast will only visit 7
in the average case. The fifth row shows that, although the search space of breadth-first has
grown considerably, the increase in the average cost of the DFA value is not large; it is domi-
nated by the effect of increasing pcom from 0.9 to 0.99.

The superiority of the DFA over the BFA is also highlighted in Figure 11-Figure 13. All
three figures use a logarithmic scale for the y-axis. The steps in the lines for C are artefacts
introduced by the ceiling function in our estimation; recall that we only have an upper
bound for , not an exact value.

ac
DFA

ac
DFAC

In Figure 11, we use constant values for z and pcom and let k1 grow from 4 to 30. We see
that C grows much slower than , which is still far better than . ac

DFA
ac
BFAC wc

BFAC

In Figure 12, we keep k1, k2 and z constant and iterate pcom from 0.5 to 1. C is constant
in this and the following graph since it does only depend on k

wc
BFA

1 and k2. The error in C is
high for small values of p

ac
DFA

acCcom, leading to figures that are even worse than those for .
shrinks with growing p

ac
BFAC DFA

com since the probability that one of the first paths is already successful
increases the higher the probability is that each branch (i.e., compatibility test) succeeds.

In Figure 13, we keep k1, k2 and pcom constant and vary only z. z has great impact on both
 and since it determines the width of the search tree. If we used pac

DFAC ac
BFAC

C

com=1, would
be constant since this implies that the first leaf is already successful; if we furthermore let z
grow until 8, would eventually reach C since this would exactly be the worst-case: all
eight literals of q

ac
DFAC

ac
BFA

wc
BFA

1 are targets for each literal of q2, and each compatibility test succeeds.

37

2. Queries and Query Containment

Figure 11. DFA versus BFA. Values: k1=[2,30], k2=k1/2, pcom=0.8, z=2.

Figure 12. DFA versus BFA. Values: k1=8, k2=4, pcom=[0.5,1], z=3.

Figure 13. DFA versus BFA. Values: k1=8, k2=4, pcom=0.6, z=[2,7].

38

2. Queries and Query Containment

2.3.6 The “Frozen Facts” Algorithm

The DFA and the BFA test query containment by constructing containment mappings. Rama-
krishnan et al. present a completely different method for checking containment of conjunctive
queries in [RSUV89]. Although we shall not use this algorithm in the rest of this work, we
describe and analyse it briefly since it is an interesting perspective on the nature of the con-
tainment problem.

To describe the algorithm, we first take a logic-oriented position. We rephrase the con-
tainment problem. Consider two queries q1,q2 ∈ CQC, n1 = |q1|, n2 = |q2|, against Σ:
q1(E1) ← rel1,1(S1,1),rel1,2(S1,2),...,rel1,n1(S1,n1);
q2(E2) ← rel2,1(S2,1),rel2,1(S2,1),...,rel2,1(S2,n2);

where E1, E2 and Si,j are vectors of symbols. Let S1 = (S1,1 ∪ S1,2 ∪...∪ S1,n1) \ E1
and S2 = (S2,1 ∪ S2,2 ∪...∪ S2,n2) \ E2. We may then abbreviate:
q1(E1) ← φ1(E1,S1);
q2(E2) ← φ2(E2,S2);

q1 is contained in q2 if every result computed by q1 is also computed by q2. Therefore, the
containment problem can be solved by proving a logic formula.

Lemma (L2.20) (Query containment as logical implication).
Let q1,q2 ∈ CQC. Let E1 (E2) be the set of exported variables and S1 (S2) the set of non-
exported variables of q1 (q2). Let φ1(E1,S1) (φ2(E2,S2)) denote the body of q1 (q2).

(L2.20) q1 ⊆ q2 ⇔ (φ2(E2,S2) ⇒ φ1(E1,S1)).

The proof is straight-forward and omitted.
Hence, we can check q1 ⊆ q2 by proving a logical implication in first-order predicate

logic. In principle, this method works for queries with arbitrary built-in predicates; however,
the approach is restricted because implication is in general undecidable in first-order predicate
logic.

Based on this background, the following method for testing query containment is not sur-
prising. It basically implements a very simple theorem prover for the restricted class of logical
formulas represented by conjunctive queries. Our description follows [Ull89], Chapter 14.5.

Algorithm 4. Frozen Facts Algorithm.

Input: Two queries q1,q2 ∈ CQ . Σ

Output: If q1 ⊆ q2, then true; else false.

Algorithm: Consistently substitute each variable in q1 with a fresh constant. Let t be the tuple
corresponding to the head of q1 after that substitution. Then build a new, empty instance D’
of Σ. Insert into D’ each literal l∈q1 as tuple into the relation of l. Execute q2 on D’. If t is
in the result of q2, then return true; else report false.

The algorithm takes as input two queries q1 and q2 against the same schema Σ. First, it
creates an empty database D’ for Σ (line 2). Then, it “freezes” q1 (line 3). This means that it
first replaces each variable in q1 with a fresh constant. Then, for each literal of q1, one tuple
is inserted into D’ into the extension of the corresponding relation. The attribute values of this

39

2. Queries and Query Containment

tuple are the constants that appear in the literal in the frozen q1. The algorithm finally com-
putes q2 on D’. If the frozen head of q1 is in the extension of q2, then it reports true; other-
wise false.

Example 2.10.
Consider the following two queries against a schema Σ consisting of the two binary relations
rel1 and rel2:
q1(a,b) ← rel1(a,b),rel2(b,b);
q2(x,y) ← rel1(x,y),rel2(y,z);

To check whether q1 ⊆ q2, we freeze q1. Therefore, we consistently replace the variables of
q1 with constants using [a→0, b→1]. The frozen query is then:
q1(0,1) ← rel1(0,1),rel2(1,1);

Next, we construct an empty database D’ for Σ and insert the tuple (0,1) into rel1 and
(1,1) into rel2. Finally, we compute q2 on D’. Only one tuple, (0,1), is obtained, using
the valuation [x→0, y→1, z→1]. Since this is identical to the frozen head of q1 the algo-
rithm returns true, proving that q1 is contained in q2.

To check whether q2 ⊆ q1, we first freeze q2 with [x→0, y→1, z→2]. This results in a
database D’ with tuple (0,1) in rel1 and (1,2) in rel2. Evaluating q1 on D’ yields an
empty answer. This proves that q2 ⊈ q1.

Proofs for soundness and completeness of Algorithm 4 may be found in [Ull89] and

[RSUV89]. The idea of the proof is the following: Let R be the result of q2 on D’. First, sup-
pose t ∉ R. Then D’ is a database for which q1 computes t, but q2 does not. t is hence a
counterexample that proves q1 ⊈ q2. Now, suppose t ∈ R. Then the substitution of line 1 is a
template for the valuation of q1 on any instance D of S. Since t ∈ R, it follows that this tem-
plate is also a valuation for computing q2 on D. Hence, every tuple that is computed by q1 is
also computed by q2. This implies q1 ⊆ q2.

Algorithm 4 may be implementing quickly using a RDBMS. One only has to generate ta-
bles according to the relations of q1, insert as many tuples as q1 has literals, and execute a
SQL query corresponding to q2 on this database. Finally, it has to be checked whether the
result contains t.

Now, we show informally that the time complexity of this method is exponential in the size
of q2, as is the case for the DFA and BFA. We may safely assume that lines 1-4 have cost
linear in the size of q1. The exponential complexity is hidden in line 5. Assume again that S
has only one relation, and let k1 = |q1|, k2 = |q2|. D’ will contain k1 tuples in a relation
with name q1. In the worst-case, q2 will then compute the cartesian product of length k2 of all
tuples in q1, which requires k1k2 combinations. Finally, checking whether t ∈ R is linear in
the size R (line 6); but |R| is, in the worst case, again exponential in the size of q2.

A great advantage of the frozen facts algorithm is that it is still sound and complete if q2 is
a recursive query. This is not the case for the DFA or BFA. The disadvantage of the method is
that it is not directly applicable to CQS queries because conditions in q1 disappear during the
freeze-part.

40

2. Queries and Query Containment

2.4 Summary and Related Work

This chapter provided the necessary background for the query planning problem we shall con-
sider in Chapter 5. We elaborated on algorithms for proving query containment. Therefore,
we introduced a decomposition strategy for the problem of finding a containment mapping
between two queries. We proved that this strategy yields sound and complete algorithms. We
presented two such algorithms. The breadth-first algorithm uses a breadth-first strategy to
traverse the search space combinations of containment mappings between literals, while the
depth-first algorithm uses a depth-first strategy. We obtained average-case and worst-case
boundaries for both algorithms. Our results show that the DFA is clearly superior for testing
query containment because it, on average, finds a containment mapping much faster than the
BFA. Finally, we described the frozen facts algorithm that proves query containment without
constructing containment mappings.

In the following chapters we mostly build on the BFA. The reason is that the focus of this
work is on query planning and not on query containment. We shall see in Chapter 5 that both
problems are related, but not identical. An essential part of query planning is the construction
of plans that are contained in a query. Therefore, query planning uses query containment in
some form. However, for query planning the breadth-first and depth-first search strategy are
equivalent because query planning anyway requires to find all containment mappings between
two queries. The entire search space has to be explored, in which case the DFA and the BFA
are equally appropriate. We shall use the BFA as the basis for query planning because its
analysis is less complex. Note that we cannot use the frozen facts algorithm because it cannot
cope with conditions in queries.

Related work.

The incentive to study query containment arose from global query optimisation [CM77].
Given a query q, global query optimisation tries to find a query q’ that is equivalent to q but
can be executed faster, for instance because it is shorter. In contrast to other optimisation
techniques, global optimisation considers the entire query and not only local rearrangements
of single operators [AHV95]. For instance, query minimisation [ASU79a] tries to find a query
q’ that is equivalent to q but has less literals.

Recently, query equivalence also became important for database vendors because of the
possibility to optimise a query using materialised views [CKPS95; BDD+98]. The idea is the
following: imagine that the result of a query q is materialised, i.e., it is stored as if it were a
“normal” relation, together with q itself. Whenever q appears as subpart of another query, it
is presumably better to reuse the materialised relation instead of recomputing q. Finding
whether q is part of another query is essentially the containment problem. The complexity of
this problem under different assumptions is studied in detail in [AD98].

Despite the great interest in query containment over the last 20 years, no article discusses
algorithms in the same depth as this thesis does. It is also the first work that gives an average-
case cost analysis of the query containment problem. Our results suggest that, in particular
due to Theorem (T2.18), query containment is a tractable problem for most real-life queries.

Many researchers have focussed on finding classes of queries for which query containment
is polynomial. For instance, Aho et al. describe simple tableaux, which roughly correspond to
queries where non-exported variables do not appear at the same position in different queries
[ASU79a]. The authors prove that equivalence for such queries is O(n4) in the length of the
queries. Chekuri & Rajamaran analyse the complexity of query containment wrt. the width of
the query, which is the highest number of occurrences of a relation in the query [CR97]. They

41

2. Queries and Query Containment

show that containment is linear if each relation occurs at most once, quadratic if each relation
appears at most twice, etc. This work extends previous results on queries with at most two
literals of each relation published in [SY80].

In the following, we summarise extensions of the problem to other classes of queries than
conjunctive ones. [Ull97] discusses some of them in more detail.

Queries with arithmetic comparisons.
As already mentioned in Theorem (T2.3), the existence of a containment mapping is only a
sufficient, but not necessary condition for CQC queries, i.e., for queries with arbitrary arithme-
tic comparison predicates. The problem was studied by Klug [Klu88] for dense domains, such
as real numbers, and by Levy et al. [LRU96] for integer numbers. van der Meyden proves the
complexity given in Theorem (T2.5) [vdM92]. Furthermore, Levy & Sagiv describe a varia-
tion of the frozen facts algorithm that also works for queries with arithmetic comparisons and
negation [LS93]. The difference is that they generate and test a set of canonical databases
instead of only one.

Recursion.
Proving containment of a recursive query in a non-recursive query is shown to be double ex-
ponential in [CV92]. On the other hand, containment of a non-recursive query in a recursive
query has the same complexity of containment between two conjunctive queries [RSUV89].
Finally, Shmueli proves that containment of a recursive query in another recursive query is
undecidable [Shm93].

Disjunction.
Containment mappings may be used for queries containing disjunction without conditions.
For two queries in normal disjunctive form the following holds:

q1 ∪ q2 ∪...∪ qn ⊆ o1 ∪ o2 ∪...∪ om ↔ ∀ qi ∃ oj: qi ⊆ oj;

This is not true any more if conditions are allowed. Consider the following example:
u(x) ← rel(x), 10≤x, x≤20;
q1(x) ← rel(x), 10≤x, x≤15;
q2(x) ← rel(x), 15≤x, x≤20;

Clearly, u⊆q1∪q2 – any result computed by u will be computed either by q1 or q2. But
u⊈q1 and u⊈q2. Hence, the existence of containment mapping is not a sufficient condition
for queries including disjunction and conditions.

Negation.
[LS93] shows how the frozen facts algorithm can be extended to conjunctive queries includ-
ing negation, and even for recursive queries with stratified negation [RU93].

Query containment as a view update problem.
Our tests for query containment depend on the search for a containment mapping. The frozen
facts algorithm essentially searches a model for a database that could be a counterexample for
containment. A third approach is suggested in [FTU98] (and also follows from [LS93]). The
idea is to reduce the problem of query containment to the “view update problem”. Consider a
deductive database D and two queries q1 and q2. Insert into D the rule:
contained ← q1,!q2;

and try to refute contained. If the refutation succeeds, then there exist a that is computed by
q1 but not by q2, and hence q1⊈q2. This problem can be reformulated into: find inserts into

42

2. Queries and Query Containment

or deletions from D such that the deduction, i.e., the view head, holds. This view update prob-
lem is currently an active research area because of its significance for updating database
warehouses or in mobile computing.

Different semantics.
Our results are only valid for set semantics. Under bag semantics, two conjunctive queries are
equivalent iff they are isomorphic [AHV95].

Sagiv introduces the notion of uniform containment, which differs from normal contain-
ment in that IDB predicates are considered to be materialised before the containment check
[Sag88]. A sound, but not complete algorithm for uniform containment of DATALOG pro-
grams with stratified negation is presented in [ST96].

Finally, Aho et al. distinguish weak from strong equivalence [ASU79a]. Weak equivalence
assumes that all relations are in fact views on one universal relation [Ull89]. No “dangling
tuples” can exist. Consider the following queries:
q1(x,y) ← rel1(x,y),rel2(y,z);
q2(x,y) ← rel1(x,y);

Under weak equivalence, both queries are equivalent, because for every value of y in relation
rel1, a corresponding value for y in relation rel2 must exists. Under strong equivalence,
these queries are not identical. We always consider strong equivalence in this thesis.

43

3. Concepts of Mediator Based Information Systems

3. CONCEPTS OF MEDIATOR BASED
INFORMATION SYSTEMS

While the previous chapter provided technical background, we now turn to the types of in-
formation systems in which these techniques shall be applied. In the following, we character-
ise mediator based information systems (MBIS). We describe the components of MBIS and
discuss two topics in detail: strategies for the conceptual design of MBIS and languages for
the specification of correspondences between heterogeneous schemas.

We start with a description of “federated information systems” (FIS) as the broadest class
of integrated information systems. In Section 3.1 we present a catalogue of ten different crite-
ria distinguishing different types of FIS. In Section 3.2 we discuss one of the ten criteria in
more detail, namely development strategies for FIS. Two approaches can be distinguished:
top-down and bottom-up. Top-down development starts from an independently designed
global schema and relates data sources to this schema in a separate step. Bottom-up integra-
tion starts by analysing a given set of source schemas and infers the global schema from those
using schema integration. Correspondingly, the predominating research topic in bottom-up
developed systems is schema integration; the research focus in top-down developed systems
is query processing. Both approaches seek solutions for closely related problems, i.e., bridg-
ing heterogeneity, but differ in how and when these problems are resolved.

In Section 3.3 we define our understanding of mediator based information systems
(MBIS). Using our classification criteria, we characterise them as FIS that are tightly-coupled,
read-only, and developed using the top-down strategy. We describe the two essential compo-
nents of MBIS: wrappers and mediators. Wrappers deal with data model and technical het-
erogeneity, while mediators bridge structural and semantic heterogeneity.

Since MBIS are developed top-down, query processing faces the problem of translating
queries that address in first place unrelated schemas: the mediator schema and a set of wrap-
per schemas. To guide this translation, MBIS must be aware of semantic correspondences
between those schemas. The language used for specifying such correspondences is of great
importance for MBIS, since it determines the types of conflicts that can be bridged and the
types of queries that eventually can be answered. We distinguish between two classes of such
languages: “Local-as-View” (LaV) and “Global-as-View” (GaV). We show properties of both
classes. In particular, Section 3.4 shows examples where languages of either class fail. These
failures motivated the design of the new correspondence specification language we shall in-
troduce in Chapter 4.

44

3. Concepts of Mediator Based Information Systems

3.1 From Federated to Mediator Based Information Systems

We consider as federated information system (FIS) any system for data integration that aims
at providing a central point of access to a set of heterogeneous, autonomous, and distributed
information systems. More precisely, the data sources that are to be integrated are potentially:

• heterogeneous wrt.
• technical aspects: the operating system and hardware they run on, the protocol one has

to use to access the source, access permissions, etc.,
• interfaces: the language they support to query their content,
• syntactic aspects: the format they use for representing data and query results,
• data model,
• semantic aspects: definition of terms, units of values, etc.,
• structural aspects: the structure of the data representation,

• autonomous wrt. at what times they accept a query, from whom they accept a query, when
they start a query execution, etc.,

• worldwide distributed.

Taking part in an integrating system requires that data sources compromise their autonomy at
least to some degree. They must be accessible electronically, for instance, over the Internet,
they must provide some description of their data, such as schemas and documentation, and
they must be prepared to answer queries in some form, though possibly with delay.

3.1.1 Classification Criteria

Table 3 shows ten criteria that can be used to distinguish different types of FIS (see also
[BKLW99]). We shortly illustrate three of them. The main purpose is it to pave the road for
the characterisation of MBIS given in Section 3.3.

A prominent criterion is whether or not the FIS offers a global schema. FIS without global
schema are called loosely coupled, FIS with global schema are called tightly coupled
[SL90]). In tightly coupled systems, users see only one schema and do not have to bother
with different sources and their structures. Hence, a tightly coupled FIS inherently offers
location, language, and schema transparency. In contrast, loosely coupled systems usually
only offer language transparency: a user does not need to learn the query language of each
source, but he still has to know their schemas.

•

•

•

The degree of semantic integration that is offered by the FIS is more difficult to capture.
A no-integration approach only collects results from sources, but does not relate them to
other results. In general, this is assumed to be insufficient. A higher degree of integration
is reached if results from different sources are merged if they correspond to the same real-
world entities. This however requires the identification of identical objects, which can be
difficult [Ken91]. Clearly, the usefulness of a system increases the better results are inte-
grated, since it removes a great burden from the user and prevents him or her from drown-
ing in “information overload”.

Integrating systems that build on permanent materialisation of source data are commonly
known as “data warehouse”, and attracted considerably interest in the last decade
[HGM95; Wid95]. A warehouse has the advantage of being very fast in answering a query
once the materialisation is complete, but it is always threatened by storing outdated data
[GM95]. Furthermore, it suffers from the large amount of storage it requires to store the

45

3. Concepts of Mediator Based Information Systems

data of all data sources. Virtual integration on the other hand requires almost no disk
space and always retrieves the most current data - but query processing may be time con-
suming, especially in unreliable wide area networks such as the web.

 Criterion: Description:

1 Integration of structured, semi-
structured or unstructured data
sources

Unstructured data sources are, e.g., document collections;
semistructured sources cannot be fully characterised through a
schema, but have a structure [AMM97; Bun97].

2 Tight versus loose integration Does the FIS offer a uniform global schema [SL90]?

3 Global data model Relational, object-oriented, semantic, etc. [SCGS91]

4 Supported degree of semantic inte-
gration

To what extent are results from different sources integrated
[Wie94]?

5 Level of transparency Do users need to be aware of the location of sources, their con-
tent, their data model, their query language, their schemas, etc.

6 Query paradigm Structured queries or information retrieval techniques.

7 Bottom-up versus top-down strategy See Section 3.2.

8 Virtual or materialised integration Are sources (partly) pre-materialised in the FIS, or are queries
translated at query time [Wid95].

9 Read-only or read-and-write access Functionality.

10 Requested access mechanisms Are sources allowed to provide only restricted query mecha-
nisms, e.g., binding patterns. [GMY99]

Table 3. Criteria for the characterisation of FIS.

3.1.2 Types of Federated Information Systems

Using the criteria given in Table 3, we precisely define our understanding of several “buzz-
words” in data integration. A graphical representation of our classification may be found in
Figure 14. The main purpose of this section is to highlight the differences between a MBIS
and other approaches to the integration of information systems.

Distributed databases.
A distributed database system is a FIS containing only homogeneous data sources. Typically,
distributed databases are by design distributed for performance or security reasons. Heteroge-
neity is suppressed as much as possible [OV99]. A distributed database is administered from a
central point, i.e., components are not autonomous.

Most database vendors today offer distributed options for their RDBMS. In addition, some
vendors offer gateways to integrate data sources running on a different RDBMS. We discuss
gateways in more detail in Section 6.1.1.

Distributed databases do not provide a global schema. Location transparency is achieved
through synonyms: By defining a synonym for a remote view, the administrator makes this
view accessible as if it were a local relation. Semantic integration is not addressed specifi-
cally, but, in general, most operations of the query language will be supported, including ag-
gregation. Write access is supported through special transaction protocols, such as 2-Phase
Commit. Most products are based on relational databases. Criteria 7 and 8 do not apply since
sources are not autonomous.

46

3. Concepts of Mediator Based Information Systems

Federated
Information
Systems

Non-database
components;
restricted query
capabilities

Only database
components

Read-only
access

Mediator-based
Systems

Federated
Databases

Structured
components

Unstructured
components

Federated
schema

No federated
schema

Loosely-coupled
System

...

Figure 14. Characterisation of different architecture for data integration.

Loosely coupled systems: multidatabase query languages.
Loosely coupled systems offer a uniform multidatabase query language to access data in dif-
ferent sources , but do not have a global schema. Data sources must be structured and support
unrestricted query access.

Examples of multidatabase query languages are MSQL [LMR90] and UniSQL [KCGS95].
Both are extensions of SQL. Syntactically, the essential add-on is the ability to prefix relation
names with the name of the data source that stores this relation. The query processor uses this
prefix to decompose the query and to route subqueries to appropriate data source [YM98].
The query processor also translates subqueries - but only handles syntactic differences, for
instance between two different SQL dialects, and does not treat semantic or structural issues.
Therefore, many integration tasks that one could expect to be transparently managed by the
integration system are left to the user: semantic integration, query formulation, knowledge
about content and structure of data sources, etc.

Note that the difference between loosely and tightly coupled systems is not clear. For in-
stance, in the multidatabase query language CPL (Collection Programming Language,
[DOTW97]), users may define integrating views, called “macros”, and use them as if they
were global relations. If such views are made available to all users of the system and are de-
fined in a careful way, their union amounts to a kind of global schema (see Figure 15).

Federated database systems:
The most prominent approach to database integration are federated database systems (FDBS)
[HM85; SL90]. According to [SL90], a FDBS conceptually comprises five layers (see Figure
16). Dotted lines indicate where the different types of heterogeneity are resolved):

• The first layer consists of the schemas of the data sources.
• The second layer contains the schemas of the first layer transformed into the data model of

the FDBS, the canonical data model.
• The third layer comprises those subsets of the component schemas that shall be integrated

in the FDBS.
• The fourth layer consists of federated schemas that are composed from the export sche-

mas. It is neither required that there is only one federated schema nor that federated sche-
mas integrate export schemas completely. In most publications, federated schemas are de-
rived by schema integration [Sch98].

47

3. Concepts of Mediator Based Information Systems

defines

Data source Data source Data source

Integrating views

Query processing:
• Decomposition
• Translation
• Result integration

View
definition

Figure 15. Loosely coupled integration system with integrated views defined by the user.

• The fifth layer defines application-dependent views on federated schemas. This layer is
often omitted since its creation does not pose other problems than the creation of external
schemas in a centralised RDBMS.

FDBS consider only full-fledged RDBMS as data sources. They provide a global schema and
therefore offer a high level of transparency. Usually, write access is addressed but leaves
many open research questions [Con97].

Mediator based information systems.
Mediator based information systems are tightly coupled, read-only, top-down developed and
virtual systems that provide full transparency. Sources may be restricted in the types of access
they support. The degree of semantic integration is not determined. MBIS are explained in
detail in Section 3.3.

3.2 Development Strategies

Ideally, a centralised database is developed in the following manner: First, an analysis of the
problem at hand leads to a requirements specification. Those requirements are expressed as
views. Since different requirements from different users of the planned application lead to
different views, a homogeneous database schema does not follow immediately. It needs to be
derived from the views through view integration [NEL86].

Developing a tightly coupled FIS also faces the problem of finding a suitable global
schema. However, in contrast to central database, FIS are not designed from scratch, but are
built on top of existing systems. Taking this property into account, we identify two strategies
for the conceptual design of the global schema:

• Bottom-up. The schemas of data sources are considered as views that must be integrated
into one uniform, homogeneous, global schema. Schema integration is more complex than
view integration since (1) possibly, it has to integrate very large schemas instead of single
views, and (2) it has to consider the actual data in the sources and not only their schemas.

• Top-down: We design the global schema in exactly the same way as we would design a
central database schema. This means that we start from global requirements, resulting in
global views, and end with a homogeneous schema. Source schemas are not considered in
this process, but have to be related to the global schema in a subsequent step.

48

3. Concepts of Mediator Based Information Systems

Federated schemaFederated schema

Export schemaExport schema

Data
Source

Local schema

Component schema

Export schema

Data
Source

Local schema

Component schema

Export schema

Data
Source

Local schema

Component schema

Export schema

Data model,
 interface and

technical
heterogeneity

Semantic and
 structural

heterogeneity

1

2

3

4

5

{

{

{

{

{

Figure 16. The 5-layer architecture of federated database systems.

The difference between both strategies is illustrated in Figure 17. In a top-down approach, the
designer specifies vertical schema correspondences, i.e., correspondences between the global
and the source schemas. In a bottom-up approach the designer defines horizontal schema cor-
respondences, i.e., correspondences between different source schemas, which are used to de-
rive the global schema. Since query processing requires the existence of vertical correspon-
dences, those must be derived from the horizontal correspondences in an extra step. Surpris-
ingly, many publications about schema integration do not even mention this requirement (ex-
amples are [SPD92; Sch98]).

The choice which strategy to use often cannot be chosen freely but is determined by the
situation in which the new development is pursued. If, for instance, global write access is re-
quired, one has to consider source schemas carefully in the design of the system. This can be
realised more comfortably with the bottom-up approach. On the other hand, if sources evolve
frequently or often enter or leave the federation, then the top-down approach is clearly supe-
rior because it offers higher flexibility (see also Section 6.3).

3.2.1 Top-Down

The starting point for a top-down development of a FIS is a new information requirement that
can be satisfied by some known data sources. Since accessing the sources in isolation is time-
consuming and inefficient, the requirement for integrated access emerges.

Constructing integrated access starts from analysing the new information need through a
requirements analysis. This analysis results in the specification of a schema that entails all
necessary information structures to satisfy the requirements. Although it is certainly necessary
to already consider at this stage whether there are any data sources that can provide the actual
data at run-time, their structures, semantics and languages are in first place ignored.

Once the global schema is completed, data sources are incrementally plugged into the sys-
tem. Each source is considered in isolation (see Figure 17 (b)). Its content is described relative
to the global schema using a correspondence specification language (see Section 3.4). Corre-
spondences are later used to decompose and translate queries.

49

3. Concepts of Mediator Based Information Systems

Export schemaExport schema

Federated schema

(a) Bottom-Up (b) Top-Down

Export schemaExport schema

Federated schema

Figure 17. Design strategies in FIS. (a) Bottom-up. (b) Top down.

Dotted lines stand for derived correspondences, solid lines for specified correspondences.

Considering sources in isolation has advantages regarding the maintainability of the system
[Les98b] (see also Section 6.3). It particularly allows for an easy plug-in / plug-out of data
sources. Furthermore, changes in the structure of data sources can mostly be handled by
solely changing the correspondence descriptions, keeping the global schema unaffected.

Top-down approaches however lead to a less coherent system since they introduce only
weak bindings between sources and the FIS. Actually, in a web context, many systems are
built such that sources are not even aware of their integration into a greater context. Those
sources cannot inform the integrating system of any changes in their structure.

Typical scenarios that call for a top-down development are the following:

• Companies that develop global information services as products, for instance bargain
finders, stock market data providers, or book finders.

• Standards for data access are always developed top-down. Examples include the ISO
norm STEP [Sau98; SM98] for the automobile industry, and the domain specific services
developed under the auspices of the object management group (OMG). An example for
the latter is the emerging standard for access to genome maps described in [BLL+99;
Muel99]. Standard usually only defines the access interfaces (OMG) or data structures
(STEP); the mapping from the standard to an existing information system has to be devel-
oped independently.

• Integration approaches that base on common ontologies are also inherently top-down . The
aim of an ontology is to give a comprehensive and coherent specification of the concepts,
terms and constraints that are present in a certain domain [Gru93; GG95]. Once such an
ontology is available at the FIS, the content of data sources are described in terms of the
ontology, which makes them available through a common vocabulary [AHK96]. In a way,
the ontology is used as a global standard.

3.2.2 Bottom-Up

50

A bottom-up approach to the construction of a FIS starts with the requirement to provide inte-
grated access to a given set of data sources. This set is pre-defined and is not expected to
change frequently. The scope of the FIS is essentially the “semantic union” of the content of
these sources. The first problem is therefore the computation of this union, and its representa-
tion in a schema. This is achieved by schema integration (see Figure 17 (a)). We cannot de-
scribe the many facets of and approaches to schema integration in detail in this work. Inter-

3. Concepts of Mediator Based Information Systems

ested readers are referred to [BLN86; PBE95; Con97; Sch98]. We include a short summary,
following [BLN86].

Schema integration proceeds in four steps. In the first step (pre-integration) all schemas are
transformed into a common data model. In the second step (schema comparison) the schemas
are compared to each other to find and clearly identify the existing correspondences and con-
flicts. Conflicts that can be resolved by restructuring source schemas are resolved in the third
step (schema conforming). The fourth step finally merges all schemas into one integrated
schema. The resulting schema should be:

• complete, i.e., it should completely cover the source schemas,
• correct, i.e., it should be able to integrate data from any source without semantic distortion

or loss,
• minimal, i.e., it should be as small as possible and
• understandable, i.e., it should be readable for human beings.

Although many authors investigate automatic approaches to schema integration, currently all
methods are a mix of automatic and manual steps. A particular problem is that complexity and
size of the resulting schema tends to grow with the degree of automation [Sch98]. However,
large and complex schemas are difficult to understand, difficult to maintain, and difficult to
query. A proper modularization of an integrated schema remains an open research problem.

Another problem is the static nature of schema integration: If any of the sources changes
its schema, or a new source shall be integrated, the process must be repeated. Only few pro-
jects analysed the propagation of changes into an existing integrated schema, and they can
only deal with a handful of special cases [Mot98; Kol99]. For instance, if an attribute that is
uniquely assigned to a class and only occurs in one source is deleted, then this change can be
propagated to the integrated schema by also deleting this attribute there.

There are cases where a bottom-up approach is the right choice. Especially if integration is
performed as first step towards migration, i.e., if the FIS is constructed to support applications
using the integrated schema while still keeping old applications alive that use the original
schemas, then the four requirements mentioned above are vital.

3.3 Architecture of a Mediator Based Information System

A mediator based information system (MBIS) is a tightly integrated FIS that provides read-
only access to a heterogeneous and dynamically changing set of data sources. The major
components of a MBIS are wrappers, mediators , and the data sources themselves (see Figure
18). A mediator translates user queries into equivalent combinations of queries against wrap-
pers, therein treating semantic and structural problems. Other types of heterogeneity, concern-
ing for instance communication protocols or syntactical representation of data, must be re-
solved before a source can be integrated into a MBIS. To this end, sources are hidden under-
neath wrappers, which offer an interface that conforms to the requirements of mediators.

MBIS can integrate semistructured, unstructured, or structured data [AHK+95]. In this
work we only consider structured MBIS and use the term “MBIS” as synonym for “structured
MBIS”. In structured MBIS, mediators have a schema and only deal with structured data
sources. User queries are posed against mediator schemas, but the data itself does not exist
physically at one central place. Instead, the mediator collects appropriate information at
query-time from the data sources.

51

3. Concepts of Mediator Based Information Systems

Wrapper Wrapper Wrapper

Mediator

Mediator

Data source Data source Data source

Figure 18. Mediator based information systems architecture.
Queries against mediator schemas (user queries) are dotted, queries against wrapper schemas (wrapper

queries) are lines.

MBIS are developed top-down. Research in MBIS therefore concentrates on query proc-
essing. MBIS explicitly aim at integrating sources that are not accessible through a standard
query language. Therefore, the query processor must be able to cope with restricted query
capabilities.

A MBIS may comprise more than one mediator (see Figure 18). In this case, each mediator
has its own schema, and a mediator may use other mediators as data sources. This implies that
semantic and structural conflicts can appear at each level. For instance, semantic conflicts can
occur between a wrapper interface and a mediator schema, and between each mediator that
uses another mediator as wrapper. However, since mediators in general support the same type
of interface as wrappers, the same mechanism should be applicable at each level.

We distinguish between homogeneous MBIS and heterogeneous MBIS. In a homogeneous
MBIS, all mediators use the same data model and query language. Therefore, a wrapper is
usable by any mediator of the MBIS. Technical and data model heterogeneity only appears at
the bottom-most level, i.e., just above the physical access to data sources. In contrast, hetero-
geneous MBIS host different types of mediators. Accordingly, wrappers must provide differ-
ent interfaces for different mediators, and mediators might need to be wrapped to be usable by
other mediators.

In this work, we only consider homogeneous MBIS with one mediator based on the rela-
tional data model. We therefore simply speak of “the mediator” of a MBIS. However, our
results apply equally well to homogeneous (relational) MBIS with more than one mediator.

3.3.1 Wrappers in MBIS

A wrapper transforms data represented in the data model of its “wrapped” data source into a
representation in the data model of the mediator. Furthermore, it translates queries from the
query language of the mediator into “queries” executable by the source. Wrappers are capable
of describing their query capabilities and of passing this information to the mediator. Usually,
it is within the responsibility of a mediator to generate only queries that are executable by a
wrapper.

52

3. Concepts of Mediator Based Information Systems

There are two parts in a wrapper that are of special interest for the mediator:

• Each wrapper has a (relational) wrapper schema. Data produced by the wrapper adheres
to this schema, i.e., all data is structured according to this schema.

• Each wrapper is able to answer at least some explicitly predefined queries against its
schema, resulting in a stream of tuples consisting of discrete attribute values.

As we shall see in Chapter 5, a mediator only uses the set of predefined queries to answer user
queries. Wrapper schemas are mainly important for the selection of such queries. We shall
give guidelines for the construction of wrappers in Section 6.1. In the meantime, we only
highlight some points:

• Wrappers are source-specific. Their schema is chosen based on the data stored in the
wrapped source and the interface that the wrapper uses to access the source. It is com-
pletely independent from the mediator schema. If a mediator shall use a wrapper, then se-
mantic correspondences between the two schemas must be specified explicitly to enable
the translation of queries.

• The physical location of a wrapper is not determined. Wrappers may be built at the site
(host) of the data source, or at the site of the mediator, or at a third site. The mediator may,
but need not, exploit this knowledge to achieve better performance by reducing network
traffic.

• Although wrappers are source-specific, they often can be reused. For instance, a wrapper
for a RDBMS can be used for other sources that uses the same RDBMS. Only the export
schema and possible the gateway technology needs to be changed (see Section 6.1.1).

• A data source may be accessed through different wrappers in one MBIS. Reasons for this
could be:
• To exploit specific interfaces. Different wrappers may use different access mecha-

nisms offering special features. For instance, a data source might provide some types
of queries through a CORBA interface, and other queries through a form based web
interface.

• To increase maintainability through separation of concerns. Different wrappers for dif-
ferent parts of a source are advantageous if a source exports very complex data struc-
tures.

We now define a formal abstraction of a wrapper. In real-life, a wrapper is of course a piece
of software, not a 3-tuple.

Definition (D3.1)-(D3.2) (Wrapper, executable wrapper query).

(D3.1) A wrapper W is 3-tuple W = (Σ,Ω,χ). The components of W are:
• an export schema Σ,
• a set Ω of queries against Σ that can be executed by W, and
• the data source χ wrapped by W.

(D3.2) Let W = (Σ,Ω,χ). A query q against Σ is executable by W iff:
• q ∈ Ω, or
• q = <q’,C> where q’∈Ω and C is a set of conditions on variables of q’ such

that ∀ c ∈ C: sym(c) ⊆ export(q’).

53

3. Concepts of Mediator Based Information Systems

Remarks:
Ω may intuitively be understood as a set of templates for queries executable by W. The
actual set of executable queries is infinite as soon as Ω is non-empty, since there exists an
infinite set of conditions to each query in Ω.

•

•

•
•
•
•

Definition (D3.2) does not imply how an executable wrapper query is actually computed.
In particular we do not request that the source itself can execute all necessary operations
implied by conditions in C. For instance, if an executable wrapper query exports a variable
v and C contains a condition c on v, then c may:
• be pushed from the mediator through the wrapper into the source, or
• be enforced inside the wrapper, or
• be enforced inside the mediator after submitting the query without c.
We do not determine which of those strategies shall be pursued if more than one is possi-
ble. In general it is considered to be advantageous to push conditions as much as possible
into sources, since this firstly reduces the amount of data that has to be transmitted
through the network. On the other hand, it may increase the amount of transmitted data in
the long run since less data can be cached [HKU99].

Example 3.1.
Consider a wrapper W which is capable of executing the following query:
q(cn,cl) ← clone(cid,cn,ct,cl);

From this query, we derive, for instance, the following statements:

q itself is executable.
The query q1(cn,cl) ← clone(cid,cn,ct,cl),cl<100 is executable.
The query q2(cn) ← clone(cid,cid,cn,cn,cl) is executable.
The query q3(cn,cl) ← clone(cid,cn,ct,cl),ct=’YAC’ is not executable
because ct is not exported.

3.3.2 Mediators in MBIS

The main task of mediators is the translation of queries against their mediator schema into sets
of executable wrapper queries. This process, i.e., query planning, is the focus of our work.
Through query planning, a mediator must overcome structural and semantic heterogeneity
between its schema and the available wrapper schemas. In this section we give a brief intro-
duction into the problems and tasks that query planning faces.

Consider a user query u against the schema of a mediator. In general, answering u requires
the combination of several wrapper queries. We call such a combination a plan; finding plans
is called planning. A correct plan p for a user query u is a set of wrapper queries whose re-
sults, if combined appropriately, compute only correct answers to u. This does not imply that
p computes all answers to u. The intuitive meaning of a “correct plan” is the following: A
plan for a user query u is correct if it returns only tuples that conform to the intension of u,
i.e., only tuples corresponding to real-world objects represented by u. This definition is usu-
ally put into operation by considering a plan as correct for u if it only produces tuples that a
human would consider as correct answers to u. To judge the correctness of a plan, a human

54

3. Concepts of Mediator Based Information Systems

must fully understand the query, the mediator schema, and the semantics of the wrapper que-
ries in the plan.

The situation is simpler in a centralised database. Consider a centralised database D and a
query u against D. In this case, the plan for answering u is the query itself:

• The intension of u, i.e., the “intended” meaning of u, is determined by the intensions of
the literals in u and any additional conditions.

• The extension of u is clearly defined, since a database D has exactly one instance at each
moment in time, and this instance defines a unique extension for each relation that appears
in u.

Answering a query is in this sense completely free of considering semantics. Intensions are
encoded syntactically in the names of relations. A relational query may be understood as a
program that can be executed directly5. The situation is completely different if we consider
the distributed and heterogeneous nature of a MBIS. Since we pursue virtual integration, there
is no instance for the mediator schema. A mediator is not a database, and the relations of a
mediator schema have no extension.

To obtain a computable way of testing correctness, we have to bridge the gap between the
different schemas that play a role inside a mediator: Every user query addresses the mediator
schema, but executable queries always address wrapper schemas. This problem is approached
by specifying correspondences between elements of wrapper schemas and elements of the
mediator schema.

There exist different types of the correspondence. Each correspondence has an extensional
and an intensional aspect, and can specify the connected elements to be either:

•
•
•
•

disjoint, i.e., the elements have no overlap in their intension / extension,
overlapping, i.e., the elements have some intensional /extensional overlap,
equivalent, i.e., the elements have identical intension /extension, or
subsuming, i.e., the intension /extension of one element is contained in the intension / ex-
tension of the other.

We shall approach this problem in Chapter 4 by introducing correspondences between que-
ries, which intensionally specify equivalence or subsumption, and extensionally subsumption.
More precisely, we shall search for each executable wrapper query qw a corresponding query
qm against the mediator schema. qm is corresponding to qw if they either have the same inten-
sion, or if the intension of qw is a subset of the intension of qm (see Definition (D2.11)). In
both cases we can be sure that all tuples computed by qw are correct tuples for qm. Conse-
quently, the extension of qw must be a subset of the extension of qm.

In general, there exist more than one wrapper query corresponding to one mediator query.
If there are three bookstores selling the same types of books, then the mediator relation book
will have three corresponding queries addressing each a different data source. In contrast, the
corresponding mediator query for a wrapper query will in general be unique. Assume there
were two different mediator queries qm1, qm2 corresponding to the same wrapper query. This
implies that the intension of qm1 and qm2 are identical, and therefore the mediator schema is
redundant. Redundancy cannot be completely avoided. For instance, if a wrapper query pro-
duces only the identifier of a certain class of objects, then corresponding attributes will be
present in each relation of the mediator schema that is connected to this class through a rela-
tionship. However, such queries occur rarely in real-life applications.

Now, we formally define a mediator. Again this is a formal and idealised abstraction. In
real-life, a mediator is a piece of software, not a 3-tuple.

55

5 Usually there are many ways to execute a query. Classical query optimisation is about finding the cheapest.

3. Concepts of Mediator Based Information Systems

Definition (D3.3) (Mediator).

(D3.3) A mediator M is a 3-tuple M = (Σ,Ψ,Γ). The components of M are:
• the mediator schema Σ,
• a set Ψ of wrappers used by M, and
• a set Γ of correspondences.

Remarks:
In a MBIS with mediator M = (Σ,Ψ,Γ), we distinguish three types of queries:

Queries against Σ that are posed by a user are user queries. Answering user queries is the
sole task of a mediator.

•

•

•

Other queries against Σ are mediator queries. We shall use mediator queries for specifying
schema correspondences in Chapter 4.
Queries against the export schema of a wrapper W∈Ψ are wrapper queries. In particular,
we are interested in executable wrapper queries (see previous section).

3.4 Correspondence Specification Languages

In the previous section we described why mediators depend on correspondences between
elements of different schemas. Such correspondences must be expressed in some language.
We call such languages correspondence specification language (CSL). The choice of a CSL
is very important for a MBIS, since it determines the types of schema conflicts that can be
bridged. The integration of data sources that introduce a conflict that is not expressible in the
chosen CSL is impossible without adapting either the schema of the problematic wrapper or
the mediator schema [Les98b]. Schema adaptation breaks either the autonomy of the mediator
or the autonomy of the wrapper, and hence impedes independent evolution.

Different CSLs, having different expressive powers, yield different algorithms for query
planning. It is not possible to allow arbitrary rich languages, since planning may become un-
decidable. For instance, it is undecidable whether a recursive DATALOG program is equiva-
lent to another recursive DATALOG program (see Section 2.4). If we allow global, recursive
queries and correspondences with recursive mediator queries, we cannot decide if a plan
computes only correct tuples for a user query.

Hull distinguishes two classes of CSL [Hull97]: Global-as-View (GaV) and Local-as-View
(LaV). In this section we describe both approaches and show their shortcomings. Essentially,
LaV relates a mediator query to a wrapper relation, while GaV relates a wrapper query to a
mediator relation. Many projects use much simpler correspondences. For instance, the sys-
tems described in [CL93; MKSI96] allow only the specification of correspondences between
single relations.

We highlight the properties of both approaches by examples. We assume a mediator M with
schema Σ as given in Table 1, and two wrappers W1, W2, whose export schemas Σ1 and Σ2 are
described in Table 4. W1 stores only data about one particular type of clones (PACs) and is
therein more restrictive than M. On the other hand it is more general, since it also has mapping
data from other species than humans. W2 is very simple. It uses object names as keys.

56

3. Concepts of Mediator Based Information Systems

 Export schema Description
Σ1 c_map(mid,mapname,species,chromosome);

PACS(cid,mid,clonename,clonelength);
W1 stores PAC mapping data from
mammals such as human and mouse.

Σ2 position(clonename,genename); W2 stores a list of gene names and
clone names which contain them.

Table 4. Two fictive wrappers of a MBIS for human mapping data.

3.4.1 Global-as-View

The Global-as-View (GaV) approach allows the specification of correspondences between
single relations of the mediator schema and views on wrapper schemas (see Figure 19 (a)).
Possible conflicts must be resolved if more than one view corresponds to a mediator relation,
indicating that the extension of this relation is scattered over many sources. Two solutions are
possible:

1. We specify as many views correspondences as necessary, and the mediator uses a generic
method for combining the results computed by the different views. This could be based on
user-defined rules for object equivalence.

2. Only one correspondence is specified, addressing all relevant views at once. In this case,
each correspondence may define its own way of how results from different wrappers are
combined.

For instance, [PAG96] uses a method called ”object fusion”, which assigns ”semantic” keys
to each object in each view. The mediator combines data that is getting assigned the same key
at run-time, independently from which wrapper the data stems (method 1). [PAG96] calls
method 2 ”fusion by outer-joins”.

GaV is a direct extension of a central database engine to the distributed case. It is used in
many projects, such as TSIMMIS [GMP+97], DISCO [TRV96] or IRO-DB [FGL+98]. Query
planning is straight-forward: given a user query u, each literal of u is replaced with its corre-
sponding view definition (2), respectively the union of its corresponding view definitions (1).
This expanded query is then decomposed and the resulting subqueries are shipped to the
wrappers.

We now try to specify correspondences between Σ and Σ1, Σ2, respectively, using GaV
rules. For clarity, we prefix relation names with their schema. We use the first of the two pro-
posed methods for the integration of overlapping sources. Attributes for which no values are
present in either schema are noted as “-“. We ignore potential problems that arise if mediator
relations are not fully specified by a rule, i.e., if attributes are missing.

Our aim is to show that there are situations that cannot be handled by a GaV specification.

Example 3.2.
Defining Σ.map as a view on Σ1.c_maps requires a condition to restrict the results to hu-
man maps. Σ.clonelocation, projected to its first two attributes, is intensionally equiva-
lent to Σ1.PACS:
Σ.map(mid,mn,-,-,ch) ← Σ1.c_map(mid,mn,sp,ch),sp=’human’;
Σ.clonelocation(mid,cid,-) ← Σ1.PACS(cid,mid,-,-);

57

3. Concepts of Mediator Based Information Systems

WrapperWrapper

Mediator

WrapperWrapper

Mediator

(a) (b)

Figure 19. Correspondence specification languages.
(a) Global-as-View. (b) Local-as-View. Angles indicate views.

It is not possible to define Σ.clone in the same way. Σ.clone is more general than
Σ1.PACS. Defining the following view:
Σ.clone(cid,cn,-,cl) ← Σ1.PACS(cid,-,cn,cl);

could lead to erroneous results. A user query asking for clones of any type will still be an-
swered correctly, since PACs are clones; but imagine a user query requesting data about
YACs. The answer to this query must not include data from Σ1.PACS. But exactly this hap-
pens if the rule is defined as above.

To see another problem, consider a user query requesting all PACs that are placed on the
map with mid=500, together with the clone length:
q(cn,cl) ← Σ.clonelocation(mid,cid,-),Σ.clone(cid,cn,ct,cl),ct=’PAC’,

mid=500;

q can directly be answered by using only Σ1.PACS. However, this cannot be expressed if
each relation of Σ is defined as a view , in isolation of all other relations. The mediator hence
always must executes two queries to answer q. We shall see in Chapter 4 how we can de-
scribe Σ1.PACS with only one rule such that answering q requires the execution of only one
query.

Using GaV, we cannot describe Σ2. The problem is that the information about genes and
their containment in clones is spread over three different relations in the mediator schema, but
stored in one relation in the wrapper. To formulate a user query for clones containing genes,
we must join three tables:
q(cn,gn) ← Σ.clone(cid,cn,-,-),Σ.contains(cid,gid), Σ.gene(gid,gn,-);

Although the requested information is exactly what is stored in Σ2.position stores, we
cannot translate q using GaV rules. We cannot give a correspondence for Σ.contains. Σ2
has no such relation and no such attributes.

58

3. Concepts of Mediator Based Information Systems

3.4.2 Local-as-View

The Local-as-View approach (LaV) allows correspondences that relate a single relation of a
wrapper schema to a view on the mediator schema (see Figure 19 (b)). This is exactly con-
trary to the GaV approach. In LaV, every mediator relation may appear in many views corre-
sponding to different wrapper relations. Every such correspondence contributes to the total
extension of the mediator relation.

LaV is a relatively new approach. It was first described in [TSI94], and is, for instance,
used in the Information Manifold [LRO96b; LRO96a] and in Infomaster [DG97; GKD97]. It
has its strength in environments with frequent evolution of sources, such as the web. How-
ever, query planning with LaV rules is considerable more complex than with GaV rules.

We write LaV rules with head and body in reverse order: “body ← head”. We do this
to be consistent with QCA (see Chapter 4). This notion emphasises the ”flow of data”, i.e.,
data is produced through data sources, represented as a tuple and then ”pumped” into the me-
diator relations.

Example 3.3.
We first show that the problematic cases of the GaV approach can be solved using LaV. For
instance, we can define Σ .PACS as a view on Σ.clone with a condition on clonetype: 1

Σ.clone(cid,cn,ct,cl),ct=’PAC’ ← Σ .PACS(cid,-,cn,cl); 1

We can also avoid the splitting of rules for Σ.clone and Σ.clonelocation by using a
join in the mediator query:
Σ.clonelocation(mid,cid,-),Σ.clone(cid,cn,ct,-),ct=’PAC’ ←

Σ .PACS(cid,mid,cn,cl); 1

However, we step into some subtle problems here. Consider a user query asking for clones.
Results obtained from Σ may be clones of any species; there is no guarantee that they are
human clones. But non-human clones are intensionally wrong in the mediator schema. The
same problem occurs if we try to describe Σ .c_map. The relation Σ .c_map stores tuples
of all species and is hence not intensionally equivalent to or subsumed by Σ.map. To establish
equivalence, we would need to add a condition on the wrapper site of the rule. We see that the
problems with LaV are somehow symmetric to those of GaV. We discuss this ”symmetry”
between both approaches in the next section.

1

1 1

Using LaV, it is straight-forward to describe Σ2:
Σ.clone(cid,cn,-,-),Σ.contains(cid,gid),Σ.gene(gid,gn,-) ←

Σ2.position(cn,gn);

Query planning with LaV is the central theme of this work. Therefore, we give some ex-

amples that highlight the problems LaV planning faces. Of course, we cannot expect that a
user query matches directly with the body of a LaV rule. User queries instead might use only
parts of bodies of rules or require the combination of rules.

Example 3.4.
For the moment, we ignore the problem regarding species in Σ1. Consider the following user
queries:
q1(cn) ← Σ.clone(-,cn,ct,-), ct=’PAC’;
q2(cn) ← Σ.clone(-,cn,ct,-), ct=’YAC’;

59

q3(gn,cn) ← Σ.map(mid,-,-,-,ch),Σ.clonelocation(mid,cid,-),
Σ.clone(cid,cn,-,-),Σ.contains(cid,gid),Σ.gene(gid,gn,-), ch=’X’;

3. Concepts of Mediator Based Information Systems

q1 asks for all PACs, q2 for all YACs, q3 asks for all genes of the X chromosomes. Σ1 can be
used to answer q1, but not to answer q2, since the condition ct = ’YAC’ cannot be fulfilled
by the data in this source. Such contradictions must be detected.
q3 cannot be answered by one single wrapper query but only by a combination of wrapper

queries. To see this, we examine the following conjunction of wrapper relations :
Σ1.c_map(mid,mn,-,ch),Σ1.PACS(cid,mid,cn,-),Σ2.position(cn,gn);

where each relation corresponds to a view on Σ as defined before. Hence, we can derive the
semantics of this query in terms of the mediator schema by replacing the wrapper relations
with their corresponding mediator queries. This yields (with the corresponding wrapper rela-
tion in brackets):
{Σ1.c_map} Σ.map(mid,mn,-,-,ch),
{Σ1.PACS} Σ.clonelocation(mid,cid,-),Σ.clone(cid,cn,ct,-),ct=’PAC’,
{Σ2.position} Σ.clone(cid,cn,-,-),Σ.contains(cid,gid),Σ.gene(gid,gn,-);

It is straight-forward to see that this expanded query is contained in q3. There is no problem
with the missing ID’s in Σ2 since they are not requested by q3. We conclude that the three
wrapper relations, combined appropriately, compute correct answers for q3.

3.4.3 Comparison

The differences between the GaV and the LaV approach are best described by analysing their
respective perception of the integration problem.

In LaV, the mediator schema is assumed to be a stable structure, and sources are added and
deleted as they appear to be useful for the mediator. This strategy is very well suited for the
top-down development of MBIS. Constructing a LaV system necessarily starts by defining
the mediator schema. In a second step, appropriate data sources are discovered and their cor-
respondences to the mediator schema are defined. Not surprisingly, LaV approaches emerged
in projects addressing web sources, where servers and data sources are typically unreliable
and appear or disappear with high frequency.

In contrast, GaV starts from the need for integration of a given set of sources, such as dif-
ferent department databases of an enterprise. These sources are perceived as the more stable
part of the MBIS. This leads to a bottom-up development strategy. Accordingly, all schema
integration methods result in GaV rules.

A possible solution for the unresolved cases that occurred in our examples is to change the
mediator schema or a wrapper schema whenever a problem occurs. For instance, integrating
W1 into a LaV-based MBIS could be accompanied by extending Σ.clone with a species
attribute. However, changing schemas is not a good solution. If the mediator schema must be
changed for any source that is plugged-in, maintenance will become a problem [Les98b]. All
existing rules must be checked with every change. Furthermore, it is not clear how the media-
tor should react if a source is first added, leading to a schema change, and then deleted -
should the change be rolled back? On the other hand, changes in the schema of wrappers are
considered to be impossible. The schema of a wrapper closely reflects the structure of the
underlying data source, and requesting changes in data sources conflict with the autonomy of
the data source.

60

3. Concepts of Mediator Based Information Systems

3.5 Summary and Related Work

In this chapter we first described different approaches to information integration. We identi-
fied ten criteria that distinguish different classes of such federated information systems. We in
depth discussed different approaches to the conceptual design of tightly-coupled FIS. This
criterion is a fundamental difference between MBIS and other approaches, such as federated
databases. A bottom-up design depends on schema integration, a process that was recently
characterised as “error-prone, static and difficult” [BBE98]. Navathe and Savasere state that

"[...] experience gained in building prototypes of heterogeneous systems [...] has
shown that the process of schema integration is most likely to be a bottleneck in
the realisation of full-scale distributed heterogeneous database systems. [...] de-
spite of more than a decade of research in the area of schema integration, no
methodology or tools have emerged that have proven to be usable for real-life in-
tegration problems.” [NS96]

We conclude that the types of systems we described in the introduction cannot be reasona-
bly built with a bottom-up strategy.

MBIS are typically designed in a top-down fashion. They consider mediator and wrapper
schemas as independent and concentrate on describing and exploiting relationships between
those schemas. Therefore, MBIS presuppose only a loose coupling, which increases their
maintainability and offers more flexibility wrt. the types of data sources that can be inte-
grated. However, the loose coupling also requires more powerful mechanisms for query trans-
lation.

Then, we described components of a MBIS. Wrappers hide technical particularities of data
sources and transform data and query into MBIS conform representations. Mediators answer
queries against their schema by translating them into a combination of queries against wrap-
pers. Therein, mediators must treat structural and semantic heterogeneity between different
schemas. To perform this task, a mediator needs knowledge about the content and capabilities
of wrappers. This knowledge is specified in schema correspondences. We compared two
classes of such correspondences and concluded that both fail in certain cases. In the next
chapter we shall define query correspondence assertions, which fare a synthesis between both
approaches.

Related work.

Classification of FIS.
The classification of integrated information systems has been an open question for many years
in the literature. The work of Sheth & Larson [SL90] is nowadays used as reference for feder-
ated databases and multidatabase systems.

There does not yet exist a similarly accepted reference for mediator based systems. Do-
menig & Dittrich recently gave a classification of what they call “mediated query systems”
[DD99]. Their definition is very close to our definition of a MBIS. The criteria they use are
split in two groups: Functional features are query language, query type (structured or unstruc-
tured), schema dependency, degree of structure of the sources, extensibility, and type of feed-
back. Implementation features are the applied architecture, the global data model, type of
query processing, management of metadata, and the distinction between thin and thick wrap-
pers. However, many of these criteria are only insufficiently described and the separation in
the two groups remains unclear. Another set of criteria for the classification of FIS is given in

61

3. Concepts of Mediator Based Information Systems

[ZHK96], concentrating on aspects of materialising mediators such as update strategy and
update time.

Architecture and components of MBIS.
The architecture depicted in Figure 18 is used in many projects, such as TSIMMIS
[GMP+97], SIMS [AHK96], and Information Manifold [LRO96a]. It was first described by
Wiederhold in [Wie92]. Arens et al. describe several extensions, such as facilitators for the
finding of data sources and coordination and management services for the management of a
mediator [AHK+95].

Despite the ubiquitous application of the architecture, the terms “wrapper” and “mediator”
are not consistently used in the literature. One may distinguish thick from thin wrappers.
Thick wrappers, such as those used in TSIMMIS [GMP+97], not only handle data model and
technical heterogeneity, but also leverage restricted query capabilities. The wrappers contain a
complete query subsumption module to decide whether they can answer a query or not
[VP97]. Thin wrappers, such as the ones we envisage, stick closely to the capabilities of the
source and only perform syntactic operations. As noted in [DD99], thin wrappers better sup-
port extensibility of the system, since more functionality is treated in a declarative fashion.

Similarly, one can find different definitions of the term “mediator”. Systems such as
TSIMMIS [PGMU96], Aurora [YOL97] and MAGIC [Koe99] define a mediator as a single
rule that completely encodes a program to compute the extension of one global concept. The
integration part of such a system has two layers: A set of homogenisation mediators, each
responsible for one global concept, and integration mediators that combine data from differ-
ent homogenisation mediators [Koe99]. Homogenisation mediators are responsible for struc-
tural and semantic conflicts, while integration mediators only resolve conflicts at the instance
level, i.e., data conflicts [YOL97].

Mediators in our definition contain the complete apparatus that is necessary to translate ar-
bitrary queries against their mediator schemas. This model is also used in the Information
Manifold [LRO96a] and in SIMS [AHK96]. Duties are clearly separated: Source specific
wrappers treat technical and data model heterogeneity, and mediator handle structural and
semantic heterogeneity. Every correspondence rule is, in some sense, a homogenisation me-
diator.

Correspondence specification languages.
Early proposals for correspondence specifications may be found in [SPD92; CL93]. Both al-
low only the specification of correspondences between single classes, but use a rich set of
correspondence types. The fundamental difference and conceptual symmetry between GaV
and LaV was first observed in [Hull97].

A particular expressive CSL, called “model correspondence assertions” and based on
ODMG queries, was developed by Busse [Bus99]. However, this work does not take query
planning into account. Another rich language is the “well-founded object logic” presented in
[DKE94; DK97]. In their framework a rule connects two object-oriented queries, including
recursion, disjunction and negation. However, each rule must be translated into a normal form
before its usage. This translation is not possible for recursive queries and ill-defined for que-
ries using projection. The normal form of a rule is essentially a GaV rule.

62

4. Query Correspondence Assertions

4. QUERY CORRESPONDENCE ASSERTIONS

One fundamental idea of this work is to combine LaV- and GaV rules into a new type of cor-
respondences, called query correspondence assertion (QCA). As observed in the previous
chapter, LaV and GaV naturally complement each other in the following way:

Both approaches have their strength in different phases of query answering. LaV rules are
a powerful language for the description of source content with respect to a mediator
schema, while GaV rules are more geared towards query execution.

•

• Both approaches deal with different types of conflicts. LaV rules fail if wrapper schemas
are more general than the mediator schema, while GaV rules fail if the mediator schema is
more general than a wrapper schema.

A combination of LaV and GaV resolves the problems described in the previous chapter.
QCAs are such a combination. QCAs use LaV techniques for those cases were GaV fails and
vice versa. QCAs allow a concise and intuitive specification of schema correspondences. Fur-
thermore, QCAs indirectly define the set of queries a wrapper can answer, i.e., the query ca-
pabilities of wrappers.

We describe the basic idea of QCAs in Section 4.1. Section 4.2 defines their syntax and
semantics. In Section 4.3 we give a formal semantics for user query in a MBIS using QCAs,
which is based on the construction of a fictive global database D through materialisation of
QCAs. The answer to a user query u is then defined as the extension of a query u’ in D,
where u’ is obtained from u by replacing each literal with a union of views corresponding to
QCAs. This semantics introduces the possibility to prove formally properties of any method
that computes answers to a user query: A method is sound, if it computes only answers that
coincide with the semantics, and it is complete, if it computes all answers that coincide with
the semantics of u. Such methods are the subject of Chapter 5. Section 4.4 finally introduces
the concept of executable mediator queries, which will be important in the following chapter.

4.1 Basic Idea

QCAs are used for specifying schema correspondences. We assume a mediator schema and a
set of wrapper schemas as given and initially unrelated. Furthermore, we know a set of execu-
table queries against wrapper schemas. We use QCAs to define relationships between the re-
sult of such a wrapper query and the mediator schema. Therefore, although the general ap-
proach to the development of our MBIS is top-down, QCAs are in some sense specified bot-
tom-up: They consider the executable queries given, and not so much the ‘typical’ user que-

63

4. Query Correspondence Assertions

Wrapper schemaWrapper schema

Mediator schema

Wrapper schemaWrapper schema

Mediator schema

Wrapper schemaWrapper schema

Mediator schema

QCAs QCAs
Results

Wrapper
queries

Results

(a) (c)(b)

User query

Wrapper
queries

Specification

Figure 20. Generating a MBIS using QCAs.

(a) Mediator and wrapper schemas are designed independently. (b) QCAs are used to relate schemas
through related queries. (c) At run-time, user queries are translated into executable plans using QCAs.

ries that shall be answerable (see Figure 20). In this section, we illustrate the ideas behind
QCAs. A formal characterisation is given in the next sections.

A single QCA is a rule that defines an extensional and intensional correspondence between
two queries. One query, the mediator query, is a query against the mediator schema. The other
query, the wrapper query, is an executable query (see Definition (D3.2), page 53) against the
export schema of a wrapper W. Both queries must have an identical head, i.e., export the same
set of variable symbols and use the same head predicate.

Suppose that mq is a mediator query with head v(E) and body mqbody and wq is the
wrapper query addressing a wrapper W with body wqbody and the same head as mq. A QCA
connecting these queries has the following form:

mqbody ← W.v(E) ← wqbody;

The direction of the arrows indicate the actual flow of data: Physically, tuples of data values
are computed by W by executing wqbody, then projected to E, and finally assigned to variables
of mqbody. By executing the wrapper query, only exported variables of the mediator query are
instantiated. A QCA may be considered as a restructuring data pump.

Semantically, the specification of such a QCA asserts the following to the mediator M:

The intension of v(E) ← wqbody is a subset of the intension of v(E) ← mqbody. I.e., the
set of real world objects described through the wrapper query is a subset of the set of real
world objects described through the mediator query.

•

• The extension of v(E) ← wqbody is a subset of the (only virtually existing) extension of
v(E) ← mqbody. I.e., the set of tuples computed by the wrapper query is a subset of the
set of tuples computed by the mediator query, in every possible state of W and M.

A QCA is a definition; whether or not a QCA is a correct assertion is not checked and cannot
be checked by the mediator. Furthermore, a QCA only asserts that each result of the wrapper
query is a correct result for the mediator query; it does not assert that the result of the wrapper
query is the entire result of the mediator query. If there exist, for instance, two wrappers W1

64

4. Query Correspondence Assertions

and W2 that store name and length of clones and make them available through queries foo and
bar, respectively, we may specify:
r1: clone(-,cn,-,cl) ← W1.v(cn,cl) ← foo(cn,cl);
r2: clone(-,cn,-,cl) ← W2.v(cn,cl) ← bar(cn,cl);

If there were no other QCAs containing a clone literal in their mediator query, then the ex-
tension of clone inside the mediator is defined as the union of the results of W1.v and W2.v.

It can be meaningful to have two QCAs addressing the same wrapper having the same me-
diator query but different wrapper queries. In this case, the wrapper stores information in dif-
ferent tables that are intensionally identical in the mediator context. Imagine a wrapper W that
has one relation for clones available in-house (inhouse) and another relation for external
clone data (external). This difference is irrelevant for a mediator with the schema given in
Table 1, page 18. Therefore, we specify:
r3: clone(-,cn,-,cl) ← W.v1(cn,cl) ← inhouse(cn,cl);
r4: clone(-,cn,-,cl) ← W.v2(cn,cl) ← external(cn,cl);

Usually, mediator and wrapper queries are real queries and not only single literals. Remember
the two wrappers W1 and W2 described in Section 3.4. Using QCAs, we may describe them as
follows:
r5: map(mid,mn,-,-,ch),clonelocation(mid,cid,-),clone(cid,cn,ct,cl),

ct=’PAC’ ← W1.v(mid,cid,mn,ch,cn,cl) ← c_map(mid,mn,sp,ch),
PACS(cid,mid,cn,cl), sp=’human’;

r6: clone(cid,cn,-,-),contains(cid,gid),gene(gid,gn,-) ← W2.v(cn,gn) ← po-
sition(cn,gn);

The relationship between the mediator schema Σ and the schema Σ1 of W1 is defined through
r5. The difficulties we encountered with GaV rules are resolved: We constrain the applicabil-
ity of the rule to queries asking for PACs, and we filter the tuples from W1 with a condition on
species. r6 specifies the correspondence between Σ and Σ2. Note how r6 uses variables (mid
and cid) in the mediator query that are never filled with values since W2 does not provide
them. But both variables are necessary to describe the relationship between the attributes mn
and cn inside the mediator schema. Using r6, we cannot answer a user query requiring values
for cid or mid, but we can answer a query asking for genes that are contained in clones and
that do not request ID values.

QCAs correspond to LaV and GaV rules in the following way:

• LaV rules are QCAs where wrapper queries are restricted to single literals.
• GaV rules are QCAs where mediator queries are restricted to single literals.

QCAs use the first option of GaV approaches to deal with semantically overlapping sources
(see page 57). Therefore, QCAs are wrapper specific, which allows easy plug-in and plug-out
of wrappers [Les98b]. For instance, removing a wrapper from a MBIS is logically performed
by simply removing all QCAs that describe this source. If the second option had been chosen,
all rules would have to be checked for occurrences of relations of that wrapper.

QCAs can only bridge conflicts that are expressible through conjunctive queries. For an
example for a relationship that cannot be expressed through a QCA, imagine a wrapper W that
has a relation with clones that are not YACs. An appropriate rule would be:

clone(cid,cn,ct,cl),cl≠‘YAC’ ← W.v(...) ← somehow(...);

However, this rule is not a QCA because the mediator query contains an inequality condition
is hence not a conjunctive query. We can circumvent the inequality by defining one QCA per
each other type of clones.

65

4. Query Correspondence Assertions

For another example, imagine a wrapper W exporting a relation storing gene and clone
pairs where the gene is not contained in the clone. The following rule expresses this fact:
clone(cid,cn,-,-),NOT contains(cid,gid),gene(gid,gn,-) ← W.v(...) ← no-

tin(...);

Again, this is not a QCA.
We may summarise the meaning of a QCA in the following way:

Intensional aspect.
A QCA asserts that the wrapper query is either intensionally identical or intensionally sub-
sumed by the mediator query. The mediator may expect that any tuple returned from an exe-
cution of the wrapper query (which is executable) is intensionally correct for the mediator
query (which is not directly executable).

Recall r5. The mediator query was:
v(mid,cid,mn,ch,cn,cl) ← map(mid,mn,-,-,ch),clonelocation(mid,cid,-), clo-

ne(cid,cn,ct,cl),ct=’PAC’;

The wrapper query was:
v(mid,cid,mn,ch,cn,cl) ←

c_map(mid,mn,sp,ch),PACS(cid,mid,cn,cl),sp=’human’;

These two queries intuitively mean the same, i.e., they return name and ID of human maps
together with PAC clones and their length contained in these maps. However, this intension is
expressed completely differently in the mediator schema and in the wrapper schema.

Extensional aspect.
A QCA asserts that the set of tuples obtained from executing the wrapper query is a subset of
the set of tuples that are expected to be obtained by executing the mediator query. Formally,
we could write the following. Assume a database DM = (ΣM,I

ΣM) inside the mediator, and a
database DW=(ΣW,I

ΣW) being wrapped by W. The QCA mqbody ← W.v(E) ← wqbody then
asserts the following:

mq|E(DM) ⊇ wq|E(DW);

However, this definition is not meaningful since we have not yet defined what a global data-
base could be. We shall get back to this issue in Section 4.3.

4.2 Syntax and Semantics of QCAs

We first define the syntax of QCAs. We distinguish two classes of QCAs: A “usual” QCA
connects two conjunctive queries, whereas enhanced QCAs use a more expressive language
for wrapper queries. Query planning, as described in Chapter 5, handles both classes equally
well. To simplify further discussions, we also define a normal form for QCAs.

Next, we define the semantics of QCAs. From this point of view, a QCA is an assertion
about the extensional and intentional relationship of the two connected queries.

66

4. Query Correspondence Assertions

Definition (D4.1)-(D4.3) (Syntax of QCAs, enhanced and simple QCAs).
Let M = (ΣM,Ψ,Γ) and W = (ΣW,Ω,χ) with W ∈ Ψ. Let v(E) ← mqbody be a CQ query
and v(E) ← wq

M
C
∑

body be a CQ query executable by W. W
C
∑

(D4.1) The following formula is a query correspondence assertion r:

r: mqbody ← W.v(E) ← wqbody;

where:
• v(E) ← mqbody is the mediator query of r, denoted as medq(r),
• v(E) ← wqbody is the wrapper query of r, denoted as wrapq(r),
• W is the origin of r, denoted as origin(r), and
• E is the set of exported variables of r, denoted as export(r).
• cond(medq(r),E) ⇔ cond(wrapq(r),E).

(D4.2) An enhanced QCA r is a QCA where the wrapper query is extended with a set of
attribute transformations ti:

r: mqbody ← W.v(E) ← wqbody,t1,...,tm;

The ti have the form: “s = f(s1,s2,s3,...)” where f is a function symbol,
s∈E and the arguments of f are either constants or variables from E.

(D4.3) A QCA is called simple if its mediator query is from CQ ; it is called complex if its
mediator query is from .

∑
S

∑

•

•
•

•

CCQ

Remark:
Attribute transformations are treated by the mediator as external functions that are computed
after the execution of the wrapper query. Therefore, we require that both the arguments and
the result of an attribute transformation is exported.

Enhanced QCAs are more powerful than normal QCAs since they may perform calcula-

tions with attribute values that are not computed inside a wrapper. In many cases, attribute
transformations are necessary for bridging semantic and structural conflicts. Examples are:

The conversion of values with different scales to mediate, for instance, between different
currencies or different metric measurements.
The mapping of object names to global IDs using, for instance, a lookup-table.
The composition and decomposition of string values, for instance, to bridge between a
mediator relation with one attribute for the author’s first and one for author’s last name,
and a wrapper schema that has only one name field.
The aggregation of values.

An enhanced QCA may be considered as consisting of two parts: the first part is a query that
must be executed by the wrapper, and the second part is a post-processing of the query results
through the attribute transformation functions performed inside the mediator.

In principle, a wrapper query could be any query that is computable by the wrapper. Wrap-
per queries need not be restricted to conjunctive queries. For instance, if a source is a
RDBMS, any SQL query can be used as wrapper query of a QCA. However, in this work we

67

4. Query Correspondence Assertions

restrict ourselves to conjunctive wrapper queries. The main reason is that non-conjunctive
queries are much harder to optimise. In particular, multiple query optimisation (see Section
5.4.2), which relies on the identification of common subparts of wrapper queries, becomes
much more complex for queries including negation and/or disjunction.

We have defined enhanced QCAs such that they are easy to execute (although harder to
optimise) and at the same time offer sufficient expressive power for many applications. En-
hanced QCAs are essential for systems that apply QCAs as specification language. However,
the following sections and chapters are focussing on query planning. Normal and enhanced
QCAs behave equally from this point of view. Therefore, we always assume normal QCAs if
not specified otherwise.

Note that our definition excludes QCAs such as:
r1: clone(cid,cn,ct,cl),ct=”YAC” ← W.v(cid,cn,cl) ←

q_clone(cid,cn,ct’,cl), ct=”yeast artificial chromosome”;
r2: clone(cid,cn,-,cl),cl<300 ← W.v(cid,cn,cl,ct) ←

w_clone(cid,cn,cl), cl<500;

r1 assigns the variable ct, which appears both in the mediator query and in the wrapper
query, two different values. The wrapper query of r2 produces tuples with a cl value smaller
than 500 KB, but the QCA asserts that all cl values are smaller than 300 KB inside the me-
diator. Since our definition of QCAs requires that the conditions on exported variables in the
wrapper query and in the mediator query imply each other, both QCAs are invalid. Conditions
on variables that are not shared are not restricted.

We define two syntactical forms of QCAs, depending on the form of their queries. (see
Definition (D2.7), page 16). Transforming QCAs from one form into the other form is
straight-forward.

Definition (D4.4) (Normal and embedded form of QCAs).

(D4.4) A QCA r is in:
• normal form if both wrapper and mediator query are in normal form.
• embedded form if both wrapper and mediator query are in embedded form.

Remark:
In the following, we always assume simple, non-enhanced QCAs in normal form, if not speci-
fied otherwise.

After defining the syntax we turn to the semantics of a QCA. The semantics of a single

QCA has two aspects: an intensional one and an extensional one. The following definition is
based on the definition of extension and intension of queries and relations (see Definitions
(D2.2), (D2.10), and (D2.11)).

Definition (D4.5) (Semantics of QCAs).
Let M = (ΣM,Ψ,Γ) and W = (ΣW,Ω,χ) with W ∈ Ψ. Furthermore, let r be a QCA with
origin(r) = W.

(D4.5) r asserts the following to M:
• The intension of wrapq(r) is a subset of the intension of medq(r).
• The extension of wrapq(r) is a subset of the extension of medq(r).

68

4. Query Correspondence Assertions

Remark:
The extensional part of this definition has to be interpreted with caution, since a mediator
schema has no extension. However, we shall virtually build up the extension of the mediator
schema out of QCAs in the following section.

4.3 Semantics of User Queries in MBIS using QCAs

QCAs are used to specify correspondences between schemas through correspondences be-
tween queries. The purpose of QCAs is to guide the translation of user queries, i.e., to guide
query planning. However, before we approach query planning, we must define the semantics
of user queries, i.e., we must define what the answer to a user query against the schema of a
mediator M should be.

To better understand the role of QCAs in MBIS, consider a rule-based expert system. The
expert system is essentially a program consisting of single rules. The semantics of an execu-
tion of this program may, for instance, be defined top-down, i.e., by recursively chaining
rules, or bottom up, i.e., by subsequently replacing rules with facts. In this sense, a QCA is a
single rule, the mediator is a program, and a user query is an execution of this program.

In the following, we define a bottom-up semantics for the program execution. We interpret
QCAs as “tuple generators” that virtually fill the mediator schema with real data, thus build-
ing a virtual database D. The answer to a user query u is then defined as the extension of a
query u’ against D, where u’ is obtained from u using some transformations.

More precisely, we define the semantics of a user query u in two steps. In Section 4.3.1,
we define the virtual database Dv of a mediator M. Dv is obtained by materialising all QCAs
in M. In principle, the purpose of materialisation is to be able to compute the result of a wrap-
per query by executing the corresponding mediator query. If we had achieved this, we would
have solved the problem of heterogeneity since the mediator would be able to access all data
from a single homogeneous schema, i.e., the mediator schema.

However, we shall see that materialisation only partly succeeds in this goal, because it
loses intensional information encoded in QCAs. Exploiting this information is the purpose of
the second step, which we describe in Section 4.3.2. We define a rewriting of a user query u
against a mediator schema into a query against Dv. This rewriting includes the intensional
information lost during materialisation.

Unfortunately, our semantics is only meaningful for simple QCAs. It cannot cope with
non-equality conditions connecting two literals, as they may occur in complex QCAs. We
show why at the end of Section 4.3.2. This problem carries over to Chapter 5, where we de-
scribe sound and complete query planning algorithms for mediators with simple QCAs. De-
spite that the algorithms can be modified such that they also work with complex QCAs, find-
ing a proper semantics for user queries in the presence of complex QCAs remains an open
research problem.

4.3.1 Materialising QCAs

69

In this section, we define the virtual database Dv of a mediator M. Dv is obtained through ma-
terialisation of QCAs, i.e., it is constructed by executing all wrapper queries of QCAs and
materialising the resulting tuples in a database with the schema of M. Our intention is to give

4. Query Correspondence Assertions

the mediator a way of obtaining the result of any wrapper query using a uniform “vocabu-
lary”, i.e., the mediator schema.

First, we define what it means to materialise a single QCA. Let M = (Σ,Ψ,Γ) and r ∈ Γ.
Consider an empty database D with schema Σ’, which is obtained from Σ by extending every
relation with an additional attribute qid (QCA identifier). We use qid to assign to each tuple
the QCA which produced it.

Materialising r into D means to store all data obtained by wrapq(r) into D according to
medq(r). Therefore, we first execute wrapq(r) without any variable bindings, which
yields a set T of tuples. Next, we update D through the view medq(r). After this update, we
want to be able to obtain T by executing medq(r) on D. To achieve this goal, every tuple of
T must eventually be identical to an element of the cartesian product of the extensions of the
literals of medq(r). This element must (a) fulfil the join conditions in medq(r), and must
(b) fulfil the conditions of medq(r) (See Definition (D2.10), page 17).

We proceed as follows: We go through all tuples in T. For each such t ∈ T, we go through
all literals of medq(r). Let l be such a literal. We insert into the relation of l in D a tuple
whose values are taken from t. However, recall that medq(r) might have non-exported
variables. T contains only values for exported variables. To decide which values should be
used for attributes of non-exported variables, we must consider two problems:

medq(r) may contain a non-exported variable more than once, i.e., the non-exported
variable carries a join.

•

•

In order not to lose this join condition, we consistently replace each non-exported variable
in medq(r) with the same, fresh value for each tuple of T. This value must not join with
any other value in D.

medq(r) may contain conditions on non-exported variables.
Unfortunately, it is not possibly to express this information in the extension of a database.
Therefore, we ignore conditions during materialisation and consider them in a second
step, presented in Section 4.3.2.

After formally defining the materialisation of a QCA, we give an example.

Definition (D4.6) (Materialisation of QCAs).
Let M = (Σ,Ψ,Γ) and let r ∈ Γ be in embedded form with wq = wrapq(r) and mq =
medq(r). Let L be the set of literals of mq, F be the set of non-exported variables of mq, and
E be the set of exported variables of mq. Let T be the set of tuples obtained by executing wq.
For v ∈ E and t ∈ T, let t(v) denote the value of v in t. For v ∈ F and t ∈ T, let f(t,v)
return an arbitrary but unique value. Furthermore, let D be an empty database with schema Σ’
obtained from Σ by adding to each relation a new attribute qid at the first position.

(D4.6) The materialisation of r into D is defined as follows: For each pair (t,l) ∈ T x L,
where l is of the form rel(s1,...,sk), we insert one tuple (s1’,...,sk+1’) into
rel in D with the following values:
• s1’=r.
• si ∈ const ⇒ si+1’ = si.
• si ∈ F ⇒ si+1’ = f(t,si).
• si ∈ E ⇒ si+1’ = t(si).

70

4. Query Correspondence Assertions

Remark:
Materialising a QCA ignores conditions in mediator queries completely, i.e., also those on
exported variables. This is reasonable since a QCA asserts that the conditions in the mediator
query hold for all values computed by the wrapper query. If this assumption were removed,
we could immunise a mediator against wrong values by checking all conditions for every tu-
ple from T during the materialisation of a QCA.

The intuition behind the previous definition is the following: A QCA is essentially a re-

structuring of attribute values. The values computed by wq are distributed over the relations
of Σ according to mq. One tuple of T results in one tuple for each occurrence of a relation in
mq. However, a QCA does not define values for non-exported variables in mq. Any symbol s
in mq that is not an exported variable may either be a constant, in which case this constant
value is used, or it may be a non-exported variable. If a non-exported variable appears more
than once, it expresses a join between literals of mq. Recall QCA r6 from the previous sec-
tion:
clone(cid,cn,-,-),contains(cid,gid),gene(gid,gn,-) ← W2.v(cn,gn) ← positi-

on(cn,gn);

No values for cid or gid are obtained through the wrapper query, but the relationship of
values for gn and cn is nevertheless clearly defined. To retain this relationship, we use
unique values replacing cid and gid for each tuple computed by the wrapper query.

Example 4.1.
Consider the mediator schema given in Table 1, page 18. Imagine the following QCA r de-
scribing a wrapper for PAC data with aliases:
r: clone(cid,cn,’PAC’,cl),clonealias(cid,al) ← W.v(cn,cl,al) ←

pacs(cn,cl,al);

Let q = medq(r). Imagine W produces three tuples for this query: (’yWXD1’,50,
’T18’), (’yWXD1’,50,’T99’), and (’yWXD2’,100,’T20’). Materialising r re-
sults in the following database:

clone qid cid cn ct cl
 r f1 yWXD1 PAC 50
 r f2 yWXD1 PAC 50
 r f3 yWXD2 PAC 100

clonealias qid cid al

r f1 T18
r f2 T99
r f3 T20

f1, f2, and f3 are fresh values that must not appear anywhere else in D.

In the previous example, we obtained the result of wrapq(r) from the materialisation of
r by executing medq(r) on D. This translation is the reason for materialisation. However,
the following example shows that executing medq(r) on D after materialising r does not
always produce the result of wrapq(r).

71

4. Query Correspondence Assertions

3
1

2 4
Figure 21. Graph induced by the result of the exemplary wrap-

per query.

Example 4.2.
Consider a mediator storing graphs: The mediator schema has only one binary relation, edge,
storing edges between nodes. Nodes are represented by integer numbers. Assume we have a
data source that stores a graph and that has a function that returns paths of length three. We
model this through the following QCA r:
r: edge(a,b),edge(b,c) ← W.v(a,b,c) ← threewaypaths(a,b,c);

Let wq = wrapq(r) and mq = medq(r). Suppose that executing wq returns:

W.v from via to
1 3 3
2 3 4

If we materialise r, we obtain:

edge qid from to
r 1 3
r 3 3
r 2 3
r 3 4

If we compute mq (ignoring qid) on this database, we do not obtain the result of wq, but:

edge from via to
1 3 3
1 3 4
3 3 3
3 3 4
2 3 3
2 3 4

These are all paths of length three that must exist in a graph if the two paths reported by wq
exist (see Figure 21). Thus, the result is justified.

The reason for this difference is that wrapper queries might be “incomplete”. Specifying a

QCA only asserts that the tuples computed from the wrapper query are extensionally and in-
tensionally contained in the mediator query, but does not guarantee that the result of the
wrapper query adheres to the semantics of relational queries (see Definition(D2.10), page 17).
Therefore, executing queries on the materialised result of a QCA may produce more tuples
that the original wrapper query.

Materialising all QCAs of a mediator M yields the virtual database for M.

72

4. Query Correspondence Assertions

Definition (D4.7) (Virtual mediator database).
Let M = (Σ,Ψ,Γ).

(D4.7) The virtual database Dv for M is obtained by materialising all QCAs in Γ.

4.3.2 Answering Queries using Materialised QCAs

We define the answer to a user query u against a mediator M. It is tempting to define the an-
swer to u as the extension of u in the virtual database of M. However, this approach is not
feasible. A QCA contains both an intensional and an extensional aspect. The materialisation
of a QCA only reflects the extensional facet – the intensional information is lost.

Example 4.3.
Consider a mediator with the schema given in Table 1, page 18. Consider a wrapper W provid-
ing data about physical maps of the size of a single clone, i.e., its size is always smaller than 2
MB. W does not provide the length itself. We describe W through the following QCA r:
r: map(mid,mn,’physical’,ms,chr),ms<2000 ← W.v(mid,mn,chr) ← some-

how(mid,mn,chr);

Imagine wrapq(r) produces two tuples, (100,’map3’,X) and (200,’map4’,Y). Mate-
rialising r results in the following database D:

map qid mid mn mt ms Chr
 r 100 map3 physical f1 X
 r 200 map4 physical f2 Y

Note that the information about the size range of maps in W is lost. Since ms is not exported in
r, wrapq(r) does not produce values for ms. Therefore, ms is replaced with fresh values
(f1 and f2) during the materialisation. Now, consider the two user queries u1 and u2:
u1(mid) ← map(mid,mn,-,ms,-),ms<3000;
u2(mid) ← map(mid,mn,-,ms,-),ms<1000;

We cannot answer either of those queries using D since we cannot ensure the condition on ms.
The fresh values are treated like null, i.e., any condition evaluates to false. However, if
consider the original QCA r we realise that all tuples in D are correct for u1 since r asserts
that all map sizes are smaller than 2 MB.

However, we cannot compute tuples that are certainly correct answers for u2. From the re-
sult of wrapq(r), we cannot filter tuples smaller than 1 MB because no length information
is provided.

We solve this problem by capturing the intensional aspects of QCAs in fragments. We de-

fine one fragment for each literal of a mediator query of a QCA. Fragments include inten-
sional information attached to their literal, i.e., conditions on variables appearing in their lit-
eral. Each fragment induces a view that relates the intensional information of the fragment to
the according tuples, i.e., those that were obtained through the wrapper query.

73

4. Query Correspondence Assertions

Definition (D4.8)-(D4.9) (Fragments and induced views).
Let M = (Σ,Ψ,Γ) with only simple QCAs and let Dv be the virtual database for M.

(D4.8) A fragment is a 4-tuple (r,l,E,C) where:
• r ∈ Γ.
• l is a literal from medq(r).
• E = {e | e ∈ export(l)}.
• C = cond(medq(r),variables(l)).

(D4.9) Let ν = (r,l,E,C) be a fragment, and let l have the form rel(s1,...,sn).
The view on Dv induced by ν is the query:

q(qid,s1,...,sn) ← rel(qid,s1,...,sn),qid=r;

Remarks:
An induced view exports all attributes of the corresponding relation of Σ’, not only those
that are exported in the corresponding mediator query.

•

• An induced view uses the QCA identifiers stored during the materialisation of QCAs to
distinguish tuples computed by different QCAs. (see Definition (D4.6)). Thus, the seman-
tic information stored in the fragment, which could not be represented in the virtual data-
base, is associated to the right set of tuples.

The view on Dv induced by a fragment ν = (r,l,E,C) for a base relation rel computes
the extension of rel in Dv derived from the materialisation of r. In principle, we want to
define the extensions of the literals of a user query u as the union over all induced views for
the same base relation. However, we have to exclude from this union those views whose
fragments have conditions that are contradicting with the conditions of u.

Definition (D4.10) (Admissible fragments).
Let M = (Σ,Ψ,Γ) with only simple QCAs and let ν = (r,l,E,C) be a fragment. Let u ∈

 be a user query with a literal k. Let s∑
SCQ i (ti) be the symbol at the i’th position of k (l).

(D4.10) ν is admissible for k iff:
• The relation of l is the same as the relation of k.
• ∀ si: si ∈ export(k) ⇒ ti ∈ E.
• ∀ si: (cond(C,ti) ⇒ cond(u,si)) ∨ ti ∈ E.

Hence, a fragment ν is admissible for a literal k ∈ u if it exports all required attributes and
if the conditions of ν either imply the conditions of u (restricted to k), or if “critical” attrib-
utes are exported in l. In the latter case, the mediator may anyway filter the extension of the
view induced by ν such that it adheres to the conditions of u, independently of whether the
conditions in ν and u conflict or not.

Using admissible views we now define the semantics of a user query against a mediator
schema.

74

4. Query Correspondence Assertions

Definition (D4.11) (Semantics of a user query in MBIS).
Let M = (Σ,Ψ,Γ) with only simple QCAs and let Dv be the virtual database for M. Let u ∈

 with n=|u| and E = export(u). Let Λ∑
SCQ i be the set views induced by fragments ad-

missible for the i’th literal of u. Furthermore, let Q be the set of all queries of the form
“q(E) ← ν1,ν2,...,νn,cond(u)”, where νi ∈ Λi and all symbols in νi, are replaced by
the corresponding symbols in the i’th literal of u.

(D4.11) The answer to u in M, written u(M), is defined as () ()U
Qq

vDqMu
∈

= .

Remarks:
The replacement of symbols is well-defined since every view has exactly one literal. •

• It does not matter if the literal of fragment has a join that is not present in a literal of the
user query for which this fragment is admissible. Although the join is syntactically re-
moved when the symbols are replaced, it is still “contained” in the data, i.e., in the materi-
alisation of the QCA.

We demonstrate the previous definitions by the following example.

Example 4.4.
Consider the mediator schema as given in Table 1 (page 18) and two QCAs describing the
interfaces to two wrappers W1 and W2:
r1: clone(cid,cn,ct,cl),clonealias(cid,al),cl<150 ← W1.v(cid,cn,ct,al) ←

somehow(cid,cn,ct,al);
r2: clone(cid,cn,-,cl),cl<200 ← W2.v(cid,cn,cl) ← somehow(cid,cn,cl);

Assume the following tuples are obtained through r1 and r2:

r1 cid cn ct al r2 cid cn cl
 C1 yXWD1 PAC HMI1 C1 yXWD1 80
 C2 yXWD2 YAC HMI2 C2 yWXD2 50

First, we materialise both QCAs, resulting in the following virtual database.

clone qid cid cn ct cl
 r1 C1 yWXD1 PAC f1
 r1 C2 yWXD2 YAC f2
 r2 C1 yWXD1 f3 180
 r2 C2 yWXD2 f4 50

clonealias qid cid al

r1 C1 HMI1
r1 C2 HMI2

Note that the two sources have conflicting information about the clone ‘yWXD1’, since W1
claims its length to be smaller than 150 KB, but W2 has a clone length of 180 KB.

The fragments of r1 and r2 are:
ν1=(r1,clone(cid,cn,ct,cl),{cid,cn,ct},{cl<150});
ν2=(r1,clonealias(cid,al),{cid,al},∅);
ν3=(r2,clone(cid,cn,ct,cl),{cid,cn,cl},{cl<200});

75

4. Query Correspondence Assertions

The induced views are:
q1(cid,cn,ct,v1) ← clone(qid,cid,cn,ct,v1),qid=r1;
q2(cid,al) ← clonealias(qid,cid,al),qid=r1;
q3(cid,cn,v2,cl) ← clone(qid,cid,cn,v2,cl),qid=r2;

where v1 and v2 are fresh variable symbols. Consider the following user queries:
u1(a,b) ← clone(a,b,-,-);
u2(a,b) ← clone(a,b,c,d),d<170;
u3(a,b,c,e) ← clone(a,b,c,d),clonealias(a,e);

Both ν1 and ν3 are admissible for the only literal of u1. ν1 is admissible for clone in u2 be-
cause cl < 150 implies cl < 170. Therefore, it is irrelevant that a “true” cl value is miss-
ing. ν3 is admissible for clone in u2 although the respective implication does not hold – but
the critical variable cl is exported. ν3 is not admissible for the first literal of u3 since it does
not export values for cl. ν1 is admissible for the first literal of u3, and ν2 is admissible for the
second. The answers to u1 – u3 are hence defined as:
u1(a,b) ← q1(a,b,c,d) ∪ q3(a,b,c,d);
u2(a,b) ← q1(a,b,c,d),d<170 ∪ q3(a,b,c,d),d<170;
u3(a,b,c,e) ← q1(a,b,c,d),q2(a,e);

The results are:

u1 cid cn
 C1 yWXD1
 C2 yWXD2
 C1 yWXD1
 C2 yWXD2

u2 cid cn

 C1 yWXD1
 C2 yWXD2
 C2 yWXD2

u3 cid cn ct al

 C1 yWXD1 PAC HMI1
 C2 yWXD2 YAC HMI2

We obtained “real” values for all required attributes, i.e., no artificially generated values of
the virtual database appear in an answer.

Using the previous definition, we now define soundness and completeness of query plan-

ning algorithms.

Definition (D4.12) (Soundness and completeness of query planning).
Let M = (Σ,Ψ,Γ) with only simple QCAs.

(D4.12) Suppose a method computes the set T(u) of tuples as the result of a given user
query u ∈ CQ . Then this method is: ∑

S

• sound iff T(u) ⊆ u(M).
• complete iff T(u) ⊇ u(M).

76

4. Query Correspondence Assertions

The semantics of a query against a mediator with complex QCAs is not defined. We ex-
plain why this is the case by “climbing a ladder” of increasing complexity in the types of me-
diator queries that are allowed.

First, consider CQ mediator queries without projection, i.e., conjunctive queries without
additional conditions that export all their variables. For such queries, a QCA does not encode
intensional knowledge apart from the structural aspects reflected in the distribution of vari-
ables over relations. No conditions exist. Furthermore, no fresh values are required during the
materialisation of QCAs since, in every QCA, all variables are exported. The semantics of a
user query collapses to the result of executing that query on Dv.

The next interesting class of queries is CQ, i.e., including projections. To define a proper
semantics, we must introduce fragments, and furthermore we must distinguish between ad-
missible and non-admissible fragments.

The third step are CQS queries, which are the focus of this work. Our definitions assumed
such queries. Compared to CQ queries, we also need to consider conditions. Especially, we
must take care for conditions on non-exported variables.

The most difficult class is CQC. CQC queries may contain conditions that connect different
literals apart from joins. Therefore, our approach cannot hold any more because conditions
that cannot be assigned to a single literal are not expressed in fragments. Consider the follow-
ing example:
u(cid1,cid2) ← clone(cid1,-,-,cl1),clone(cid2,-,-,cl2),cl1<cl2;
r: clone(cid1,-,-,cl1),clone(cid2,-,-,cl2),cl1<cl2 ← W.v(cid1,cid2) ← some-

how(cid1,cid2);

To show that u can be answered from a materialisation of r we must show that condition cl1
< cl2 from u is implied by r. However, this is impossible by looking at each literal in isola-
tion, since the condition spans two of them.

4.3.3 Consistent Sets of QCAs

The examples we gave so far used only small sets of QCAs. However, as soon as the number
of QCAs in a mediator grows, the relationship between different QCAs will become less ob-
vious. The semantics of the mediator could be blurred if the given set of QCAs can be contra-
dicting or inconsistent. Therefore, we examine in the following if a set of QCAs can be such
that no user query can ever be answered, for instance because a subset of the QCAs is contra-
dicting.

We approach this question by the following examples.

Example 4.5.
Consider a wrapper W1 being described through the following two QCAs:
r1: clone(-,cn,ct,cl),ct=’PAC’ ← W1.v1(cn,cl) ← segments(cn,cl);
r2: clone(-,cn,ct,cl),ct=’YAC’ ← W1.v2(cn,cl) ← segments(cn,cl);

These two rules may be considered contradicting: objects stored in segments cannot have
both ‘PAC’ and ‘YAC’ as clonetype. If we cannot determine the clone type, we should
rather ignore it, i.e., replace r1 and r2 with the rule:
r3: clone(-,cn,-,cl) ← W1.v3(cn,cl) ← segments(cn,cl);

However, r1 and r2 could be interpreted as expressing that segments stores objects that are,
on the mediator level, considered as both YACs and PACs, but nothing else. From this point
of view, there is a big difference between r1/r2 and r3: in the former case, the mediator will

77

4. Query Correspondence Assertions

use W1 for global queries for YACs or PACs, but not for BACs; in the latter case, W1 will be
used only for queries that do not export and not select upon ct. The query:
u(cn) ← clone(-,cn,ct,-),ct=‘YAC’;

can be answered using r2, but not using r3.

Example 4.6.
Consider a wrapper W2 described through the following QCAs:
r3: clone(-,cn,-,cl),cl≤1000 ← W2.v1(cn,cl) ← segments(cn,cl);
r4: clone(-,cn,-,cl),cl>1000 ← W2.v2(cn,cl) ← segments(cn,cl);

r3 and r4 seem to be contradicting. r2 assures that clones from segments are longer than
1000 KB, while r4 assures that they are smaller than 1000 KB. However, these two rules do
not produce any harm: for a user query with a condition on clonelength only one will be
used; for a user query without a condition on clonelength both will be used in first place,
but the resulting plans are redundant, which will be detected in a later phase (see Section 5.4).

Nevertheless, both QCAs taken together are equivalent to a single rule without any condi-
tion on clonelength. It would be better to replace them.

Both QCAs do not lead to wrong results being computed by the mediator. However, it

would be better to specify only one QCA. To detect such cases, we introduce the notion of
consistent QCAs and of consistent sets of QCAs. The intention behind these definitions is to
identify cases in which QCAs possibly conflict with each other.

We call a set of QCAs consistent if, whenever a wrapper query of one QCA is contained in
the wrapper query of another QCA, also the mediator query of the first QCA is contained in
the mediator query of the second. In other words: a set of QCAs is consistent if subset rela-
tionships between query extensions carry over from the wrapper schema to the mediator
schema. This does, for instance, not hold for the two QCAs of Example 4.6.

Definition (D4.13)-(D4.14) (Consistent QCAs).
Let M = (Σ,Ψ,Γ) and r1, r2 ∈ Γ with origin(r1) = origin(r2).

(D4.13) r1 and r2 are mutually inconsistent if:
wrapq(r1) ⊆ wrapq(r2) ∧ medq(r1) ⊈ medq(r2);

or:
wrapq(r2) ⊆ wrapq(r1) ∧ medq(r2) ⊈ medq(r1);

(D4.14) Γ is consistent if all its elements are mutually consistent.

Inconsistent sets of QCA may be considered as semantically suspicious. However, they do

compromise the semantics of user queries, nor do they affect query planning as presented in
the next chapter. In particular, a set of QCAs cannot be such that it crashes query planning, in
the sense as a set of unsatisfiable axioms crashes logical deduction. We therefore do not re-
quire consistency of QCA sets for the rest of this work.

78

4. Query Correspondence Assertions

4.4 Executable Mediator Queries

In Section 3.3.1 we defined executable wrapper queries. We settled that each wrapper carries
a set of query templates, and that it is able to execute any query that corresponds to such a
template plus additional conditions. We argued that the result of such a query is always com-
putable through post-processing, as long as the query template itself is executable.

In this section we define executable mediator queries. Recall that a mediator query is not
the same as a user query. A mediator query is a query against the mediator schema that has a
corresponding query associated. In contrast, user queries are arbitrary queries against the me-
diator schema. The mediator computes the answer to a user queries by executing appropriate
wrapper queries. However, the question is what wrapper queries are appropriate. In the next
chapter, we shall determine those sets by rewriting the user query into mediator queries.

Therefore, we have to make sure that those mediator queries are executable. Intuitively, a
mediator query is executable if it has a corresponding, executable wrapper query. Consider a
mediator with a single QCA r. Executing wrapq(r) results in a set of tuples that is a subset
of the extension of medq(r)6. This does not imply that we can only execute medq(r); in-
stead, we can execute any query that can be computed on the result of medq(r).

Example 4.7.
Let the following query mq be the mediator query of a QCA r:
W.v(mid,mn,ms,cid,cn) ← map(mid,mn,mt,ms),mt=’physical’, clonelocati-

on(mid,cid,-),clone(cid,cn,-,cl),cl<100;

The following queries can be executed using only r:
u1(mid,mn,cid) ← map(mid,mn,mt,ms),mt=’physical’,clonelocation(mid,cid,-),

clone(cid,cn,-,cl),cl<100;
u2(mid,mn,ms,cid,cn) ← map(mid,mn,mt,ms),mt=’physical’, clonelocati-

on(mid,cid,-),clone(cid,cn,-,cl),cl<500,ms<100;

The result of u1 can be obtained from the result of mq by removing some variables from the
export list and by introducing a join on the attributes mn and cn. Computing this join is pos-
sible since both attribute values are exported. u2 can be answered using mq since (a) cl <
500 is implied by mq and (b) ms < 100 can be enforced since ms is exported in mq.

In contrast, the following queries are not executable using r:
u3(mid,mn,ms,cid,cn) ← map(mid,mn,mt,ms),mt=’physical’, clonelocati-

on(mid,cid,-),clone(cid,cn,-,ms),cl<100;
u4(mid,mn,ms,cid,cn) ← map(mid,mn,mt,ms),mt=’physical’, clonelocati-

on(mid,cid,-),clone(cid,cn,-,cl),cl<50;

u3 tries to join on ms and cl. This join cannot be computed because cl is not exported in mq.
Therefore, the mediator cannot ensure this condition, nor can it be pushed to the source (see
Definition (D3.2), page 53).

To compute u4, we must enforce the condition cl < 50. This is not possible since the
condition is neither implied by mq nor computable in the mediator – cl is not exported.

There are three transformations that can be applied to mediator queries of QCAs that do

not affect executability:

•

Adding new joins, as long as the joined variables are exported.

79

6 Actually, it is the complete result if M has only a single QCA.

4. Query Correspondence Assertions

• Adding new conditions, as long as those conditions are either implied by existing condi-
tions, or the affected variables are exported.
Removing variables from the head. •

•
•

Definition (D4.15)-(D4.16) (Variable renamings, query transformer).
Let q ∈ CQ for some schema Σ. ∑

C

(D4.15) A variable renaming on q is a function α: variables(q) ↦ variables(q)
that maps each variables either into itself or into a variable that is also the target of at
least one other variable.

(D4.16) A query transformer σ for q is a pair (α,C), where:
• α is a variable renaming on q, and
• C is a set of conditions involving only variables of q.

Remark:
We use variable renamings to describe additional joins:

If α is the identity then we write α = [];
If α maps two or more variables v1,...,vn to a variable v, then α contains the map-
pings [v1→v,...,vn→v].

Definition (D4.17) (Executable mediator query).
Let M = (Σ,Ψ,Γ) and MQ(Γ)be the set of all mediator queries in Γ.

(D4.17) A query q ∈ CQ is called an executable mediator query if there exists a query q’ ∈
MQ(Γ) and a query transformer (α,C) with:

∑
C

• body(q) = α(body(q’),C).
• export(q) ⊆ α(export(q’)).
• ∀ v1,v2 ∈ variables(q’), v1 ≠ v2 ∧ α(v1) = α(v2) ⇒ v1,v2 ∈

export(q’).
• Let C’ = {c | c∈C ∧ (cond(q’) ⇏ c)}. Let V be the set of variables ap-

pearing in α(C’). Then V ⊆ export(q’).

This definition captures all queries against Σ that can be answered by executing the media-
tor query of a QCA first and then filtering the result with additional constraints.

Example 4.8.
Continuing Example 4.7, we get:
u1 = α1(q,C1), α1 = [mn→cn], C1 = ∅;
u2 = α2(q,C2), α2 = [], C2={cl < 500, ms < 100};

80

4. Query Correspondence Assertions

4.5 Summary and Related Work

This section defined query correspondence assertions as a means to describe relationships
between schemas. QCAs combine the advantages of previously published CSLs and avoid
their pitfalls. Therefore, QCAs are more expressible than other approaches. In Section 6.2, we
shall give an exhaustive list of possible conflicts between heterogeneous, relational schemas
and demonstrate how they can be overcome with the help of QCAs. To our best knowledge,
no other CSL could handle all those conflicts equally well.

We defined syntax and semantics of simple and complex QCAs. Basically, a QCA defines
an extensional and intensional relationship between a query against the mediator schema and
a query against the export schema of one wrapper. Intuitively, a QCA specifies the relation-
ship between the ideal world (an integrated and complete database) and the real world (data
scattered over many sources) wrt. a certain query.

Given a user query against the mediator schema, the mediator uses these relationships to
decide whether or not the wrapper query of a QCA contributes to the answering of this query.
We gave this decision a formal basis by defining the semantics of user queries in MBIS using
QCAs. Only this definition enables us to judge algorithms for query answering wrt. their
completeness and soundness, as we do in Chapter 5.

Furthermore, we discussed consistency of QCAs and of sets of QCAs. Intuitively, a set of
QCAs is consistent if subset relationships between answer sets carry over from the wrapper
schema to the mediator schema. We settled that even inconsistent QCAs do not break the se-
mantics of user queries. However, they compromise understandability and maintainability of
MBIS, and should hence be avoided.

Finally, we defined the notion of executable mediator queries. This definition will be nec-
essary in the next chapter to decide which queries the mediator can use to answer user queries.

Related work.

Correspondence assertions.
We already discussed other CSLs than QCAs in Section 3.5. An interesting approach to de-
fine the semantics of correspondences is presented by Spaccapietra et al. [SPD92]. Their work
is based on an entity-centred data model, the generic data model (GDM). Source schemas
have to be transformed into equivalent GDM schemas. The relationship between two classes
in different GDM schemas is captured through correspondence assertions. Such an assertion
defines whether the extensions of the two connected classes are disjoint, overlapping, identi-
cal or in a subset-relationship. The semantics of a correspondence assertion is defined by a
function that maps source-specific class extensions into sets of real-world objects (real world
semantics). For instance, if two classes X and Y are defined to be disjoint, then the semantics
of this definition is that RWS(X) ∩ RWS(Y)=∅.

The semantics of QCAs we gave in Section 4.2 was inspired by this approach. However,
there are more differences than similarities: We use the relational data model, while Spac-
capietra et al. use GDM; Spaccapietra et al. address schema integration, while we focus on
query processing; Spaccapietra et al. allow assertions only to connect single classes, while we
allow conjunctive queries on both sides; Spaccapietra et al. allow four different types of ex-
tensional relationships, while QCAs always assume a subset relationship. Particularly, Spac-
capietra et al. assume correspondences between two source relations, and not between a me-
diator relation and a source relation as a QCA.

81

4. Query Correspondence Assertions

Restricted query capabilities.
Recently, a great number of projects have treated the problem of answering global queries in
MBIS with sources having only restricted query capabilities [GMY99]. For instance, if a web
site is used as a data source, then this source will typically allow only conditions on certain
attributes, namely those that appear in a web search form. [VP97] describes algorithms that
can decide upon the executability of complex restriction patterns specified as regular gram-
mars. [HKWY97; KTV97] describe different methods of deciding where operations are opti-
mally executed (in the mediator or in the wrapper) if wrappers support only certain functions.
[YGMU99] addresses the problem of computing capabilities of mediators that use other me-
diators as sources.

Another type of query restrictions are binding patterns. Web sources typically require cer-
tain attributes to be bound. For instance, if we model a web source of a bookstore through a
relation book(author,title,publisher), then it is usually not possible to execute a
query for all books without any variable bindings. Usually it is only possible to get a list of all
books of a certain author, all books with a certain word in the title, etc. Query planning with
binding patterns is considered in [RSU95] (see also 5.5).

Our model of query capabilities is currently very simple. We assume that each wrapper can
answer every query used as wrapper query in a QCA. Executable wrapper queries (see Defini-
tion (D3.2)) are those that can be computed by only using the result of a wrapper query. They
can, for instance, contain conditions on exported variables not present in a wrapper query. We
do not require that the wrapper itself executes such conditions. This model is well suited for
web sources that, typically, at most support conjunctions of conditions on attribute values
[Hol99]. On the web, disjunction, negation, or complex conditions are virtually non-existing.

QCAs lack the ability to define binding patterns. This is a is restriction since binding pat-
terns are ubiquitous on the web. However, a proper extension is straight-forward. It suffices to
associate QCA with so-called adornments on exported variables. This technique is e.g. used
in [RSU95; YGMU99]. However, query planning in the presence of binding pattern is con-
siderable more complex than without binding pattern (see Section 5.5).

Relationship of QCAs to horn clauses.
In some sense, QCAs are a derivation of non-recursive, positive DATALOG rules. It is tempt-
ing to reduce the problem of query planning to the well-known field of Horn logic. Note how-
ever that a QCA is not a Horn clause, since the “head” of the rule, i.e., the mediator query,
may consist of more than one literal and also may contain conditions.

If QCAs have mediator queries without conditions, one can break up one QCA into many
Horn clauses with single-literal heads. Since the wrapper query cannot be broken up - it is
only defined as an entity and we make no assumptions about parts of it - each of the emerging
Horn rules must have the full wrapper query as body. This idea is pursued in the inverse-rule
algorithms [Qia96; DG97] (see also Section 5.5). One difficulty with this approach are non-
exported variables in head predicates. However, Duschka & Genesereth show that it is possi-
ble to first replace non-exported variables by skolemisation, and later get rid of the skolem-
terms in the heads in a clean-up step [DG97]. However, the inverse rule algorithm does not
work with conditions.

The Multiplex framework.
Motro gives a formal semantics for answers to global queries in a FIS scenario in [Mot95]. He
proceeds as follows: First, he assume the existence of a virtual and consistent global database
D. Then, he defines derived databases as databases whose relations are all defined as views on
D. Assume two derived databases D1 and D2. Next, he defines views on these databases, lets
say a view v1 on D1 and v2 on D2. Since vi can be translated into a query against Di, which

82

4. Query Correspondence Assertions

D

D1 D2

v1 v2≈

D D2

v1 v2≈

(b)(a)

D D2

v1 v2≈

(c)
Figure 22. The Multiplex framework.

Arrows mean “defined as view”. (a) General framework. (b) In database integration one database
(D) is interpreted as global schema. (c) We argue that the definition of D2 as a derived database is

not a realistic assumption. D2 must be considered as independent from D.

can be further translated into a query against D, he can formally test whether v1 and v2 are
equivalent.

This method is applied to database integration by interpreting D1 as global schema and D2
as a source schema (see Figure 22). Mortro argues that he can then formally define equiva-
lence between a view on the global schema and a view on the wrapper schema. He calls such
equivalencies schema mappings.

A schema mapping is on first sight almost equivalent to a query correspondence assertion.
However, we believe that Motro’s foundation is not valid in a heterogeneous environment.
The problem with Figure 22 (b) is that, in general, D2 can not be described as being derived
from the global database. Instead, any source can store data that is not present in the mediator
schema. Hence, there is no a-priori way to relate v1 and v2. Actually, if D2 were defined as
views on D, the problem of finding correspondences is already solved.

Certain versus possible answers.
Grahne & Mendelzon analyse the semantics of answers to global queries in a LaV scenario in
[GM99]. They distinguish between sound and complete views: a view is sound, if all tuples
obtained through the view are correct; it is complete, if it contains all correct tuples, but pos-
sible also incorrect tuples. Allowing both types of views leads to a natural criterion for the
consistency of a global database: For instance, if a sound view computes a tuple X that is not
computed by a complete view, than no global database exists for which the view classification
can hold.

According to this definition, QCAs always define sound views. [GM99] shows that no in-
consistency in the above sense can occur if all views are sound (or all are complete), i.e., it is
always possible to construct an instance of the global schema that is compatible with all view
definitions.

The authors then define two bounds for answers to global queries: a certain answer is one
that is contained in at least one sound view and all complete views. A possible answer is one
that is contained in at least one complete view. The formal definition is based on tableaux
techniques. In this sense, our definition is equivalent to certain answers, since we assume all
views to be sound.

83

5. Query Planning using QCAs

5. QUERY PLANNING USING QCAS

This chapter describes algorithms that allow a mediator to compute the answer to a user query
without materialising all QCAs. Although a complete materialisation does make sense in
some applications [ZHK96], it is complicated and inefficient if sources store large data sets or
frequently change their content and do not support change sets. Even worse, source materiali-
sation is often impossible. For instance, it is not possible to materialise a complete list of
books sold by Amazon.com7 because only queries for a certain author or for a certain key-
word are permitted. Getting all books is not possible.

In this chapter, we device algorithms that answer a user query with only executing a mini-
mal set of QCAs. The mediator selects this set by analysing the user query and the set of
QCAs. For instance, any QCA whose mediator query does not contain any of the relations of
the user query is certainly irrelevant because it cannot contribute to the result. We can answer
u without executing such QCAs. Unfortunately, it is not easy to distinguish irrelevant from
relevant QCAs.

In Section 5.1 we introduce plans. A plan as a combination of mediator queries. Plans are
correct if they are contained in the user query, and they are executable if the mediator can
enforce all joins and conditions of a plan. This leads to the definition of query plans, which
are correct and executable plans together with a containment mapping from the user query
into the plan (see Figure 23). We prove that every query plan computes only correct answers
to a user query (wrt. the semantics defined in Section (D4.11), page 75). Furthermore, we
prove that every answer to a user query is computed by some query plan. We conclude that
any algorithm that computes all query plans is sound and complete. However, there usually
exists an infinite number of query plans for a given user query. Fortunately, we can prove that
it suffices to consider only a finite number of those (see Figure 24 for the structure of the im-
portant lemmas and theorems in this chapter).

Then, we move to query planning, i.e., the finding of query plans. We develop and analyse
two algorithms. Section 5.2 describes the generate & test algorithm (GTA). The GTA gener-
ates all possible plans and tests each plan independently for correctness and executability.
Hence, it breaks query planning into two phases: Plan generation and plan testing.

In Section 5.3 we develop the improved bucket algorithm (IBA). The IBA exploits two
particularities of the role of query containment in query planning: First, one of the two queries
in each containment test is fixed; this is the user query. Second, the other query in each test is
composed from a set of known building blocks; these are the mediator queries of the QCAs.
The IBA takes advantage of both properties by first computing suitable data structures and
then constructing query plans.

We prove that both the GTA and the IBA are sound and complete. An analysis of their
complexity reveals that the IBA is considerably more efficient than the GTA.

84

7 See http://www.amazon.com

5. Query Planning using QCAs

r1 r2 rn... u

Plan candidates

Plans

Query plans

Minimal total set of QCAs
Figure 23. Complete planning process.

Multiple query
optimisation

Query planning

Specification

However, both algorithms cannot avoid non-minimal plans. A query plan is minimal if we
cannot remove a QCA from it without changing its result. We prove that, if a query plan is not
minimal, then there exists a minimal query plan producing the same result with less remote
query executions. The GTA produces all minimal plans, but also non-minimal plans. The IBA
does not necessarily find minimal plans, but only equivalent non-minimal plans. It remains an
open question whether there exists an algorithm as efficient as the IBA that only produces
minimal plans.

Computing the answers of a user query with minimal effort has actually three intertwined
occurrences of “minimal”:

Each query plan in isolation should be minimal, i.e., not contain unnecessary QCAs. •
•

•

•

•

•

The total set of query plans should be minimal, i.e., not contain query plans that produce
only results already obtained through another query plan.
The total number of wrapper queries that eventually are executed should be minimal.

Avoiding non-minimal plans only solves the first problem. Different minimal query plans
may still contain the same QCA, rendering them partially redundant.

In first place, a set of query plans is executed by executing all wrapper queries in any of
the query plans. In Section 5.4 we address the problem of computing the same set of tuples
with less executions of wrapper queries. Hence, we address all three meanings of “minimal-
ity”. Given a user query u, we search algorithms that find the minimal set of wrapper queries
that, if executed and combined appropriately, compute all and only answers to u. Our multiple
query optimisation (MQO) first removes redundant query plans. In a second step it detects
redundant queries across different query plans.

Remarks.
Throughout this chapter, we only deal with simple user queries and simple QCAs. Where
relevant, we describe implications of using complex queries.
It is not guaranteed that all user queries are answerable. Depending on the set of QCAs of
the mediator, for some user queries there might not exist a correct plan. Conforming to our
query semantics, the answer is empty in such cases.
The time necessary to answer a user query is determined by two factors: The total number
of wrapper queries that have to be executed, and the amount of data that has to be trans-
mitted as the result of wrapper queries. Trying to minimise both runs into a trade-off
[PK98]: Assuming high network latency, it will often be faster to execute only a few que-
ries even if the eventually transmitted data set is unnecessary large. In contrast, if the la-

85

5. Query Planning using QCAs

(T5.1) and (T5.2): Executing all query
plans for a user query u is a sound and
complete procedure to answer u.

(L5.3): Executing all minimal query
plans for a user query u is a sound and
complete procedure to answer u.

(L5.4): Every query plan p for a user
query u with |p|>|u| is not minimal.

(T5.9): The GTA is sound and com-
plete. It tests every query plan p for a
user query u with |p|≤|u|.

(T5.9): The IBA is sound and comp-
lete. For every existing minimal query
plan p for a user query u it tests a
query plan p’equivalent to p.
Figure 24. Structure of proofs.

tency of the network is low, it is reasonable to minimise the amount of data that is
shipped, even at the cost of introducing new queries8. Finding the optimal balance be-
tween these two cost factors requires detailed knowledge about average execution time of
queries, distribution of data over different sources, distribution of values in relations, etc.
We leave considerations of such physical properties for future research.

•

The most important criterion for the quality of a query optimisation algorithm is the total
time it takes to achieve the answer to a query. The total time is composed of the time it
takes to optimise the query, the time it takes to physically access the data, and the time it
takes to perform the operations of the query on that data. In a central database, an opti-
miser has to balance the time it invests in computing better plans with the time that is nec-
essary to execute a less optimal plan – if the latter is cheaper, further optimisation makes
no sense. Since query optimisation algorithms are typically exponential in the size of the
query, the optimiser often stops planning and starts executing the current best solution be-
fore the global optimum is computed, for instance by using heuristics to prune the search
space.
The situation is different in the highly distributed scenario that we consider. Given the un-
foreseeable delays that connections over wide-area networks experience frequently, it is a
reasonable assumption that it pays off to spend much more time on query optimisation. In
most cases, optimisation time will be marginal compared to the time necessary to query
and obtain large amounts of data over Internet connections. Therefore, we do not balance
the time necessary for query planning with the time necessary for query execution. Never-
theless, we are interested in efficient planning algorithms.

86

8 The situation is similar to central databases, where a full table scan is preferable to the use of indices if more
than approximately 7% of the data will finally be accessed [Juergens, 2000 #625].

5. Query Planning using QCAs

5.1 Planning User Queries

We approach the problem of finding combinations of wrapper queries that together compute
answers to a given user query. In Section 5.1.1 we define a plan candidate as a set of QCAs
that potentially compute answers to a user query. A correct and executable plan is a plan can-
didate modified such that it certainly computes answers to a user query. Finally, a query plan
is a correct and executable plan together with a containment mapping determining which of
the exported variables of the plan are answers to the user query. We prove that any algorithm
that finds all query plans for a given user query is sound and complete wrt. the semantics of
user queries.

In Section 5.1.2 we analyse length restrictions on query plans. We introduce the notion of
minimal query plans and show that every non-minimal query plan does not produce any result
not already computed by some minimal query plan. We show that any query plan that is
longer then the user query is certainly non-minimal. This helps us to prove that query plan-
ning algorithms only have to consider a finite number of query plans, although there exists an
infinite number of plans. This result paves the ground for the following sections in which we
shall develop algorithms that compute, more or the less efficient, all query plans for a given
user query.

5.1.1 Plans and Query Plans

Definition (D5.1)-(D5.4) (Plan candidate, plan, plan expansion).
Let M = (Σ,Ψ,Γ) and MQ(Γ) be the set of all mediator queries of Γ.

(D5.1) A plan candidate π is a conjunction of queries q1,q2,...,qn, qi ∈ MQ(Γ) with
disjoint sets of variable symbols.

(D5.2) A plan p is a tuple (π,σ) where π is a plan candidate and σ = (α,C) is a query
transformer (see Definition (D4.16), page 80). p is also written as:

p = α<head(q1),...,head(qn),C>, qi ∈ π;

(D5.3) The length of a plan p, written |p|, is the number of queries that p contains.

(D5.4) Let p = α<head(q1),...,head(qn),C>. The expansion of p, written Π(p), is
the query:

q(e1,e2,...,em) ← α(body(q1),...,body(qn), C);

where U
ni),q(ortexpv

m

i

)v(}e,...,e,e{
≤≤∈

α=
1

21

Remarks:
A plan is a plan candidate which is extended with conditions on variables and variable
renamings. Renaming variables introduces joins, for instance between different mediator
queries.

•

87

5. Query Planning using QCAs

• The body of the expansion Π(p) of a plan p is the conjunction of all bodies of all queries
in p plus the additional conditions defined in p. The head of Π(p) exports all exported
variables of all queries in p.
Applying a variable renaming to a query often equates exported variables. Definition
(D5.4) automatically removes resulting duplicates from the head of a query.

•

•

•

•

We usually abbreviate α<head(q1),...,head(qn),C)> with α<q1,...,qn,C>.
Furthermore, if p = (π,σ) and σ = (α,C), we also write p = (π,α,C).

Our definition of a plan expansion is similar to the conventional way of expanding rela-

tional views in a SQL query. However, plans never project out variables exported by any of
the queries they contain.

Definition (D5.5)-(D5.7) (Executability and correctness of plans).
Let M = (Σ,Ψ,Γ) with only simple QCAs. Furthermore, let u ∈ be a user query and p
= α<q

∑
SCQ

1,...,qn,C> be a plan.

(D5.5) p is executable iff:
• ∀ q ∈ p: α(q,cond(C,variables(q)) is executable.
• ∀ v1,v2: v1 ∈ qi ∧ v2 ∈ qj ∧ qi,qj ∈ p ∧ v1 ≠ v2 ∧ α(v1) =

α(v2) ⇒ (i = j) ∨ (v1 ∈ export(qi) ∧ v2 ∈ export(qj)).

(D5.6) p is correct for u iff:
• Π(p) ⊆ u.
• p is executable.
• No plan obtained by removing a renaming from α or a condition from C is cor-

rect for u.

(D5.7) Let p = (π,α,C) be a correct plan for u with π = {r1,r2,...,rn}. The result of
p, written p(M), is the extension of the following query in the virtual database ob-
tained from materialising all QCAs in p:

head(p) ← α(medq’(r1),...,medq’(rn),C);

where medq’(ri) is obtained from medq(ri) by (a) adding the qid attribute to
every literal, and (b) joining all literals of the same QAC through qid.

Remarks:
Recall Definition (D4.17). A plan p is hence executable if:
• all conditions in C are either implied by the mediator queries in p or all variables they

contain are exported in p, and,
• whenever two variables are mapped onto the same variable in α, then either both vari-

ables are from the same QCA or both variables are exported.
If both conditions hold then the mediator can execute the plan, independently of whether
or not conditions and joins are pushed to the wrappers or computed inside the mediator.

88

We require that a correct plan has a minimal set of variable renamings and additional con-
ditions. Without this restriction, there always exist infinitely many correct plans as soon as
there exist at least one. Consider the user query “u(x,y,z) ← rel(a,y,z)” and the

5. Query Planning using QCAs

mediator query “q(a,b,c) ← rel(a,b,c)”. Certainly, p = ({q},[],∅) is an ex-
ecutable plan and Π(p) ⊆ u. But also p’= ({q},[x→y],∅) or p” = ({q},[x→y,
z→y],∅) are executable and their expansions are contained in u. However, both p’
and p” are excluded by Definition (D5.6).

Query planning is about finding correct plans. The possibility to introduce query trans-

formers complicates query planning compared to showing only query containment. However,
query planning is incomplete without considering query transformers since many correct an-
swers will not be produced. This is highlighted in the following examples.

Example 5.1.
Consider the following user queries and QCAs:
u1(a,b) ← clone(a,b,-,-);
u2(a,b) ← clone(a,b,c,d),d<100;
u3(a,b,d,e) ← clone(a,b,c,d),clonealias(a,e);

r1: clone(cid,cn,ct,cl),clonealias(cid,al),cl<150 ← W1.v(cid,cn,ct,al) ←
somehow(cid,cn,ct,al);

r2: clone(cid,cn,-,cl),cl<200 ← W2.v(cid,cn,cl) ← somehow(cid,cn,cl);

Let q1 = medq(r1) and q2 = medq(r2). We analyse the following plans:
p1(cid,cn,ct,al) ← []<q1(cid,cn,ct,al)>;
p2(cid,cn,ct,al) ← []<q1(cid,cn,ct,al),cl<100>;
p3(cid,cn,cl) ← []<q2(cid,cn,cl),cl<100>;
p4(cid1,cn1,ct1,al1,cid2,cn2,cl2) ←

[cid1→cid2]<q1(cid1,cn1,ct1,al1),q2(cid2,cn2,cl2)>;

The expansions of those plans are:
Π(p1) = p1’(cid,cn,ct,al) ← clone(cid,cn,ct,cl),clonealias(cid,al),cl<150;
Π(p2) = p2’(cid,cn,ct,al) ← clo-

ne(cid,cn,ct,cl),clonealias(cid,al),cl<150,cl<100;
Π(p3) = p3’(cid,cn,cl) ← clone(cid,cn,-,cl),cl<200,cl<100;
Π(p4) = p4’(cn1,ct1,al1,cid2,cn2,cl2) ← clo-

ne(cid2,cn1,ct1,cl1),clonealias(cid2,al1),cl1<150,
clone(cid2,cn2,-,cl2),cl2<200;

The expansions of all four plans are contained in u1. However, p2 is not executable because
cl is not exported in q1. Only p1, p3 and p4 are correct plans for u1.

We next consider u2. p1 is not correct because cl < 150 ⇏ cl < 100. p2 is not correct
because p2 is not executable. p3 is correct; all necessary attributes are exported. p4 again is
not correct, although there exists a promising symbol mapping [a→cid2,b→cn2,
d→cl2,e→al1]. But the condition on clonelength is not guaranteed. If we added the
condition cl2 < 100 to p4, the resulting plan would be correct.

Finally, we test u3. The only two candidates are p1 and p4 because only these contain a lit-
eral for clonealias. p1 is not correct because it does not export cl. The only correct plan is
p4. p4 joins the data from two different wrappers through the cid attribute.

Joins introduced by the query transformer do not necessarily combine data from different

sources. They might also be necessary inside a single mediator query, as shown by the fol-
lowing example.

89

5. Query Planning using QCAs

Example 5.2.
Consider the following QCA r and user query u:
u(x) ← rel(x,x);
r: rel(a,b) ← W.v(a,b) ← somehow(a,b);

The plan []<v(a,b)> is not contained in u. But we can execute the plan
[a→b]<v(a,b)>, which expands to v(a) ← rel(a,a), and is a correct plan for u.

Query planning also has to consider that a correct plan can be contained in a user query in

more than one way.

Example 5.3.
Consider the following QCA r and user query u:
u(x,y) ← rel(x,y);
r: rel(a,b),b<100,rel(c,d),d>100 ← W.v(a,b,c,d) ← somehow(a,b,c,d);

The plan p=[]<v(a,b,c,d)> is correct for u. This can be shown by two different contain-
ment mappings: h1 = [x→a,y→b] and h2 = [x→c,b→d].

In the previous example there are two ways to compute answers for u using p: One will re-
turn all tuples of r where the second value is smaller than 100, and the other will return all
tuples where the second value is bigger than 100. The two sets of tuples are disjoint, but, ac-
cording to our semantics, both are valid answers to u.

We distinguish plans and query plans to capture such multiple containment mappings. A
query plan is a correct plan together with a containment mapping.

Definition (D5.8)-(D5.10) (Query plan, result of a query plan).
Let M = (Σ,Ψ,Γ) with only simple QCAs, and let u ∈ be a user query. ∑

SCQ

(D5.8) A query plan φ for u is a tuple φ = (p,h) where:
• p is a correct and executable plan for u, and
• h is a containment mapping from u into Π(p).

(D5.9) The length of φ = (p,h) with p = (π,h,C), written |φ|, is |φ| = |π|.

(D5.10) Let φ = (p,h) be a query plan for u. The result of φ in M, written φ(M), is the ex-
tension of the following query:

h(head(u)) ← p(M);

Remarks:
If (p,h) is a query plan for u, then p is a correct plan for u by definition. •

•
•

As shown in Example 5.3, one correct plan can yield different query plans.
If φ = (p,h) with p = (π,α,C) we often abbreviate φ = (π,α,C,h).

90

5. Query Planning using QCAs

m

1

1

n

n

n

r1 r2 rn...

π2π1 ...

p1 ... pk

φ1 ... φl

...

QCA

is contained in

Plan candidate

yields

Plan

is basis of

Query plan

Figure 25. Relationship between QCAs, plan candidates, plans and query plans.

We distinguish carefully between plan candidates, plans and query plans (see Figure 25). A
plan candidate is a conjunction of unrelated queries. A plan computes a set of tuples from
which we can extract answers to u. How such answers are extracted is determined by the con-
tainment mapping. A query plan directly computes answers to u. There is a 1:n relationship
between plan candidates and plans (differing in the query transformer), and a 1:n relationship
between plans and query plans (differing in the containment mapping).

We can easily compute the result of a query plan from the result of its plan. We only have
to chose the right values from the set of exported variables, as determined through the con-
tainment mapping. Therefore, computing the results of multiple query plans for the same cor-
rect plan requires to execute this plan only once. We discuss the issue of finding such cases in
more detail in Section 5.4.2.

The following example intuitively shows that query planning produces the same answers
as defined by the semantics of user queries. After the example, we shall formally prove this
claim.

Example 5.4.
Consider a “graph database” as in Example 4.2 and the following user query and QCA:
u(x,y) ← edge(x,y);
r: edge(a,b),edge(c,d) ← W.v(a,b,c,d) ← somehow(a,b,c,d);

The plan p = []<v(a,b,c,d)> is correct for u. It yields two query plans, φ1 = (p,h1) and
φ2(p,h2) with h1 = [x→a,y→b] and h2 = [x→c,y→d]. Assume that the wrapper
query returns only one tuple (1,2,3,4). Materialising this tuple yields:

Edge qid a1 a2
r 1 2
r 3 4

The result of p is computed by the following query against this database:
p’(a,b,c,d) ← edge(qid,a,b),edge(qid,c,d),qid=r;

91

5. Query Planning using QCAs

The extension of p’ is:

p’ a1 a2 a3 a4
1 2 1 2
1 2 3 4
3 4 1 2
3 4 3 4

The results of φ1 and φ2 are obtained by executing:
φ1(M): u(a,b)← p’(a,b,c,d);
φ2(M): u(c,d)← p’(a,b,c,d);

and are: φ1(M) = {(1,2),(3,4)} and φ2(M) = {(1,2)(3,4)}. The union of both is
exactly the result prescribed by our semantics of u9.

Now, we have all ingredients to define the relationship between query plans and answers to

user queries. We prove that every query plan for a user query u computes only and all an-
swers to u.

Theorem (T5.1)-(T5.2) (Soundness and completeness of query planning).
Let M = (S,Γ,Ψ) with only simple QCAs, and u ∈ . ∑

SCQ

(T5.1) If φ is a query plan for u, then φ(M) ⊆ u(M).

(T5.2) Let t ∈ u(M). Then there exists a query plan φ for u with t ∈ φ(M).

Proof:
•

(T5.1): Let φ = (p,h) with p = α<q1,...,qm,C>. We prove that the result of φ is con-
tained in the result of u as given in Definition (D4.11) (see Figure 26). Let u have the
form: u(E) ← l1,...,ln,cond(u). The result of the query plan, φ(M), is defined as
the result of the query:

h(head(u)) ← α(body’(q1),...,body’(qm),C);

where body’(qi) is obtained from body(qi) by adding to each literal the same, fresh
variable for the qid attribute. The expansion of the plan p underlying the query plan is:

Π(p): p(e1,...,el) ← α(body(q1),...,body(qm),C);

and h is a containment mapping from u into Π(p). It follows that for each li ∈ u there
exists a literal li’ ∈ Π(p) with h(li) = α(li’). Consider the fragments for those li’
(see Definition (D4.8), page 74). The fragment for every li’ must be admissible for li. If
not, Π(p) could not be contained in u. Let vi be the view induced by the fragment of
li’, and let:

p’(e1,...,el) ← v1,...,vn;

Now recall the definition of the result of a user query (see Definition (D4.11)). u(M) is:

U
,,...

n

nn

)u(cond,,...,,)M(u
Λ∈νΛ∈ν

>ννν<=
11

21 ;

92

9 This example shows that all our considerations only hold under set semantic.

5. Query Planning using QCAs

u(E) ← l1(...),...,ln(...); u(M) = (ν11,...ν1n,cond(u)) ∪ (...)...

Π(p) ← α(body’(q1),...,body’(qm),C); ⇒ α(l1’(...),...,ln’(...),C);

α(v1,v2,...,vn,C);

ui ← ν1,ν2,...,νn,cond(u)

(detail)

h

h’

Syntax: Semantics:

fragments

views

Figure 26. Illustration for the proof of soundness of query planning.

From the containment of the plan expansion in the user query we can conclude the containment of
the extension of the plan expansion in the extension of the user query.

Notice that p’ is one of the elements of that union – u(M) is computed out of all combi-
nations of admissible fragments of any QCA in M, and p’ is one combination of admissi-
ble fragments of a subset of the QCAs in M, namely those that are in p. Now first assume
that cond(u), C and α are empty. It follows immediately that p’ is contained in u(M).
If cond(u) is not empty, then C would have been constructed such that C implies
h(cond(u)), since φ is contained in u. On the other hand, α is constructed such that it
follows the joins in u – the source of a variable renaming in α is always a join in u that is
not present in p. Therefore, α(p’,C) ⊆ u(M) with some mapping h’.
Furthermore, φ(M) is contained in α(p’,C); the latter is constructed from the former by
only removing literals – none of them can contain an exported literal by construction of
p’ – and removing literals can at most increase the number of tuples. By transitivity of
query containment (see Lemma (L2.7)) it follows that φ(M) ⊆ u(M).

(T5.2): Assume that t ∈ u(M), and let D be the virtual database of M. t is the result of (at
least) one conjunct of u(M). Let q be:

•

head(u) ← ν1,...νn,cond(u);

be the query that corresponds to this conjunct. Now consider the plan p = []<q1,..,
qn>, where qi is the mediator query of the QCA of which νi is a fragment. The materiali-
sation of all QCAs in p yields a database D’ ⊆ D. The extension of u in D’ must also con-
tain t.
We construct a mapping h’ and a query transformer (α’,C’) for p, yielding a query
plan p’ = α’<q1,..,qn,C’>, such that h’ is containment mapping from q into
Π(p’). If we can also show that p’ is executable, then φ = (p’,h’) is a query plan for
u. It then only remains to show that φ computes t.

93

5. Query Planning using QCAs

Let h’ be the mapping from q into Π(p’) that takes as targets for each li ∈ q that lit-
eral of p’ that corresponds to the fragment that induces νi. Let p’ = α’<q1,...,qn,
C’> with α’ being a renaming implying all joins implied by u, and C’ = h’(cond(u)).
• h’ is be a containment mapping since all fragments are admissible10.
• p’ is executable. All ‘critical variables’, i.e., variables necessary to enforce conditions

or joins not present in q, are exported in p since the fragments are admissible.
• φ = (p’,h’) computes t. The only remaining problem that could occur is a join in

p’, for instance between attributes a1 and a2, which is not present in q. But t is ob-
tained through materialising all QCAs in p’. Therefore, t cannot contain different
values for a1 and a2 in such a case.

It follows that every algorithm that finds all query plans for a given user query is sound

and complete wrt. the semantics of user queries given in Definition (D4.11).

5.1.2 A Length Bound for Query Plans

The question remains whether it is possible to find all query plans. Obviously, if a plan
[]<v(a1,b1)> is correct for a user query u, then also []<v(a1,b1),v(a2,b2)>,
[]<v(a1,b1),v(a2,b2),v(a3,b3)>, etc. are correct plans, and each yields at least one
query plan for u. Hence, there exists an infinite number of correct plans as soon as there ex-
ists at least one, and, accordingly, there exists an infinite number of query plans.

Fortunately, we can show that it suffices to consider only a finite number of query plans.
We prove that any query plan that is longer than a certain bound cannot contribute any tuples
not already obtained by smaller query plans. For the proof, we proceed in three steps:

•
•
•

First, we define minimality of query plans.
Then, we prove that any non-minimal query plan is subsumed by a minimal query plan.
Finally, we prove that any query plan that is longer than the user query is not minimal.

Together, these results show that it is possible to devise sound, complete, and terminating
algorithms for query planning.

Definition (D5.11) (Minimal query plans).
Let M = (Σ,Ψ,Γ) with only simple QCAs and u ∈ . Let φ = (π,h,α,C) be a query
plan for u.

∑
SCQ

(D5.11) φ is minimal iff ∄ φ’ = (π’,h’α,C) for u with π’ ⊂ π.

Our aim is to exclude query plans whose results are certainly contained in another, shorter

query plan. The definition requires that a query plan can only be non-minimal if a shorter
query plan with identical query transformer and containment mapping exists. The following
example shows that this condition is necessary: If a query plan φ’ is obtained from a query
plan φ by removing from φ one or more mediator queries and adapting the transformation or
the containment mapping, then φ might produce tuples that are not produced by φ’.

94

10 This conclusions does not hold for queries with complex conditions.

5. Query Planning using QCAs

Example 5.5.
Consider the following user query u, and QCAs r1 and r2 with q1 = medq(r1) and q2 =
medq(r2):
u(x,y) ← rel1(x,y),rel2(x,y);

r1: rel1(a1,b1),rel2(a1,c1) ← W1.v(a1,b1,c1) ← relx(a1,b1),rely(a1,c1);
r2: rel2(a2,c2) ← W2.v(a2,c2) ← relz(a2,c2);

We consider the two plans p1 and p2:
p1(a1,c1) ← [b1→c1]<q1(a1,b1,c1)>;
p2(a2,c2) ← [a1→a2,b1→c2]<q1(a1,b1,c1),q2(a2,c2)>;

which yield two correct query plans φ1 = (p1,[x→a1,y→b1]) and φ2 = (p2,[x→a2,
y→c2]) for u. The set of QCAs used by φ1 is identical to the set of QCAs used by φ2 with
one QCA removed. However, the query transformer of φ1 is different from that of φ2. We
cannot conclude anything about the relationship of the extensions of φ1 and φ2. φ1 returns all
tuples that exist both in W1.relx and W1.rely. In contrast, φ2 returns all tuples that exist
both in W1.relx and W2.relz. Those sets might be disjoint, overlapping or identical. Both
query plans are minimal.

The following lemma proves that any non-minimal query plan computes a result that is

equal to or contained in a shorter query plan.

Lemma (L5.3) (Non-minimal query plans are redundant).
Let M = (Σ,Γ,Ψ) with only simple QCAs, and u ∈ . ∑

SCQ

(L5.3) If φ = (p,h) is a non-minimal query plan for u, then there exist a query plan φ’ for
u with φ(M) ⊆ φ’(M) and |φ’| < |φ|.

Proof:
Let p = α<q1,...,qn,C>. Since φ is not minimal, we can remove at least one mediator
query from p. Without loss of generality we remove the last, leading to the query plan p’ =
α<q1,...,qn-1,C>. h is a containment mapping from u into Π(p’) and also a contain-
ment mapping from u into Π(p). It follows that h does not map any variable from u into a
variable appearing only in qn. Hence, no such variable is exported in p, and φ(M) computes
tuples consisting of the same set of variables as the tuples computed by φ’(M). Since p’ is
obtained from p by removing a query, p’ contains at most less literals, less joins, and less
conditions than p, but never more. Therefore, φ(M) and φ’(M) can only differ in that p fil-
ters out tuples.

The following theorem proves that any plan that consists of more QCAs than the user

query has literals is non-minimal.

Lemma (L5.4) (Length bound on minimal query plans).
Let M = (Σ,Γ,Ψ) with only simple QCAs, u ∈ CQ , and φ = (p,h) be a query plan for u. ∑

S

(L5.4) If |p| > |u| then φ is not minimal.

95

5. Query Planning using QCAs

The proof follows from Lemma 3.5 in [LMSS95]. The idea is that, if u has k literals, then
h needs at most k targets in p, because all symbols occurring in one literal must be mapped to
one literal in p. If p is longer than k, then p must contain a QCA having no literal being a
target in h. All such QCAs can be removed without affecting the result of the query plan.

Theorem (T5.5) (Length bound for query plans).
Let M = (Σ,Γ,Ψ) with only simple QCAs, and let u ∈ . Furthermore, let t ∈ u(M). ∑

SCQ

(T5.5) There exists a query plan φ for u with t ∈ φ(M), and |φ| ≤ |u|.

The theorem follows immediately from Lemma (L5.3) and Lemma (L5.4).
We finish this section by applying our transformations to Example 4.2, page 72.

Example 5.6.
Consider the following user query u and QCA r (see also Figure 21, page 72):
u(x,y,z) ← edge(x,y),edge(y,z);
r: edge(a,b),edge(b,c) ← W.v(a,b,c) ← threewaypaths(a,b,c);

We assume that executing the wrapper query of r:

W.v from via to
1 3 3
2 3 4

In Example 4.2 we showed that u(M) is:

edge from via to
1 3 3
1 3 4
3 3 3
3 3 4
2 3 3
2 3 4

We now show that this answer is also obtained using query plans. Let q = medq(r).
Since the size of the user query is two we must only consider query plans of length less than
or equal to two. There are two such plan candidates, π1 = {q} and π2 = {q,q}, leading to
the following (correct) plans:
p1= []<q(a,b,c)>;
p2= []<q(a1,b1,c1),q(a2,b1,c2)>;

and a great number of further correct plans, which have more joins and therefore cannot pro-
duce more results.

For p1, there is only one query plan, φ1. In contrast, there exist four query plans for p2:
φ1 = ({q},[x→a,y→b,z→c],[],∅);
φ2 = ({q,q},[x→a1,y→b1,z→b2],[a2→b1],∅);
φ3 = ({q,q},[x→a1,y→b1,z→c2],[b2→b1],∅);
φ4 = ({q,q},[x→b1,y→c1,z→b2],[a2→c1],∅);
φ5 = ({q,q},[x→b1,y→c1,z→c2],[b2→c1],∅);

The result of those query plans is defined as the extension of the following queries q1 - q5:
q1(a,b,c) ← q(a,b,c);

96

q2(a1,b1,b2) ← q(a1,b1,-),q(b1,b2,-);

5. Query Planning using QCAs

q3(a1,b1,c2) ← q(a1,b1,-),q(-,b1,c2);
q4(b1,c1,b2) ← q(-,b1,c1),q(c1,b2,-);
q5(b1,c1,c2) ← q(-,b1,c1),q(-,c1,c2);

The extensions are:

 from via to
q1 1 3 3

2 3 4
q2 -
q3 1 3 3

1 3 4
2 3 3
2 3 4

q4 -
q5 3 3 3

3 3 4

which is, under set semantics, the same result as prescribed by the semantics of u.

5.2 Generate & Test Algorithm

In this section we describe the generate & test algorithm (GTA) for query planning. We show
that the algorithm finds all query plans for a user query within the previously proven length
limitation and hence is sound and complete wrt. the semantics of user queries defined in Sec-
tion 4.3. We analyse its worst-case and average-case time complexity with respect to the criti-
cal factors of query planning, i.e., the number of QCAs and the size of the user query.

The GTA proceeds in two steps: First, it generates all promising plan candidates, i.e., those
that are not longer than the user query at hand. We devise an algorithm for plan enumeration
in Section 5.2.1. For each plan candidate separately, the GTA tries to find query transformers
and containment mappings that turn a candidate plan into a query plan. In Section 5.2.2 we
show that these two problems, although they appear to be very different, can be combined in a
single algorithm that has essentially the same structure as the BFA (see page 32). We prove
that the resulting algorithm is sound and complete for query planning. In Section 5.2.3 we
describe an implementation of the GTA and analyse its complexity. An improvement of the
GTA based on pre-computation of so-called buckets is introduced in Section 5.2.4. Buckets
are a first step towards the improved bucket algorithm presented in Section 5.3.

5.2.1 Candidate Enumeration

As shown in Theorem (T5.5), each minimal query plan for a user query u requires at most as
many mediator queries as u has literals. If we enumerate all plan candidates up to that length
and further consider find any query plan based on such candidates, we end up with a set of
query plans for u that include all minimal ones.

Algorithm 5 generates all such plan candidates. In a plan candidate, the order of the media-
tor queries does not matter, and that mediator queries may appear more than once.

97

5. Query Planning using QCAs

The algorithm assumes an arbitrary order on the set of mediator queries. This order is used
to prevent multiple enumeration of candidates with the same mediator queries. The algorithm
generates candidates of increasing length, starting from length one (line 2-4). It then continu-
ously adds to each candidate π all queries with order number higher or equal to the order
number of the query added lastly to π (line 5-15).

Algorithm 5. Enumerating all plan candidates.

Input: Ordered set {q1,q2,...qn} of mq’s;
 U
Output: Set P of all plan candidates for u;

ser query u with k=|u|;

1: ∅; P =
2: for i=1 to n { % Initial set of candidates, length=1
3: P = P ∪ qi;
4: }
5: for i=2 to k { % Incrementally increase length
6: P’ = ∅;
7: foreach π∈P {
8: P’ = P’ ∪ π;
9: m = lastQuery(π); % Returns index of last mq in π;
10: for j=m to n {
11: P’ = P’ ∪ {π ∪ qj};
12: end for;
13: end for;
14: P = P’;
15: end for;
16: return P; % P is the set of all candidates plans

Example 5.7.
Imagine a user query of length three, and let {q1,q2,q3} be the set of mediator queries. Let
Pi be the set of candidates of length i. Algorithm 5 first generates P1 = {q1,q2,q3}. Then it
generates candidates of length two by adding only queries with higher or equal order number
to any candidate in P1. Therefore, P2 = {(q1,q1),(q1,q2),(q1,q3),(q2,q2),
(q2,q3),(q3,q3)}. Finally, P3 is computed in the same manner: P3 = {(q1,q1,q1),
(q1,q1,q2),(q1,q1,q3),(q1,q2,q2),(q1,q2,q3),(q1,q3,q3),(q2,q2,q2),
(q2,q2,q3),(q2,q3,q3),(q3,q3,q3)}. Because the user query has length 3, no more
candidates must be constructed. The complete set of candidate plans is P = P1 ∪ P2 ∪ P3.

We compute the number of candidates, i.e., |P|, in the following way. The number of
combinations of length k of n different queries, C , where elements may occur multiple times
and the order does not matter, is the number of “combinations with repetitions”:

n
k

 −+
=

k

kn
Cn
k

1

In our case, we are interested in the number of combinations of queries from MQ(Γ)
up to the length of the user query u. Let k = |u| and n = |MQ(Γ)|. We get:

n
kC≤

∑∑
==

≤

 −+
==

k

i

k

i

n
i

n
k i

in
CC

11

1

98

5. Query Planning using QCAs

Using Stirling's Formula and t = n+k-1, we can estimate:
k

n
k

k

k
et

C
k
t

≤≤

≤

which is O((t/k)k) ≈ O(nk) for n >> k. The number of candidate plans is hence expo-
nential in the length of the user query. We shall use this result in Section 5.2.3.

5.2.2 Finding Query Transformers

The main idea of the GTA is to enumerate a set of plan candidates and test for each candidate
whether or not it can be turned into a query plan. For this test, it does not suffice to only prove
query containment. Even if a plan candidate is not contained in the user query in first place, it
can still yield query plans through appropriate query transformers.

We highlight the types of problems we face when we search suitable transformations by an
example.

Example 5.8.
Consider the following user query u and mediator queries q1–q3:
u(a,b) ← rel1(a,b,b),rel2(a,c),b<100;

q1(x,y,z) ← rel1(x,y,z),x=5;
q2(u,v) ← rel2(u,v);
q3(u,v) ← rel2(u,v),u=4;

Consider the following two plans p1 and p2:
p1=[]<q1(x,y,z),q2(u,v)>;
p2=[]<q1(x,y,z),q3(u,v)>;

Neither p1 nor p2 are contained in u. However, we can execute the following plan:
p3=[u→x,z→y]<q1(x,y,z),q2(u,v),y<100 >;

which expands to:
Π(p3): p3’(x,y,v) ← q1(x,y,y),q2(x,v),y<100;

Π(p3) is contained in u and executable. The result of p3 may be computed by executing p1
and then applying appropriate filter operations inside the mediator. Depending on the capa-
bilities of the wrapper that offers q2, we might also be able to execute p3 by first executing
q1, then pushing x values as selection conditions into q2, and only applying “y < 100” inside
the mediator.

But we cannot find a suitable plan transformer for p2: Joining q1 and q3 through x and z
implies the condition “x = 5 ∧ x = 4”, which is not satisfiable.

Informally, we can search a suitable query transformer for a given candidate plan π by car-
rying out the following steps:

1. Construct the expansion q of π and search a variable renaming α for q such that:
• a symbol mapping g from u into α(q) exists that fulfils (CM1) - (CM3) (see Defini-

tion (D2.16), page 20), and
• all joins that are implied by α are executable.

99

5. Query Planning using QCAs

If no such α exists, π cannot be turned into a correct plan. Note that more than one vari-
able renaming may exist. We must consider all.

2. To ensure (CM4), we check if we can add conditions C to α(q) such that:
• there exists a containment mapping h from u into α(π,C), and
• α(π,C) is executable and satisfiable.

If we have found such α, C, and h, then p = (π,α,C) is a correct plan for u, and φ = (p,h)
is a query plan for u.

To turn this informal procedure into an algorithm, we adapt our apparatus for testing
breadth-first query containment (see Section 2.3.3) such that it automatically constructs plan
transformers together with containment mappings. To this end, we define an extended con-
tainment mapping (ECM) as a PCM (see Definition (D2.19), page 25) with an additional
query transformer. We shall prove that we can build complete ECMs out of partial ECMs in
the same incremental fashion as with PCMs. This requires an adaptation of the definition of
union and compatibility, taking into account that two in first place incompatible ECMs
can be made compatible, for instance by adding a join.

Definition (D5.12)-(D5.15) (Extended containment mappings).
Let M = (Σ,Γ,Ψ) with only simple QCAs, u ∈ CQ , and π be a plan candidate for u. ∑

S

(D5.12) Let L be a subset of the literals of u, and S = sym(L). Let h be a symbol mapping
h: S ↦ α(sym(π)). Then ε = (h,α,C) is an partial extended containment map-
ping (ECM) from u to π iff:
• h is a partial containment mapping from u into α(π,C), and
• α(π,C) is executable.

(D5.13) Let ε1 = (h1,α1,C1), ε2 = (h2,α2,C2) be two partial ECMs from u to π defined
over S1 ⊆ sym(u) and S2 ⊆ sym(u), respectively. ε1 and ε2 are reconcilable iff, ∀
s ∈ S1 ∩ S2, one of the following conditions hold:
• α1(h1(s)) = α2(h2(s)), or
• h1(s),h2(s) ∈ export(π)

(D5.14) We define the union operator on reconcilable partial ECMs. Let ε1 = (h1,α1,C1),
ε2 = (h2,α2,C2) be reconcilable, and let S1 - S4 be defined as follows:
• S1 = {s ∈ S1 ∧ s ∉ S2}
• S2 = {s ∈ S2 ∧ s ∉ S1}
• S3 = {s ∈ S1 ∩ S2 ∧ α1(h1(s)) = α2(h2(s))}
• S4 = {s ∈ S1 ∩ S2 ∧ s ∉ S3}
Then (h,α,C) = (h1,α1,C1) ∪ (h2,α2,C2) is the extended partial containment
mapping from S1 ∪ S2 ↦ α(sym(π)), where h, α, and C are defined as follows:
• ∀ s ∈ S1: h(s) = α1(h1(s))
• ∀ s ∈ S2: h(s) = α2(h2(s))
• ∀ s ∈ S3: h(s) = α1(h1(s))
• ∀ s ∈ S4: h(s) = α1(h1(s))
• α = α1 ∪ α2|S2 ∪ {s1→s2 | ∃ s ∈ S4: s1 = α1(h1(s)) ∧ s2 =

α2(h2(s))}
• C is the minimal set of conditions such that:

C ∧ α(cond(π)) ⇒ cond(u,S1 ∪ S2)

100

5. Query Planning using QCAs

(D5.15) Let ε1 = (h1,α1,C1), ε2 = (h2,α2,C2) be two reconcilable partial ECMs, and let
ε = ε1 ∪ ε2 = (h,α,C). Let S1 - S4 be defined as above. ε1 and ε2 are compatible,
written as ε1 ~ ε2, iff:
• α(π,C) is executable, and
• C is satisfiable.

Remark:
A query plan is identical to a complete ECM.

Unfortunately, some of the theorems for PCMs do not carry over to ECMs. For instance,

the following counterexample shows that Lemma (L2.9), page 27, does not hold any more.

Example 5.9.
Consider the following query u and mediator queries q1, q2 and q3:
u(a,b,c) ← rel1(a,b),rel2(b,c),rel3(b,c);

q1(x) ← rel1(x,x),x=5;
q2(y,z) ← rel2(y,z),z=7;
q3(v) ← rel3(v,v);

For each mediator query we can construct one partial ECM ε1, ε2 and ε3:
ε1 = {[a→x,b→x],[],∅};
ε2 = {[b→y,c→z],[],∅};
ε3 = {[b→v,c→v],[],∅};

Building their union leads to (the corresponding plan expansion is given behind each ⇒):
(ε1∪ε2) = {[a→x,b→x,c→z],[y→x],∅} ⇒ <rel1(x,x),x=5,rel2(x,z),z=7>;
(ε1∪ε3) = {[a→x,b→x,c→v],[v→x],∅} ⇒ <rel1(x,x),x=5,rel3(x,x)>;
(ε2∪ε3) = {[b→v,c→v],[y→v,z→v],∅} ⇒ <rel2(v,v),v=7,rel3(v,v)>;

The three ECMs are pairwise compatible, but ε1 ≁ (ε2 ∪ ε3). This union expands to
<rel1(x,x),x=5,rel2(x,x),x=7,rel3(x,x)>, which is not satisfiable.

As a consequence, we cannot test compatibility of ECMs in a pairwise fashion. We have to

test compatibility of each new ECM we union with an existing ECM.

Algorithm 6. The generate & test algorithm (GTA).
Input: Mediator M=(Σ,Γ,Ψ) with only simple QCAs, user query u∈CQ . ∑

S

Output: Set of query plans for u such that their union computes u(M).
Algorithm: Compute the set of plan candidates that are not longer than |u|. For each plan
candidate π, compute all partial ECMs from the literals of u into the literals of the expansion
of π. Build all combinations of those ECMs where each combination contains exactly one
ECM for each literal of u. Let ε1, ε2,..., εn be such a combination. Check incrementally if
ε1 ~ ε2, ε3 ~ (ε1 ∪ ε2), ..., εn ~ (ε1 ∪ ε2 ∪ ... ∪ εn-1). If these checks succeed for a plan
candidate π and yield ε = (h,α,C) = εn ∪ ε1 ∪ ε2 ∪ ... ∪ εn-1, then output φ =
(π,α,C,h).

101

5. Query Planning using QCAs

Remarks:
The GTA computes all minimal query plans based on a plan candidate. The 1:n relation-
ship between plan candidates and query plans is hidden in the enumeration of all combina-
tions of ECMs.

•

•

•

•

•

Using containment mappings for testing query containment is only sound but not com-
plete for CQC queries (see Theorem (T2.3), page 20). Therefore, query planning based on
containment mappings can at best be sound, but not complete.
A simple method to speed up Algorithm 6 is the following. A plan candidate π can only
yield a query plan for a user query u if it contains each relation appearing in u. We can
filter out candidates that do not fulfil this condition be assigning each QCA r a bitvector
Br with one bit per relation of Σ. The bit representing rel is set if rel appears in r. In
the same way we assign Bu to u. We must test a plan candidate π only if:

∩=

π∈
U
r

ruu BBB

where union and intersection are interpreted as bit-wise “and” and bit-wise “or”, respec-
tively. This test is a linear in the size of Σ.

Theorem (T5.6)-(T5.7) (Completeness and soundness of the GTA).
Let M = (Σ,Ψ,Γ) with only simple QCAs, and u ∈ . ∑

SCQ

(T5.6) The GTA is sound, i.e., every query plan it computes is a query plan for u.

(T5.7) The GTA is complete, i.e., it computes every minimal query plan for u.

Proof:
(T5.6): Suppose the GTA has computed φ = (p,h) with p = (π,α,C) for a user query
u. We must show that (a) h is a containment mapping from u into p and that (b) p is ex-
ecutable.
(a) p contains a target literal for each literal of u since p is composed of such literals (the

initial ECMs). h is a mapping into those target literals of p. Through the union of
ECMs it is guaranteed that no variable is mapped to two different variables. Since all
queries in p are in normal form they do not contain constants in literals. Finally, the
conditions of p imply the conditions of u (including the moved-out constant condi-
tions); if this were not the case, the ECMs could not be compatible. Therefore, h is a
containment mapping from u into p.

(b) By definition of QCAs, every query q ∈ π is executable. Furthermore, every initial
ECM is by Definition (D5.12) executable. Finally, computability of two ECMs only
holds if the union is executable. Therefore, p must be executable.

(T5.7): Suppose φ = (p,h) is a minimal query plan for u with p = (π,α,C). Following
Theorem (T5.5), π cannot be longer than u. Therefore, π is tested as plan candidate. The

102

5. Query Planning using QCAs

GTA tests every possible combination of ECMs from the literals of u into literals of π, in-
cluding the combination of targets used in h.
By Definition (D5.8), α and C are minimal in the sense that α does not introduce unneces-
sary joins and C does not unnecessarily restrict the result of φ. On the other hand, the ini-
tial ECMs for the targets of h in π have minimal query transformer (Definition (D5.12),
and each union of two ECMs again leads to a minimal query transformer (Definition
(D5.14)). Since minimality is unique (up to isomorphism of variable symbols), the pair
(α,C) is computed.

The previous theorems do not imply that the GTA computes only minimal query plans. In

fact, the GTA does compute non-minimal query plans. We shall come back to this issue in
Section 5.4.

Consider the following, tempting idea to improve the GTA. Imagine that we have com-
puted a query plan φ based on a plan candidate π with |π| < |u|. Is it then possible to re-
move any plan candidate π’ with π ⊆ π’ from further consideration? The answer is no, as the
following example shows.

Example 5.10.
Consider the following user query u and mediator query q:
u(a,b) ← rel(a,b),rel(c,c);
q(x,y) ← rel(x,y);

p1 = [x→y]<q(x,y)> is a correct plan based on the containment mapping [a→y,b→y,
c→y]. But p1 is not the best we can find: p2 = []<q(x,y),q(z,z)> with containment
mapping [a→x,b→y,c→y] never computes less tuples, but potentially more.

In the previous example we found a short plan p1 and a longer plan p2, which contains all
queries of p1. But p2 is less restrictive then p1 and will usually compute more tuples. This
shows that we cannot stop to extend plan candidates even if we found a query plan.

5.2.3 Implementation and Complexity of the GTA

Our implementation of the GTA proceeds as follows. First, we use Algorithm 5 to enumerate
all necessary plan candidates. For each of those candidates, we explore the search space of
ECMs and unions of ECMs using a breadth-first search. Finding all query plans is not identi-
cal to containment testing, which only produces a “yes / no” answer. A plan can by contained
in the user query in different ways, leading to different results. Since we have to compute all
query plans, we must explore the entire search space. Therefore, a depth-first approach would
not be beneficial.

The breadth-first search can directly use the BFA (Algorithm 2, see page 32). Only the
functions compatible and union have to be replaced with functions ecm_compatible
and ecm_union, respectively. Algorithm 7 shows ecm_compatible. We omit a description
of ecm_union because it is mostly identical to ecm_compatible.

Recall Algorithm 2. It takes as input two queries. For the GTA, those will be the user query
u and an expanded plan candidate π. Both must be in normal form, i.e., constants in literals
must be replaced with fresh variables and a proper condition. The algorithm traverses the
search space breadth-first, adding new literals to the current partial containment mapping in

103

5. Query Planning using QCAs

each loop. Consider an arbitrary node x in the search tree (see Figure 9, page 30). For the
GTA, x represents a partial ECM εL = (hL,αL,CL) for a subset L of the literals of u into a
query αL(Q,CL), where Q is a subset of the literals of π represented by the path to x. Extend-
ing x by adding another ECM for some literal l ∉ L requires that we compute compatibility
of the two ECMs through ecm_compatible and then build their union.

Algorithm 7. Compatibility of partial ECMs.

1: Function ecm_compatible(ECM ε1, ε2, Query u,π) : boolean
 % ε1 = (h1,α1,C1);
 % ε2 = (h2,α2,C2);
2: α = α1 ∪ α2; % Union of renamings
3: h1’ = α2(h1); % Apply renamings
4: h2’ = α1(h2);
5: V = {v | v∈h1’ ∧ v∈h2’ ∧ h1’(v)≠h2(v)};
6: % All variables with different targets
7: foreach v∈V {
8: if h ’(v)∉export(π) then % Both must be exported 1

9: return false;
10: end if;
11: if h ’(v)∉export(π) then 2

12: return false;
13: end if;
14: α α ∪ {[h =
15: end for;

1’(v)→h2’(v)]}; % Append new renaming, i.e., new join

16: h = α(h1’) ∪ α(h2’);
17: if cond(<α(p,C1,C2)>,image(h)) ⇏ h(cond(u,org(h))) then
18: if ∃C: cond(<α(p,C1,C2),C>,image(h)) ⇒ h(cond(u,org(h))) then
19: % C is set of additional conditions
20: if (sym(C) \ α(export(π))) ≠ ∅ then
21: return false; % Conditions are not executable
22: end if;
23: else
24: return false;
25: end if;
26: return true;
27: end function;

ecm_compatible takes as input two partial ECMs ε1 and ε2. Since both could map to lit-
erals of the same mediator query in π, the definition sets of their variable renamings could
overlap, which can lead to interference. Therefore, we must first apply the variable renamings
to each ECM (line 3-4).

Next, we check if the union of both ECMs requires new renamings. This is the case if one
variable from the user query is mapped to two or more different variables in the ECM. If yes,
we have to check if the new join is executable (line 5-12). At line 16 we have actually proven
that ε1 and ε2 are reconcilable.

104

Finally, we check if we must add new conditions to remove conflicts in the containment
mapping, and whether these conditions can be executed and are satisfiable. We first test if the
appropriate subset of the conditions in u are not already implied by the appropriate subset of
the conditions in π and the two sets of conditions in the ECMs (line 17). If not, we compute
the minimal and satisfiable set C of conditions that is necessary to ensure the implication (line
18). If no such set exists, the two ECMs are not compatible. We finally have to check if all

5. Query Planning using QCAs

variables occurring in C are exported in p (line 20). If yes, then we have proven that the two
partial ECMs are compatible.

Example 5.11.
Consider the following user query u and mediator queries q1 and q2:
u(a) ← rel1(a,a,b),rel2(b,c,c),a<10;

q1(x,y,z,u,v) ← rel1(x,y,z),rel2(u,x,v),v=5;
q2(x,y,z,u,v) ← rel1(x,y,z),rel2(u,x,v),v=5,y=7;

Analysing q1, we find initial partial ECMs for the literal rel1 of u: ε1 = ([a→x,b→z],
[y→x],{x<10}) and for the literal rel2 of u: ε2 = ([b→u,c→v],[x→v],∅). We
must check if ε1 and ε2 are compatible.

We first compute the union of the two variable renamings and obtain α = [x→v,y→v].
Applying this to h1 and h2 yields h1’ = [a→v,b→z] and h2’ = [b→u,c→v]. In the
next step we find that b is mapped to two different variables in h1 respectively h2. We get V =
{b} (see Algorithm 7). Because both target variables, z and u, are exported in q1, we add
[z→u] to α. If either z or u were not exported, we would immediately return false since the
join between rel1 and rel2 required by u could not be achieved with q1.

We next compute the union-mapping h = [a→v,b→z,c→v]. We then check if we
must add further conditions. The current ECM expands to: <rel1(v,v,z),
rel2(z,v,v),v<10,v=5>. Since “v < 10 ∧ v = 5 ⇒ v < 10”, no further conditions
are necessary. Hence, ecm_compatible returns true. We can remove “v < 10” when we
compute the union of both ECMs later.

Analysing q2, we get the same initial ECMs. While checking their compatibility, we can-
not find a suitable C because C1 ∧ C2 contains “v = 5 ∧ v = 7”. This shows that the two
ECMs are incompatible. We cannot answer u using only q2.

In the previous example, there actually exist three more plan candidates: {q1,q1},
{q1,q2} and {q2,q2}. For each of those, four combinations of ECMs have to be tested. For
instance, for the second candidate those combinations are {q1.rel1,q1.rel2},
{q1.rel1,q2.rel2}, {q2.rel1,q1.rel2}, {q2.rel1,q2.rel2}. The first of those
combinations is identical to the only combination obtained through the plan candidate {q1},
and the last is identical to the only combination obtained through {q2}. This shows that the
GTA performs a great amount of redundant work. In the next section we describe an algo-
rithm that saves much of this unnecessary computation.

105

5. Query Planning using QCAs

Theorem (T5.8)-(T5.10) (Analysis of the GTA).
Let M = (Σ,Γ,Ψ) with only simple QCAs, and let u ∈ with k = |u|, n = |MQ(Γ)|.
Let s

∑
SCQ

avg = avg(|q|, q ∈ MQ(Γ)) be the average length of mediator queries in Γ. Fur-
thermore, let zi be the average number of literals in candidates of length i covered by a lit-
eral of u. Finally, let pcom, 0 ≤ pcom ≤ 1, be the probability that two partial ECMs are com-
patible.

(T5.8) The GTA performs in the worst-case C tests of compatibility of two ECMs: wc
GTA

()∑ ∑
= =

 −+
≈

k

i

k

j

j
avg

wc
GTA is*

i

in
C

1 2

1

(T5.9) The GTA performs in the average-case C tests of compatibility of two ECMs: ac
GTA

()∑ ∑
=

−

=

 −+
≈

k

i

k

j

j
comji

ac
GTA pz*z*

i

in
C

1

1

0

1

(T5.10) The GTA has complexity () ()()kk
avg

k kn*s*eO + .

Proof:
Essentially, we only have to combine the number of plan candidates with the complexity of
the BFA. What remains to be considered is the additional complexity of computing the union
and compatibility of ECMs instead of partial mappings. Note that both functions essentially
do the same: checking compatibility of two ECMs entails computing and testing their union.
Therefore, it suffices to consider only compatibility.

Applying a variable renaming to a mapping is linear in the number of variables in a map-
ping and hence negligible. The same holds for computing the union of two variable renam-
ings. We therefore concentrate on the conditions in a ECM.

For CQS queries, checking implication is simple. It suffices to define one interval per vari-
able and translate conditions into interval operations [Kin99]. To compute the minimal set C
of conditions that imply the appropriate conditions in u, given two ECMs ε1 = (h1,α1,C1)
and ε2 = (h2,α2,C2), we can proceed as follows: First, we assume C to be the set of all “ap-
propriate” conditions from u, which are the conditions that contains only variables from the
definition sets of either h1 or h2. Then we remove from C all expressions implied by C1 ∧ C2,
which is possible in time linear to |C1| + |C2|. For all variables of the remaining conditions
we have to check if they are exported, which is again linear.

We conclude that the BFA using ECMs has the same complexity as the BFA using PCMs.
Considering query transformers does not increase the complexity of the query planning prob-
lem. Based on this observation, we now prove the three theorems:

(T5.8) is obtained in the following way: To find all query plans, it is necessary to consider
all combinations of mediator queries up to the length of the user query. There exist C
candidates of length i, 1 ≤ i ≤ k. For a candidate plan of length i, the cost of testing con-
tainment in u is given by the worst-case complexity of the BFA, see Theorem (T2.14)
(page 31). We estimate the number of literals in a candidate plan of length i as is

n
i

avg.

•

106

5. Query Planning using QCAs

• (T5.9) is obtained similarly, using the average-case complexity of the BFA given in Theo-
rem (T2.15) (page 31). The number of candidates remains the same, and we have to test
them all. The difference to the worst-case analysis is that zi models a more realistic as-
sumption about the breadth of the search tree, and pcom models early pruning because of
incompatible mappings.
Theorem (T5.10) is obtained by using Stirling’s Formula to obtain lower and upper
bounds:

•

• Upper bound:

() ()

()

()kk
avg

k

k
avg

k
k

k

i

k
avg

i
wc
GTA

kn*s*e*k

s*k*k*
k
kn*e

*k

i*s*k*
i
in*e

C

1

1

1

2

1

−+=

 −+

≤

 −+

≤ ∑
=

• Lower bound:

() ()

()

()kk
avg

k
avg

k
k

k

i

k
avg

i
wc
GTA

kn*s

s*k*
k
kn

i*s*
i
in

C

1

1

1
1

−+=

 −+

≥

 −+

≥ ∑
=

The tightest complexity bound we can give is hence () ()()kk
avg

k kn*s*e +O . The
lower bound shows that this estimation is relatively precise.

Remarks:
For CQC queries, checking implication is not linear, but possible in O(n3), where n is the
number of variables in the formulas [Ull89]. We have to perform this test for every appro-
priate condition from u to see whether it is necessary to include it into C or not.

•

• Values for zi could be obtained as follows. Assume that the relations of Σ are uniformly
distributed in MQ(Γ). A candidate plan π of length i then contains an average of i/|Σ|
literals as potential targets for any literal of u. Let x be the probability that a literal from a
candidate plan covers a literal from the user query, assuming that both literals are from the
same relation. We can then estimate:

||
xi

zi ∑
=

While the examples given so far focused on “technically“ difficult queries, we now give a

more real-life example, showing the rather simple operations that typically have to be carried
out during an execution of the GTA.

Example 5.12.

107

Consider a mediator M with the schema described in Table 1 (page 18), and three wrappers W1,
W2 and W3 that each offer only one query described by the QCAs r1, r2, and r3:

5. Query Planning using QCAs

r : clone(cid ,cn ,-,cl),cl <10 ← W .v (cid ,cn ,cl) ← COS-
MIDs(cid ,cn ,cl);

1 1 1 1 1 1 1 1 1 1

1 1 1

r : clone(cid ,cn ,ct ,cl),cl <100 ← W .v (cid ,cn ,ct) ← BACs(cid ,cn ,ct); 2 2 2 2 2 2 2 1 2 2 2 2 2 2

r : clone(cid ,cn ,-,-),contains(cid ,gid),gene(gid ,gn ,-) ←
W .v (cid ,cn ,gn ,gid) ← interestingclones(cid ,gid ,cn ,gn);

3 3 3 3 3 3 3

3 1 3 3 3 3 3 3 3 3

W stores data about COSMIDs, which are clones smaller than 10 KB. The type of a clone is
not exported. W stores data about BACs, which are clones smaller than 100 KB, but does not
export the actual clonelength. W stores data about the relationship of clones and genes.

1

2

3

Now suppose the following three user queries. u asks for clones smaller than 30 KB. u
searches for clones that contain the gene ‘DMD’, exporting the clone name and length. u
finally searches for clones having identical name and type:

1 2

3

u (cn) ← clone(-,cn,-,cl),cl<30; 1

u2(cn,cl) ← clone(cid,cn,-,cl),contains(cid,gid),gene(gid,’DMD’,-);
u (cn) ← clone(-,cn,cn,-); 3

For u , we enumerate all plans of length one: {r }, {r } and {r }. Testing containment of
the expansion of {r } in u yields the mapping h = [cn→cn ,cl→cl]. Since “cl <
30” does not imply “cl < 10”, we must add a filter condition to the plan, namely “cl < 10”.
Since cl is exported in r , the transformed plan is executable. Considering {r }, we also
find the missing condition, but this plan cannot be repaired since cl is not exported. The same
holds for {r }. Both {r } and {r } are hence discarded.

1 1 2 3

1 1 1 1

1 2

3 2 3

Next, we search plans for u2. Although r3 has all necessary literals it does not export cl,
therefore it is cannot alone be the basis for a query plan. A promising plan candidate is π =
{r1,r3}, i.e., picking cid, cn and cl from r1 and joining with r3 on cid to test the condi-
tion on the gene name. The expansion of π is:
Π(π) = clone(cid1,cn1,-,cl1),cl1<30,clone(cid3,cn3,-,-),contains(cid3,gid3),

gene(gid3,gn3,-);

This expansion is not contained in u , since any possible mapping needs to map cid onto
both cid

2

1 (for the clone literal) and cid3 (for the contains literal). However, by adding
the executable renaming “cid1→cid3” we obtain a correct plan.

Finally, we examine u3. The situation is similar as for u2; {r2} is not a correct plan, but
can be turned into a correct plan by adding the renaming “cn2→ct2”. The same renaming is
not executable for u1 since no clonetype values are obtained.

5.2.4 Computing Buckets

The GTA essentially uses the BFA for the traversal of the search space spanned by possible
combinations of ECMs. To this end, the algorithm computes sets of possible targets for each
literal of u. Currently, those sets are computed whenever an existing node in the search tree is
extended. Since each level in the tree extends each node of an earlier level with ECMs cover-
ing the same literal of u, those sets of ECMs are unnecessarily computed multiple times. Pre-
computing and storing them is the main idea of the bucket algorithm, which was first pre-
sented in [LRO96b; LRO96a] (see Section 5.5 for a detailed discussion).

The necessary changes to the breadth-first search are minimal. Given a plan candidate π
and the user query u, we first compute a bucket for every literal of u. If an ECM ε from a
literal l of u into a literal k of π exists, then ε is put into the bucket for l. Upon extending a

108

5. Query Planning using QCAs

node in the search, the algorithm may use the appropriate bucket instead of recomputing the
target set.

This modification does not improve the complexity of the GTA because it does not affect
the complexity of the BFA, which did not take the computation of target sets into account
since the cost is negligible. However, using buckets allows us to estimate the necessary
amount of computation more precisely. Remember that for the computation of the complexity
of the BFA we must assume that every literal of the candidate is a potential target for every
literal of the query (see Section 2.3.3). Using buckets, we can refine this assumption.

Lemma (L5.11) (BFA worst-case analysis using buckets).
Let M = (Σ,Ψ,Γ) with only simple QCAs, u ∈ and π be a plan candidate for u. Let B∑

SCQ i
be the bucket of the i’th literal of u.

(L5.11) In the worst-case, the BFA will perform the following number of compatibility tests
(see Theorem (T2.14), page 31):

∑ ∏
= =

=

k

i

i

j
j

wc
BFA Bc

2 1

Proof:
A bucket Bi contains all literals of the plan candidate that are covered by the i’th literal of u.
The number of edges in the search tree depends on the number of children of a node in each
level of the tree. Since Bi is exactly this number, the theorem follows from the proof of Theo-
rem (T2.14).

Figure 27. The order of buckets influences the number of leaves.

Remarks:
Lemma (L5.11) leaves room for further optimisation: The number of compatibility tests
depends on the number of edges in the search tree. But this number depends on the order
in which the buckets are visited. Figure 27 illustrates that the number of inner nodes
changes depending on this order, although the number of leaves remains constant. It fol-
lows that it is better to visit the buckets ordered by increasing size.

•

• There are two further optimisations:
• We may compute “global” buckets filled with literals of all QCAs of Γ before we start

enumerating plan candidates. Upon testing a candidate we can then construct “local”,
i.e., candidate specific, buckets by concatenating the buckets of the queries in the can-
didate.

109

5. Query Planning using QCAs

• We may stop immediately if we found that at least one bucket is empty, because this
implies that at least one literal of u is not covered by any literal of the plan.

We do not give an average case analysis since the expected benefit is small compared to
the necessary effort. In contrast to Theorem (T2.15), it is now more difficult to compute
the height of a subtree for a given path.

•

• We emphasise again that the complexity of the BFA, and hence of the GTA, does not
change. In the worst-case, all buckets are “full”, i.e., contain any literal of any mediator
query in Γ.

Soundness and completeness of the GTA is not affected. Precomputing buckets makes

sense for CQS and for CQC queries. The gain in the latter case is higher than in the former. For
CQS queries the cost of computing the set of all covered literals is very low. Computing this
set for CQC queries is more expensive because the logical implication it involves is more com-
plex.

5.3 Improved Bucket Algorithm

In this section we describe the improved bucket algorithm (IBA) for query planning. Recall
that the GTA has two separate phases: Candidate generation and candidate test. The main idea
of the IBA is to merge these steps, which results in a drastic reduction of complexity. The
IBA first pre-computes buckets of partial plans considering all QCAs of the mediator. Then,
it uses these buckets to purposely construct query plans instead of generating and testing can-
didates. No containment test is ever pursued.

The clear separation of enumeration and test phase makes the GTA intuitive and easy to
capture. However, it also has drawbacks. Treating plan candidates as if they were completely
unrelated does not exploit commonalties among them. Furthermore, the GTA does not recog-
nise that the user query is the same in all tests. As a consequence, it performs many compati-
bility tests multiple times. Consider two plan candidates π1 = {q1,...,qn} and π2 =
{q1,...,qn,qn+1}. All compatibility tests between ECMs for the literals of q1 – qn will be
performed twice.

The IBA takes into account that in each test of a plan candidate (a) the candidate is com-
posed of a set of building blocks (the mediator queries of the QCAs), and (b) the user query is
always the same. The IBA first computes buckets considering all mediator queries instead of
only those of a specific candidate plan. Then, it tests all combinations of elements of those
buckets. Instead of selecting plan candidates based on their length, it constructs plans out of
elements that are proven to be helpful. This approach saves the “outer loop” of the GTA: Plan
enumeration and test are merged into one single pass. This merging yields the reduction in
complexity. Another advantage is that the IBA only considers plans that are of the same
length as the user query. This further reduces the amount of computation.

The price we have to pay for those benefits is that the IBA does not (and cannot easily)
check whether a plan in construction is already a minimal query plan. In this case it could stop
since adding further queries is useless – but the IBA only stops as soon as one element of each
bucket is in the plan. Therefore, the IBA will generate non-minimal plans and miss minimal
ones – although it does not miss correct results. Note however that the GTA has the same
problem: It finds all minimal plans, but has no criterion to decide whether they are minimal,
and therefore also generates longer plans. It remains an open question whether the generation

110

5. Query Planning using QCAs

of unnecessarily long plans can be avoided without plan minimisation, which is itself expo-
nential in the length of the plan. In Section 5.4 we show how we can alleviate this problem by
avoiding unnecessary execution of queries even in the presence of non-minimal query plans.

In Section 5.3.1 we explain the main idea of the IBA in detail and prove that it yields a
sound and complete query planning algorithm. In Section 5.3.2 we describe an implementa-
tion. Its complexity is analysed in Section 5.3.3. Finally, in Section 5.3.4 we report on simula-
tions that highlight the superiority of the IBA over the GTA.

5.3.1 Merging Candidate Generation and Test

The IBA constructs query plans by building sets of mediator queries such that every query in
the set contains at least one specific literal of the user query. Every query is “responsible” for
exactly one literal. It is ignored whether or not a query also contains other literals. It is also
ignored whether or not a query is present multiple times in the set. All instances of a mediator
query will be treated as if they stemmed from different QCAs. Proceeding in this way allows
efficient query planning.

However, there are cases where ignoring the fact that a mediator query contains more than
one literal of a user query compromises the completeness of query planning. Consider the
following two examples.

Example 5.13.
Consider the following two user queries and one mediator query:
u1(x,y) ← rel1(x,z),rel2(z,y);
u2(x,y) ← rel1(x,z),rel1(y,w);

q(a,b) ← rel1(a,c),rel2(c,b);

We first examine how the GTA produces query plans for u1. There are two plan candidates:
π1 = {q} and π2 = {q,q}. We first look at π1. The two ECMs for the two literals of u are ε1
= ([x→a,z→c],[],∅) and ε2 = ([z→c,y→b],[],∅). ε1 and ε2 are compatible,
and their union ε is ε = (h,[],∅), with h = [x→a,z→c,y→b].

For π2, there are four ECMs: ε1 and ε2 as for π1, and, for the second occurrence of q (with
fresh variable symbols), ε3 = ([x→a1,z→c1,[],∅) and ε4 = ([x→a1,z→c1],[],
∅). The combinations ε1 ∪ ε2, ε1 ∪ ε4, ε3 ∪ ε2, and ε3 ∪ ε4 have to be tested. ε1 ∪ ε2 and ε3
∪ ε4 succeed, generating two equivalent query plans, and ε1 ∪ ε4 and ε3 ∪ ε2 fail because the
necessary join “c = c1” is not executable.

We apply our informal description of the IBA. We first compute buckets B1 and B2. Into a
bucket Bi we put all ECMs that map the i-th literal of u into some literal of q. We treat each
instance of a mediator query as distinct, which we achieve by using fresh variable names. We
obtain B1 = {([x→a1,z→c1],[],∅)} and B2 = {([z→c2,y→b2],[], ∅)}. Both
buckets contain only one element, so there exists only one combination. However, if we apply
our definition of compatibility of ECMs, we find that the two ECMs are incompatible because
the variables c1 and c2, required for the join in u, are not exported. This is wrong. We see
that we must use only one instance of q to obtain a query plan for u1.

Unfortunately, we cannot always use only one instance in such cases, as u2 shows. Here,
we get the buckets B1 = {([x→a1,z→c1],[],∅)} for the first occurrence of rel1 in u
and B2 = {([y→a2,w→c2],[],∅)} for the second. The two ECMs are compatible. We
obtain the query plan φ = (<q,q>,[],∅,[x→a1,z→c1,y→a2,w→c2]}. No query
plan can be found using q only once.

111

5. Query Planning using QCAs

These examples show that we have to be careful in the treatment of non-exported vari-

ables. Treating multiple copies of the same mediator query as distinct can introduce the neces-
sity to enter joins into the query transformer that would not be necessary otherwise. We call
such joins artificial. Artificial joins are not necessarily dangerous; they only affect query
planning if they are not executable. If we consider a join between two literals of the same me-
diator query, two situations can occur:

The join variables are exported. No problem occurs, since the join is executable. •
• At least one of the join variables is not exported. In this case, the corresponding ECMs are

not compatible. The IBA then has to check if it can proceed by merging the two instances
of the mediator query into a single instance, thereby removing the artificial join.

We define partial plans to capture this particularity of the IBA.

Definition (D5.16)-(D5.19) (Partial plan, singleton partial plan).
Let M = (Σ,Γ,Ψ) with only simple QCAs, and u ∈ CQS.

(D5.16) A partial plan for u is a triple ϕ = (q,ε,π) with:
• q is a query formed from a subset L of the literals of u and all conditions of u

using only variables appearing in L,
• π is a plan candidate for u, and
• ε = (h,α,C) is an ECM from q into α(π,C).

(D5.17) The length of a partial plan ϕ=(q,ε,π), written |ϕ|, is the number of literals in q.

(D5.18) The root of a partial plan ϕ = (q,ε,π), written root(ϕ), is the set of literals from
u which form q.

(D5.19) A singleton partial plan is a triple ϕ = (q,ε,π) with |q|=|π|=1.

Partial plans in the IBA essentially take the role of ECMs in the GTA. We are only inter-

ested in partial plans that are obtained through the union of existing partial plans, starting
from singleton partial plans. We call such partial plans regular. Regular partial plans are de-
fined inductively over their length.

Definition (D5.20)-(D5.22) (Regular partial plans, union, compatibility).
Let M = (Σ,Γ,Ψ) with only simple QCAs, and u ∈ CQS.

(D5.20) A partial plan of length n is regular if it is the union of a singleton partial plan ϕn
and a regular partial plan ϕ with |ϕ| = n - 1 and root(ϕn) ∉ root(ϕ).

(D5.21) Let ϕn = (qn,εn,πn) be a singleton partial plan and ϕ = (q,ε,π) be a regular par-
tial plan with root(ϕn) ∉ root(ϕ). Let ϕ be the union of n-1 regular partial
plans ϕi = (qi,εi,πi), i ≤ n-1. Let ln = root(qn) and L = root(q). The un-
ion of ϕn and ϕ, written ϕn ∪ ϕ, is defined as:
• If εn ~ ε or πn ∉ π then:

ϕn ∪ ϕ = (<ln,L,cond(u,variables(ln,L))>,εn ∪ ε,πn ∪ π);
• Otherwise:

112

5. Query Planning using QCAs

• Let C = {ϕi| πn = πi ∧ εi ≁ εn} be the set of partial plans that have to
be merged with ϕn (C for changed)

• Let L’ = {l| l ∈ L” ∧ L” = root(ϕx) ∧ ϕx ∈ C} be the set of liter-
als of u that are mapped by partial plans of ϕ that have to be merged with
ϕn.

• Let ϕu = (qu,εu,πu) = and ϕU
R

i

i∉ϕ

ϕ c = (qc,εc,πc) = . ϕU
R

i

i∈ϕ

ϕ u is the

part of ϕ that remains unchanged, and ϕc is the part that has to be merged
with ϕn.

• By definition of C, πc = πn. Compute the ECM ε’ from <ln,L’,
cond(u,variables(ln,L’))> into πn such that the literals of L’ are
mapped to the same targets as in ε.

Now, ϕn ∪ ϕ = (<ln,L,cond(u,variables(ln,L))>, ε’∪εu,πn∪πu).

(D5.22) Let ϕn = (qn,εn,πn) be a singleton partial plan and ϕ = (q,ε,π) be a regular par-
tial plan with root(ϕn) ∉ root(ϕ).Let ϕ’ = (q’,ε’,π’) = ϕn ∪ ϕ with ε’ =
(h’,α’,C’). ϕn and ϕ are compatible, written ϕn~ϕ, iff:
• α’(π’,C’) is executable, and
• C’ is satisfiable.

Remarks:
In a partial plan ϕ = (q,ε,π), root(q) is always a set, while π is a bag. A partial plan
maps a subquery of u into a plan candidate.

•

•
•

•

If ϕ = (q,ε,π) and ε = (h,α,C) we often abbreviate ϕ = (q,h,α,C,π).
If a partial plan ϕ = (q,ε,π) covers u completely, then q = u and φ = (π,ε) is a query
plan for u.
Definition (D5.21) contains the merging of partial plans. Figure 28 illustrates this defini-
tion. Merging is only necessary if the ECMs are incompatible, and it is only possible if the
newly added mediator query is already contained at least once in the partial plan at hand,
i.e., ϕ. Merging proceeds by first computing ϕu, which is ϕ without the critical mediator
query πn, and then computing an ECM from the critical subquery of u into πn. The two re-
sulting partial plans are then combined in the usual way, i.e., like ECMs. This procedure
ensures a correct test for the executability of joins.

The difference between partial plans and ECMs is the following: While an ECM is a par-

tial mapping from the user query into a plan candidate, a partial plan is a complete mapping
from a subset of the user query into a plan candidate. We use partial plans to construct query
plans, while ECMs are used to test a given plan candidate.

We now describe the IBA, using the previous definitions.

113

5. Query Planning using QCAs

ϕu=ϕ1∪ϕ2∪...∪ϕz ϕc=ϕz+1∪...∪ϕn-1

αu({qa,qb,...},Cu) αc({qn,qn,...},Cc)

hu hc
hn

ϕn

αn(qn,Cn)

= ==

L’

Figure 28. Merge-union of two partial plans.
The partial plan ϕ is decomposed into two partial plans ϕu and ϕc. ϕc consists of those partial

plans contained in ϕ that must be merged with the new partial plan ϕn. The shaded area is eventu-
ally covered by ε‘. The figure ignores conditions in u and assumes, without loss of generality, a

certain order in the partial plans and in the literals of u.

u=l1,l2,...,lj,lj+1...,ln-1,ln;

Algorithm 8. The improved bucket algorithm (IBA).

Input: Mediator M = (Σ,Γ,Ψ) with only simple QCAs, and user query u ∈ CQS.

Output: Set of query plans for u such that their union computes u(M).

Algorithm: Compute all singleton partial plans for all literals l of u and sort them into buck-
ets. Start with the elements of the smallest bucket and construct longer partial plans by incre-
mentally adding singleton partial plans from new buckets. If a new element is incompatible
with a growing partial plan, discard that branch. If finally ϕ = (u,h,α,C,π) is obtained as
the union of one partial plan from each bucket, then (π,α,C,h) is a query plan for u.

We postpone examples that show how the IBA proceeds until the next section, because

there we give a implementation of the union operation which facilitates its understanding.
We show that the IBA is complete and sound by proving that it computes only “correct”

query plans, and that it computes an equivalent query plan for every existing query plan that is
not longer than the user query.

Theorem (T5.12)-(T5.13) (Completeness and soundness of the IBA).
Let M = (Σ,Ψ,Γ) with only simple QCAs, Q = MQ(Γ), and u ∈ CQS.

(T5.12) The IBA is sound, i.e., every query plan φ is computes is a query plan for u.

(T5.13) The IBA is complete. If φ = (p,h) is a query plan for u with |p| ≤ |u|, then the
IBA will compute a query plan φ’ such that φ’(M) = φ(M).

Proof:

114

5. Query Planning using QCAs

We prove both theorems by reduction to the GTA. Let k = |u|.

(T5.12): Let ϕ = (q,ε,π) be a regular partial plan computed by the IBA with ε =
(h,α,C) and n = |Q|. ϕ is the union of singleton partial plans ϕi = (qi,εi,πi), i ≤
n, mapping the i’th literal of u into the query πi ∈ MQ(Γ). Furthermore, it must hold that
ϕ1 ~ ϕ2, (ϕ1 ∪ ϕ2) ~ ϕ3, ... (ϕ1 ∪...∪ ϕk-1) ~ ϕk.

•

•

The GTA tests each plan candidate π whose length is smaller than or equal to k. This in-
cludes π = {π1,...,πk}. The GTA will, possibly among other mappings, find ε1 as a
partial ECM from the first literal of u into π, ε2 for the second, etc. Since all those ECMs
are compatible, the GTA will compute (π,α,C,h) as query plan for u. Since the GTA
is sound, we can follow that also the IBA is sound.

(T5.13): Let φ = (π,α,C,h) be a query plan computed by the GTA. Hence, ε =
(h,α,C) is a ECM from u into the plan candidate π = {π1,...,πm}. Let πn be the set
of necessary queries in π, i.e., those that contain a literal that is used as a target in h. Let n
= |πn|. Since the GTA also computes non-minimal plans, it can be that n < k.

(1) Let n = k, i.e., each πi contains the target of exactly one literal of u. Without loss of
generality, we can assume that πi contains the target for the i’th literal li of u. Hence,
there exists an ECM εi from li into πi. It follows that ϕi = (qi,εi,πi) is a singleton
partial plans for qi, which is the subquery from u consisting only of the literal li and ap-
propriate conditions. Since the IBA tests all combinations of singleton partial plans, it will
also test the combination ϕ1 ∪ ϕ2 ∪...∪ ϕn. All those partial plans are compatible because
the corresponding ECMs are compatible. Therefore, the IBA finds φ.

(2) Let n<k. We construct a plan φ’ = (π’,α’,C’,h’) that is equivalent to φ and
show that the IBA will find φ’.
Initially, let φ’ = (πn,α,C,h). Since n < k, πn must contain some mediator queries that
contain a target for more than one literal of u. Let q be such a query containing the targets
for the literals l1,...,lj. There are two possibilities:
• l1,...,lj are connected through one or more non-exported variables that are

mapped to non-exported variables in q. Since φ is a query plan, the corresponding
ECMs are compatible. Suppose that the IBA has constructed a partial plan ϕ for some
literals of u, including some lx, 1 ≤ x ≤ j, and wants to add a singleton partial plan
ϕ’ for a literal ly, 1 ≤ y ≤ j, y ≠ x. When building the union, the IBA will detect a
conflict and compute ϕu without q, and ε‘ from lx, ly, and appropriate conditions,
into q. It then computes their union, which must be compatible since φ is a query plan.
The same happens for every singleton partial plan for a li, i ∉ {y,x}. Eventually,
the IBA computes exactly φ.

• Otherwise, we can safely add to πn j-1 instances of q. In h’, each of these instances
is the target of a different literal li, and α’ is extended with appropriate joins for the
new instances. Since those literals are not connected through non-exported variables,
all those joins are executable and the corresponding ECMs are compatible. Since the
IBA treats literals as stemming from different mediator queries, it will compute φ’.

We repeat this for all queries as q. The resulting ϕ’ is obviously equivalent to φ, since
both contain the same mediator queries connected through identical joins.

115

5. Query Planning using QCAs

Remarks:
Neither the GTA nor the IBA is complete for CQC queries. In the previous proof, we only
showed that for any query plan found by the GTA there will be an equivalent query plan
found by the IBA. This does not imply that the IBA is complete for CQC.

•

• There can be only one partial plan ϕ from a subquery with literal l∈u into a literal k∈q.
Therefore, each partial plan has a unique mapping attached. If there are more mappings
from l into q (because the relation of l appears many times in q), then multiple singleton
partial plans exist. Each is independently put into the bucket for l, and therefore all query
plans are found.

The proof of Theorem (T5.13) highlights the major weakness of the IBA method: The so-

lutions it finds are not guaranteed to be minimal.

Example 5.14.
Consider the following query u and QCA r. u asks for triples of children, parents, and grand-
parents. It does so be using a self-join on a global parent relation. r describes a wrapper W
exporting such triples:
u(a,b,c) ← parent(a,b),parent(b,c);
r: parent(x,y),parent(y,z) ← W.v(x,y,z) ← p_grandparent(x,y,z);

Let q = medq(r). The IBA first generates one bucket per literal of u. Whenever a mediator
query is put into a bucket, its variables are renamed – here, we simple add an index. The
buckets are:
B1={((<u’(a,b)←parent(a,b)>,[a→x1,b→y1],[],∅),{q}),

((<u’(a,b)←parent(a,b)>,[a→y2,b→z2],[],∅),{q})};
B2={((<u’(b,c)←parent(b,c)>,[b→x3,c→y3],[],∅),{q}),

((<u’(b,c)←parent(b,c)>,[b→y4,c→z4],[],∅),{q})};

Next, it tries to union each pair of partial plans from B1 x B2. All unions succeed because u
has no non-exported variable. Four query plans are generated, whose expansions are:
p1(x1,y1,y3) ← q(x1,y1,-),q(y1,y3,-);
p2(x1,y1,z4) ← q(x1,y1,-),q(-,y1,z4);
p3(y2,z2,y3) ← q(-,y2,z2),q(z2,y3,-);
p4(y2,z2,z4) ← q(-,y2,z2),q(-,z2,z4);

For instance, the first plan is obtained by combining the first two singleton partial plans of
each buckets. Both are compatible, and their union requires the renaming [y1→x3].

None of these plans is minimal. The IBA does not recognise this because it treats different
occurrences of the same QCA as if they were different QCAs.

The GTA produces even more plans. It enumerates two candidate plans: π1 = {q} and π2
= {q,q}. Testing either requires a search tree with four leaves, since the two parent literals
in u each have two potential targets in q. Four query plans are generated, corresponding to the
four plans given above. This is exactly a worst case: all ECMs are compatible, and each literal
of q covers every literal of u.

The example shows that both methods fail to produce an optimal result whenever a literal

appears more than once in the user query and in a QCA. Note that, independent of any redun-
dancy, all plans produced by either method are correct and executable. Furthermore, the com-
puted answer to the query conforms to the semantics defined in Section 4.3.2, because, under
set semantics, results of redundant plans are removed during duplicate elimination. However,

116

5. Query Planning using QCAs

redundancy leads to superfluous computations. We shall treat redundancy between plans and
queries in Section 5.4.

5.3.2 Implementing the IBA

Algorithm 9 is an implementation of the union operation of partial plans. We shall show that
it can be computed in linear time. The algorithm computes union and compatibility in one
single function. Given two partial plans ϕ1 and ϕ1, it returns a tuple (b,ϕ), where b is true
iff ϕ1 ~ ϕ2. If b = true, ϕ = ϕ1 ∪ ϕ2; otherwise, ϕ is undefined.

It starts by checking if the mediator query of the newly added ϕn is already contained in
the partial plan ϕ. If this is not the case, no merging is possible and the two partial plans are
united in the same way as two ECMs (line 4-10).

Otherwise, we go through all non-exported variables of u that are mapped both by hn and
h (line 11). Only those, called critical in the following, can participate in an artificial join that
is not executable.

Next, we examine all partial plans ϕi of ϕ that map a critical variable. We collect in C all
partial plans that must be merged (line 12-35). If the target of a critical variable v is exported
both in ϕi and ϕn, we need not merge ϕi and ϕn. If v is exported in only one of the two, then
the union must fail (line 31). The union also fails if πi = π but hi maps v to variable that is an
instance of a different variable than the target of v under hn (line 26-27; the function in-
stance is not given). If v is not exported in both, we add ϕi to C (line 29). Finally, C con-
tains all partial plans that share at least one non-exported variable with qn.

Then, we test if the merge succeeds. We compute ϕC, the union of all partial plan of ϕ that
are not in C, and ϕU, the union of all partial plan of ϕ that are in C (line 37-38). In the next
step, we consistently replace all variable symbols of different instances of qn in ϕC with the
appropriate variable symbol in ϕn, which yields ϕC’. ϕn and ϕC’ now use the same set of vari-
able symbols (line 39; the function replace is not given).

This replacement can render some variable renamings obsolete. Furthermore, we have to
check if the conditions of ϕC’ are still satisfiable. We must also check if the ϕn and ϕC’ are
compatible, and if their union is compatible to the reminder of ϕ, i.e., ϕU. If this is the case,
the merging was successful.

We examine examples highlighting some traps of computing the union of two partial plans.

Example 5.15.
For simplicity, we discuss only pairs of user queries and QCAs without further context.
u(a,b) ← rel1(c,a),rel2(c,b);
q(x,y) ← rel1(z,x),rel2(z,y);

This is the simple case of a single, non-exported variable that joins two relations. The IBA
generates two partial plans:
ϕ1=(<u’(a)←rel1(c,a)>,[c→z1,a→x1],[],∅,q);
ϕ2=(<u’(b)←rel2(c,b)>,[c→z2,b→y2],[],∅,q);

The ECMs of those partial plans are not compatible because the join between two non-
exported variables from different mediator queries is not executable.

The union computes the set of critical variables as V = {c}. Since c is not exported in u,
we get C = ϕ1 and U = ∅. Substituting all variables in ϕ1 with the corresponding symbols
from ϕ2 leads to the partial plans ϕC’=(<u’(a)←rel1(c,a)>,[c→z2,a→x],[],∅,

117

5. Query Planning using QCAs

q). ϕC’ and ϕ2 are compatible. Their union is the final plan (u,[c→z2,b→y2,a→x],
[],∅,q).

u(a,b) ← rel(c,a),rel(c,b);
q(x) ← rel(z,x);

We proceed as in the previous example. Again, the critical variable is c. We obtain ϕC’ =
(<u’(a)←rel(c,a)>,[c→z2,a→x],[],∅,q). The final plan equates a and b,
which is the only possible answer that can be computed using only q.

u(a,b) ← rel(a,c),rel(b,d);
q(x) ← rel(x,k);

In contrast to the previous example, we now have no join between the two literals of u. There-
fore, there exists no critical variable. The union is computed using the union of the corre-
sponding ECMs. The final plan is (u,[a→x1,c→k1,b→x2,d→k2],[],∅,{q,q})
and (correctly) uses two instances of q.

u(a,b) ← rel1(a,b),rel2(b,d),rel3(a,d);
q1(x,y) ← rel1(x,y);
q2(v,w) ← rel2(v,z),rel3(w,z);

The three partial plans for the three literals of u are:
ϕ1=(<u’(a,b)←rel1(a,b)>,[a→x1,b→y1],[],∅,q1);
ϕ2=(<u’(b)←rel2(b,d)>,[b→v2,d→z2],[],∅,q2);
ϕ3=(<u’(a)←rel3(a,d)>,[a→w3,d→z3],[],∅,q2);

The union of ϕ1 and ϕ2 is:
ϕ=(<u’(a,b)←rel1(a,b),rel2(b,d)>,[a→x1,b→y1,b→v2,d→z2],

[y1→v2],∅,{q1,q2});

ϕ contains a join over the exported variables y1 and v2. Trying to extend ϕ with ϕ3 finds the
critical variable d. We further get ϕU = ϕ1 and ϕC = ϕ2. Substituting the variable symbols re-
veals that a single occurrence of q2 suffices, and the final plan joining q1 and q2 through
[x1→w3,y1→v2] is found.

u(a,c) ← rel1(a,b),rel2(b,c);
q(x,y,z) ← rel1(x,y),rel2(w,z);

We find V = {b} with h(b) = y1 and h’(b) = w2. Because the variables of which y1 and
w2 are an instance are not identical and w2 is not exported, the union fails. This is correct since
no query plan exists.

u(b,d) ← rel(a,b),b<10,rel(a,d),d>20;
q(y) ← rel(x,y);

The two singleton partial plans are:
ϕ1=(<u’(b)←rel(a,b),b<10>,[a→x1,b→y1],[],{y1<10},q);
ϕ2=(<u’(d)←rel(a,d),d>20>,[a→x2, d→y2],[],{y2>20},q);

The critical variable is a. Variable substitution yields ϕC’ = (<u’(b)←rel(a,b),
b<10>,[a→x2,b→y2],[],{y2<10},q). The IBA detects that these plans are not com-
patible, and the union fails.

118

5. Query Planning using QCAs

Lemma (L5.14) (Complexity of the union of partial plans).
Let M = (Σ,Ψ,Γ) with only simple QCAs, Q = MQ(Γ), and u ∈ CQS with k = |u|. Let ϕ
be a partial plan for u of length x < k, and ϕn be a singleton partial plan for u. Furthermore,
let amax be the maximal arity of the relations in Σ.

(L5.14) Computing ϕn ∪ ϕ is possible in O(x).

119

5. Query Planning using QCAs

Algorithm 9. Computing the union of two partial plans.

1: function pp_union(query u, singleton_pp ϕn, pp ϕ) : (boolean, partialPlan);
 % ϕn=(qn,εn,πn), εn=(hn,αn,Cn);
 % ϕ=(q,ε,π)=ϕ1∪ϕ2∪...∪ϕn, ε=(h,α,C);
 % ϕi=(qi,εi,πi), εi=(hi,αi,Ci);
2: L = root(ϕn) ∪ root(ϕ);
3: q’ = <L,cond(u,variables(L)>;
4: if πn∉π then % No merging possible
5: if ε ~ε then n

6: return (true,(q’,εn∪ε,πn∪π));
7: else
8: return (false,null);
9: end if;
10: end if;
11: V={v|v∉export(u) ∧ v∈org(hn)∩org(h)};
12: if V=∅ then
13: if ε ~ε then n

14: return (true, (q’, ε
15: else

n∪ε, πn∪π));

16: return (false,null);
17: end if;
18: end if;
19: C=∅; % Collect all ϕi to be merged
20: foreach v∈V
21: foreach i:ϕi∉C
22: if v∈org(hi) then
23: if h(v)∉export(πn) then
24: if π ≠π then i

25: return (false,null);
26: else if))≠instance(h(v)) then instance(hi(v
27: return (false,null);
28: else
29: C = C ∪ ϕi;
30: else if hi(v)∉export(πi) then
31: return (false,null); % One exported, one not ⇒ deadly
32: end if;
33: end if;
34: end for;
35: end for;
36: U = {ϕi | ϕi∉C}; % Complement of C

37: ϕC = (qC, εC, πC) = ; % Part of ϕ to be merged U
C

i

i∈ϕ

ϕ

38: ϕU = (qU, εU, πU) = % Part of ϕ that remains U
U

i

i∈ϕ

ϕ

39: ϕC’ = (qC’, εC’, QC’) = replace(ϕC, ϕn); % Replace all variable in ϕC that are
 % instances of the same variable of q
 % with the according symbol in ϕn

40: if ϕ) ∨ (ε (not satisfiable C’

41: return (false,null);
C’≁εn) ∨ ((εC’∪εn)≁εU)

42: else
43: return (true, (q’, εC’∪εn∪εU, πn∪π));
44: end if ;
45: end function;

120

5. Query Planning using QCAs

Proof:
Consider Algorithm 9. Line 2-18 are linear in the sizes of the plans. Since any critical variable
has to be mapped both in ϕn and ϕ, V can at most contain as many variables as is the arity of
the literal for which ϕn is a singleton partial plan, i.e., in the worst case |V| = amax. For each
such variable we check the x partial plans of which ϕ was constructed. In the worst case, C is
computed in O(amaxx).

Let |R| = y, 1 ≤ y ≤ x. For ϕC, we must compute the union of x-y partial plans, and for
ϕU the union of y partial plans, i.e., x unions altogether. In all those unions no merging can
occur, since such merges would already have been carried out in the construction of ϕ. This
point is crucial to see that the recomputation of unions does lead to an exponential explosion
in the algorithm. No merging ever has to be carried out twice, because the computation of ϕC
and ϕU can use already merged partial plans, if they exist.

Therefore, computing those unions is as complex as computing the union of two ECMs,
i.e., linear in the size of the ECMs. The remaining computations are also either unions of
ECMs or the implication of conditions of CQS queries. Therefore, the complexity is
O(amaxx+x), i.e., essentially linear in x.

We now describe the complete implementation of the IBA, using Algorithm 9 to compute

the union of two partial plans.

Algorithm 10. Implementation of the IBA.
Input: User query u, set Q of mediator queries;
Output: Set P of all query plans;

1: foreach l∈u % Compute buckets for each literal of u
2: Bl = {(<l,cond(u,variables(l))>,h,α,C,q) |∃ l’∈π ∧ π∈Q ∧ l≥hα(l’,C)};
3: if Bl=∅ then
4: return ∅; % Empty bucket ⇒ no query plan exists
5: end if;
6: end for;
7: sort B’s by size; % B1 is now the smallest.
8: B ; % Start with smallest bucket P = 1

9: for i=2...|u| % Go breadth-first through buckets
10: foreach ϕ∈P % Partial plan of increasing length
11: P = P \ ϕ;
12: foreach ϕn∈Bi % Try to combine with new elements
13: (success,ϕ’) = pp_union(ϕ, ϕn, u);
14: if succeed then
15: P = P ∪ ϕ’;
16: end if;
17: end for;
18: if P=∅ then % No partial plans remains
19: return ∅;
20: end if;
21: end for;
22: end for;
23: return P; %∀(u,h,α,C,π)∈P: u→hα(π,C)

Algorithm 10 takes as input a user query u and a set Q of mediator queries. It starts by
computing buckets, one for each literal of u (line 1-6). Into the bucket for literal l it puts all

121

5. Query Planning using QCAs

singleton partial plans for l in Q. If any of the buckets is empty, the algorithm stops immedi-
ately, since this implies that there is no target for the corresponding literal .

The algorithm then sorts the buckets by increasing size (see remark after Lemma (L5.11),
page 109) and starts to construct longer partial plans. In each step of the loop between lines 9-
21, it tries to expand each partial plan ϕ found so far with each element ϕ of the next bucket.
If the union succeeds it is stored for further extension. If not, this branch of the search tree is
cut.

5.3.3 Complexity of the IBA

We analyse the complexity of the IBA as implemented in Algorithm 10.

Theorem (T5.15)-(T5.17) (Analysis of the IBA).
Let M = (Σ,Ψ,Γ) with only simple QCAs, Q = MQ(Γ), and u ∈ CQS. Let k = |u|, n =
|Q|, bavg be the average size of a bucket, and pcom, 0 ≤ pcom ≤ 1, be the probability that two
partial plans are compatible. Furthermore, let ∑

∈

=
Qq

sum |q|s be the number of literals in Q.

(T5.15) In the worst case, the IBA computes unions of partial plans. ()∑
=

=
k

i

i
sum

wc
IBA sC

2

(T5.16) In the average case, the IBA computes C unions of pp’s. (∑
−

=

=
1

0

k

i

i
comavgavg

ac
IBA pbb)

(T5.17) The IBA has complexity ()()k
sumsO .

Proof:
Let Bi be the bucket of the i’th literal of u, and bi = |Bi|.

(T5.15): In the worst-case all unions succeed. The search space of the algorithm is very
similar to that of the BFA (page 32): The elements of each bucket form one level of the
search tree, and edges correspond to computations of pp_union. The only difference is
that buckets are built from all queries in Q, not only of those of a specific plan candidate.
Using Lemma (L5.11), we get:

•

•

∑ ∏
= =

=

k

i

i

j
j

wc
IBA bc

2 1

Furthermore, we must assume that each literal of each QCA is a target for each literal of
u. Therefore, the size of each bucket is worst-case bi = ssum, i ≤ k. Together, this yields:

()∑∑ ∏
== =

=

=

k

i

i
sum

k

i

i

j
sum

wc
IBA ssc

22 1

(T5.16): We can directly use Theorem (T2.15) to estimate C , replacing z with bac
IBA avg.

Both parameters have the same function, i.e., they estimate the average width of a level in
the search tree.

122

5. Query Planning using QCAs

• (T5.17): We have to add the complexity of computing unions to the result of Theorem
(T5.15). Note first that a union either fails (because a join with a non-exported variable
cannot be executed) or requires the time given in Lemma (L5.14), page 119. This implies
that, once we have a critical variable, the union either fails or leads in O(amaxx + x) to
a partial plan that is at most of the same size of the initial partial plan.
Therefore, the cost of computing a union is bound by the maximal size of a query plan,
i.e., k. In the worst case, a union therefore requires O(amax(k-1)+k-1). Together with
Theorem (T5.15), the result follows.

Remarks:
A value for bavg can be estimated in the following way: Let lavg be the average size of a
query in Q, and suppose that all relations of Σ are uniformly distributed in all queries in Q.
Let pcov, 0 ≤ pcov ≤ 1, be the probability that there exist a singleton partial plan for a lit-
eral of u using a distinct literal of a mediator query. It follows that each bucket has an av-
erage number of elements:

•

||

nlp
b avgcov
avg ∑

=

A noteworthy difference between the worst-case estimations of the GTA and the IBA is
that C uses swc

GTA avg, while uses swc
IBAC sum. The reason is the following: In the IBA, ssum is

the maximal, worst-case number of elements in a bucket. This determines the number of
elements in the cartesian product of all buckets, and hence the number tests to be per-
formed. In the GTA, each candidate plan is tested, and the cost of this test depends on the
length of the plan. We use savg to estimate this length.

•

• The performance of the IBA crucially depends on the number of compatibility tests that
fail. It is beneficial to detect incompatibilities as early as possible, since this removes
costly branches of the search space. It is an interesting question how one can order buck-
ets and elements of buckets such that early fails become more likely. Incompatibilities oc-
cur if necessary renamings cannot be executed because variables are not exported, or due
to unsatisfiability of conditions. We can derive several heuristics out of this observation:

• Start with buckets for literals that participate in many joins.
• Enumerate buckets following the join structure of the user query.
• Choose elements within a bucket with many conditions and few exported variables

first.

These heuristics conflict with the observation that choosing small buckets first reduces the
number of inner nodes of the search space. We leave a thorough analysis of appropriate
heuristics for future work.

In general, the IBA produces plans with the same length as the user query. Such plans are

not necessarily minimal. Suppose we have found a partial plan ϕ for a subquery u’ of u to-
gether with a compatible ϕ’ for a literal l of u \ u’. Suppose that the mediator query q used
by ϕ’ already appears in ϕ and that that l is not joined to u’ through a non-exported vari-
able. It follows that the union of ϕ’ and ϕ will contain q twice. We would like to know if this
is really necessary, or if it suffices to use q only once.

123

5. Query Planning using QCAs

Unfortunately, Levy et al. show that minimising a correct plan is in itself an NP-complete
problem [LMSS95]. It can be solved by testing equivalence between the original plan and all
plans obtained from the original plan by removing one or more queries.

However, having a non-minimal plan does not imply that we must execute unnecessarily
many wrapper queries. In Section 5.4 we shall see how we can identify and superfluous que-
ries and prevent them from being executed. This enables us to answer a non-minimal plan
with the minimal amount of remote query executions.

5.3.4 Comparing GTA and IBA

The IBA outperforms the GTA by far. Figure 29 and Figure 30 illustrate this difference. The
plotted formulas are given in Theorem (T5.8) and Theorem (T5.9) for the GTA and in Theo-
rem (T5.15) and (T5.16) for the IBA. To make the different formulas comparable, we define
the parameter x as the average number of times that an arbitrary relation appears in a QCA. A
high value of x hence indicates that we can expect to have many potential targets for every
literal of a user query.

Using x, we can modify our cost formulas for the IBA and GTA such that only five pa-
rameters remain: The size k of the user query, the number n of QCAs in Q, the average size
savg of a QCA in Q, the probability pcom that two arbitrary QCAs are compatible during query
planning, and x. Other parameters are calculated from those as follows:

To compute C (see Theorem (T5.9)), we need the average number zac
GTA i of literals in plan

candidates of length i that cover a literal in u. We can estimate: zi = ix, since a plan of
length i contains i QCAs, which each contains a relation in the average x times.

•

•

•

To compute (see Theorem (T5.15)), we need the total number swc
IBAC sum of literal in Q.

We can estimate ssum = nsavg, since savg is the average number of literals of a QCA and
n is the total number of QCAs.
To compute C (see Theorem (T5.16)) we need the average size bwc

IBA avg of a bucket for
each literal of the user query. We can estimate bavg = nx, since all n QCAs are consid-
ered as sources for the buckets of each literal, and each QCAs contains a relation in the
average x times.

In Figure 29, we kept k, savg, x, and pcom constant and only varied n, i.e., the number of
QCAs. We can see that for a user query of length four the average case behaviour of both al-
gorithms is probably acceptable, although the IBA beats the GTA by a factor of approxi-
mately 100. Note that with x = 0.2 we assume that in a system with 100 QCAs each of the
four literals of the user query has 20 QCAs in its buckets.

In Figure 30, we kept n, savg, x, and pcom constant and varied only k, i.e., the size of the
user query. All formulas are exponential in k. Therefore, both figures have logarithmic scale
on the y-axis. Query planning is therefore quite sensitive to large queries. However, for a
query of six literals the number of compatibility tests is still below 106 if the IBA is used, but
in the range of 108 for the GTA.

124

5. Query Planning using QCAs

Figure 29. GTA versus IBA. Values: k=4,n=[5-100],savg=3,x=0.2, pcom=0.7.

Figure 30. GTA versus IBA. Values: k=[2-10],n=50,savg=3,x=0.2, pcom=0.7.

5.4 Redundancy in Query Plans

The aim of query planning is to compute all answers to a given user query at minimal cost. In
this work, cost is determined by the number of remote queries that have to be executed.
Therefore, query planning must try to avoid executing remote queries whenever possible.

125

In the previous sections we have described algorithms that compute query plans, which
generate answers to a user query u. Each query plan computes some answers for u; the result
of u is defined as the union over the results of all query plans. We proved that both the IBA
and the GTA are sound and complete, i.e., they generate a set of query plans whose union is
the result of u. In this section we concentrate on post processing of query plans, aiming to

5. Query Planning using QCAs

compute the result of a query without executing all query plans, respectively all queries con-
tained in different query plans.

The result of u can be obtained by executing each query plan and computing their union
inside the mediator. Computing the result of a single query plan can be achieved by executing
its wrapper queries one-by-one and applying necessary post-processing inside the mediator.
However, this procedure is not optimal: It involves redundant work because the remote com-
putations triggered by executing query plans are often overlapping.

We distinguish two types of redundancy in query plans:

Query plan redundancy: A query plan φ1 is redundant wrt. another query plan φ2 if φ1
computes only tuples that are also computed by φ2.

•

• Query redundancy: The same wrapper query q may be involved in many query plans, or
multiple times in one query plan. Often, we can execute q only once and reuse the result.

The mediator can save time by removing redundant query plans and by avoiding the repeated
execution of redundant queries. The challenge is to identify redundancy. The algorithms we
propose are based on query containment, since query containment allows us to derive state-
ments about extensional relationships between queries based on the structure of the query
only. Essentially, we argue that a query plan is redundant if it is contained in another query
plan; and that a query is redundant if it is contained in another query.

From a broader perspective, one could argue that the detection of redundancy should be
left to a query optimiser. The execution plan for a user query can be described as a query tree
[Cha98], where leaves are wrapper queries (as the smallest, unbreakable unit of execution)
and the inner nodes are either joins, unions, or selections. The root node is a union operation
and has as many children as there are query plans.

The task of the optimiser is to find an optimal way of executing this tree. Typical optimisa-
tions are algebraic reorderings of the tree, for instance pushing unions through joins, and the
identification of common subexpressions, i.e., identical subtrees [Jar85]. However, query op-
timisation is an exponential problem. Therefore, it is not reasonable to start optimising a large
tree without applying as much as possible additional knowledge about the specific tree struc-
ture. The aim of this section is hence to “prepare” the query as good as possible before it will
eventually be handed over to a query optimiser.

We analyse algorithms for finding redundant query plans in Section 5.4.1. We shall first
clarify how plan redundancy can be detected. The main question is whether mediator queries
or wrapper queries should be considered. In Section 5.4.2, we explore the detection of query
redundancy through multiple query optimisation. We describe two methods: The first method
is very efficient, but only removes redundant occurrences of a single QCA. The second
method also detects redundancy between different QCAs describing queries against the same
wrapper, based on certain assumptions about the extension of such wrapper queries. This ap-
proach subsumes the first method but is more complex.

Both methods aim at reducing the number of queries that have to be executed remotely.
This does not necessarily coincide with a reduction in the required time it takes to answer
queries. We finish this section with examples that highlight cases where our techniques are
advantageous or fail, respectively.

5.4.1 Finding Redundant Query Plans

First, we define what it means for a query plan to be redundant. Our definition is simple: a
query plan is redundant if it does not contribute any tuples to the answer to a user query that
are not also obtained through another query plan. We then describe how the mediator can de-
tect redundant plans.

126

5. Query Planning using QCAs

Definition (D5.23) (Redundant query plan).
Let M = (Σ,Ψ,Γ) and u ∈ CQC. Let P be the set of all query plans for u, and let φ ∈ P.

(D5.23) φ is redundant wrt. u iff () ()MuM'
\P'

=φ
φ∈φ

U .

A first approach to the detection of redundant plans is to look at those plans whose result is

contained in another plan. However, we have yet no definition of what it means that a plan is
contained in another plan. We only defined when a plan is contained in a user query: if its
expansion is contained in the user query (see Definition (D5.4)). However, plan expansions
do not help in detecting redundant plans, as shown by the following example.

Example 5.16.
Consider a wrapper W providing data about RNA and non-RNA genes through two different
queries11. Describing this with respect to the mediator schema of Table 1 (page 18), which
does not distinguish between different gene types, requires two QCAs:
r1: gene(gid,gn,gd) ← W.v1(gid,gn,gd) ← RNAgenes(gid,gn,gd);
r2: gene(gid,gn,gd) ← W.v2(gid,gn,gd) ← othergenes(gid,gn,gd);

Now consider the user query u:
u(gid,gn) ← gene(gid,gn,-);

There exist two query plans φ1 = (p1,h1) and φ2 = (p2,h2), one using r1 and the other one
using r2. We can see that Π(p1) ≡ Π(p2), i.e., the two plan expansions are equivalent.
However, we cannot infer that φ1(M) ≡ φ2(M).

A mediator query is merely a description of the intension of a wrapper query. It does not

carry meaning about the extension of one mediator query with respect to other, possibly iden-
tical, mediator queries. We cannot even assume that a combination of mediator query and
addressed wrapper is sufficient to derive extensional relationships. In Example 5.16, the same
mediator query addressing the same wrapper is used in different QCAs and results in different
extensions.

Therefore, we can only prove redundancy between query plans that use the same QCAs.
The specific occurrence of a QCA in a query plan is uniquely characterised by the head of the
mediator query and the query transformer of the query plan. Consider a query plan φ consist-
ing of a single query q, i.e., φ = (q,α,C,h). By definition, all variables appearing in C or α
must be exported, i.e., they also appear in the head of q. If not, the query plan could not be
executable. If φ comprises more queries, again, all variables in α or C must appear in the head
of some of those queries.

Definition (D5.24) (Containment for query plans).
Let M = (Σ,Ψ,Γ) and u ∈ CQC. Let P be the set of all query plans for u, and let φ1,φ2 ∈ P,
φi = (πi,αi,Ci,hi). Let qi be the query “hi(head(u)) ← αi(πi,Ci)” where we use
the heads of the mediator queries in πi as literals.

(D5.24) φ1 is contained in φ2, written φ1 ⊆ φ2, iff q1 ⊆ q2.

127

11 A RNA gene is a gene which is not translated into a protein, but only into RNA.

5. Query Planning using QCAs

Example 5.17.
Consider the following query u and QCA r:
u(x,y) ← rel(x,y),rel(z,z);
r: rel(a,b) ← W.v(a,b) ← somehow(a,b);

Let q = medq(r). There are two query plans (the IBA would produce only the second):
φ1=(<q(a,a)>,[b→a],∅,[x→a,y→a,z→a]);
φ2=(<q(a1,b1),q(a2,b2)>,[b2→a2],∅,[x→a1,y→b1,z→a2]);

We can see that one of the two query plans is redundant if we consider the query formed from
interpreting query heads as literals:
φ1(a,a) ← q(a,a);
φ2(a1,b1) ← q(a1,b1),q(a2,a2);

Using plan containment, we can define a sufficient condition for plan redundancy.

Lemma (L5.18) (Redundant query plans are pointless).
Let M = (Σ,Ψ,Γ) and u ∈ CQC. Let P be the set of all query plans for u, and let φ ∈ P.

(L5.18) If P contains a query plan φ’ with φ ⊆ φ’, then φ is redundant wrt. u.

Proof:
Our definition of containment for query plans directly uses the definition of the result of a
query plan (see Definition (D5.10), page 90). If the result of φ is contained in the result of φ’,
then executing φ can, under set semantic, not produce any tuples not already produced by φ’.
Therefore, φ is redundant wrt. u.

Remark:
The implication only holds in one direction. Following Definition (D5.23), we cannot find all
redundant query plans without more detailed knowledge about data sources than encoded in
QCAs. For instance, one source might offer the same data through different wrappers. The
same extension will flow through different mediator queries into the mediator. Plans using
those queries are potentially redundant, but this redundancy is not captured by our definitions.

We can prove plan containment using any of the algorithms described in Section 2.2. Since

we must only show that one plan is contained in another plan (we are not interested in the
particular containment mapping), it is better to use the DFA than the BFA.

Algorithm 11 finds all query plans that are contained in another query plan. It takes as in-
put the set P of query plans and tests each pair φ,φ’ ∈ P for containment in both directions.
The result is a set P’ of query plans such that no φ,φ’ ∈ P’, φ ≠ φ’, contain the other.

128

5. Query Planning using QCAs

Algorithm 11. Finding redundant query plans.

Input: Set P of query plans;
Output: Set P’ of query plans with |P’|≤|P|;

1: P’ = P;
2: foreach φ∈P
3: foreach φ’∈P’
4: if φ’=φ then
5: continue;
6: else if φ⊆φ’ then
7: P’ = P’ \ φ;
8: break;
9: end if;
10: end for;
11: end for;
12: return P’;

The algorithm manages two sets: the set P containing all query plans that have not yet been
tested against all other query plans that are not yet found to be redundant, and the set P’ con-
taining all query plans that have not yet been found to be redundant. No plan is tested against
itself. Whenever a query plan is found to be redundant, it is removed from P’.

Example 5.18.
Consider four query plans φ1, φ2, φ3, and φ4, such that φ2 ⊆ φ3 and φ4 ⊆ φ1. In the first loop,
the algorithm tests φ1 ⊆ φ2, φ1 ⊆ φ3, and φ1 ⊆ φ4. In the second loop, it first tests φ2 ⊆ φ1 and
then finds φ2 ⊆ φ3. φ2 is removed from P’. φ2 ⊆ φ4 is never tested. In the third loop, it tests φ3
⊆ φ1, and φ3 ⊆ φ4. In the forth loop it finally finds φ4 ⊆ φ1. Therefore, φ4 is removed from
P’. The resulting set of plans is P’ = {φ1,φ3}. No containment test was performed twice.

Theorem (T5.19)-(T5.21) (Analysis of Algorithm 11).
Let M = (Σ,Ψ,Γ) with only simple QCAs, and u ∈ CQC. Let P be the set of all query plans
for u, and k = |u|, n = |P|. Furthermore, let pcon, 0 ≤ pcon ≤ 1, be the probability that a
query plan is contained in another, arbitrary query plan.

(T5.19) In the worst case, finding all query plans that are contained in another query plan
requires O(n2) containment tests.

(T5.20) In the average case, finding all query plans that are contained in another query plan
requires

()∑ ∑
=

−

=

++−=

−

n

i

i

j

n
conii

con
i

jpinn,n,
p

min*n
1

1

1

1
1

1

containment tests.

(T5.21) The complexity of finding all query plans that are contained in another query plan is
O(n2kk).

129

5. Query Planning using QCAs

Proof:
(T5.19): In the worst case, no plan is contained in another plan. Testing each element of P
with each other element of P requires |P|2 - |P| tests.

•

•

•

(T5.20): Let q = 1-pcon, and let ni be the size of P’ in the i’th traversal of the main
loop, i.e., n1 = |p| = n. Using the same method as in the proof of Theorem (T2.18) (page
34), we can estimate that in the first traversal of the main loop in the average
min(n1,1/q) containment tests must be performed before one succeeds and the inner
loop is left. The probability that any of the n1 tests succeeds, leading to the removal of φ
from P’, is 1-qn1 (1 minus the probability that all fail). The size of P’ after this first tra-
versal is hence n2 = n1-1+qn1.
In the i’th traversal, we have min(ni,1/q) tests and the size of P’ is:

1
1 1 −

− +−= in
ii qnn

Since the main loop is passed n times, the formula follows.

(T5.21): Following Theorem (T2.19) (page 34), the complexity of testing containment of
a query q1 in a query q2 with k1 = |q1|, k2 = |q2| is ()21kkO . Each query plan contains at
most as many mediator queries as the user query has literals, i.e., at most k queries. Note
the containment test for query plans interprets the query heads as literals and does not
consider the expansions of query plans. Testing containment of a plan in another plan is
hence O(kk). O(n2) such tests must be performed.

Remarks:
It is beneficial to sort query plans in P such that early success is more likely, letting P’
shrink more quickly. For instance, in Example 5.18, the optimal order of containment tests
would be to first try φ2 ⊆ φ3 and then φ4 ⊆ φ1. In the example, we performed eight tests,
although an optimal enumeration required only four. Finding good enumeration strategies
is an open research problem.

•

• Eventually, we are interested in avoiding remote query executions. Filtering out redundant
plans is a means to achieve this goal. Each plan that is detected to be redundant can be
removed. To remove as many queries as possible, it is therefore better to remove long
plans instead of short plans. This is relevant in cases where two equivalent query plans
with differing length are found. Depending on the order in which the containment tests are
performed, either the shorter or the longer will be removed. We can guarantee that always
the longer is removed by ordering P by decreasing size.

The two previous remarks are in conflict: If we want to remove as many queries as possi-

ble, we should sort P by size; if we want to remove redundant plans as quickly as possible, we
need a different order.

So far, our definition of redundancy often fails to detect obvious redundancy, as we show
in the next example. The reason is that containment was only defined for query plans, but not
for plans. For instance, we cannot detect the redundancy that is present if one plan yields two
different query plans. In such cases, it suffices to execute the plan once and obtain the results
of the query plans from its result. But neither of the two query plans is redundant wrt. Defini-
tion (D5.23).

130

5. Query Planning using QCAs

Example 5.19.
Recall Example 5.14, page 116:
u(a,b,c) ← parent(a,b),parent(b,c);
r: parent(x,y),parent(y,z) ← v1(x,y,z) ← p_grantparent(x,y,z);

If we use the GTA to obtain query plans for u, we find the following plans:
p1(x,y,z) ← q(x,y,z);
p2(x1,y1,y3) ← q(x1,y1,z1),q(y1,y3,z3);
p3(x1,y1,z4) ← q(x1,y1,z1),q(y4,y1,z4);
p4(y2,z2,y3) ← q(x1,y2,z2),q(z2,y3,z3);
p5(y2,z2,z4) ← q(x1,y2,z2),q(x4,z2,z4);

If we check for redundant plans using our definition, we only find p1 ⊆ p3, i.e., only p1 is
redundant.

Recall that every plan (not every query plan) exports all variables that are exported in any

of its mediator queries. In the example, the results of all plans can be computed by executing
q only once. We see that a set of query plans can contain redundancy that cannot be detected
on the query plan level. We treat such cases in the following section.

5.4.2 Multiple Query Optimisation in MBIS

As described previously, a query plan is in principle executed by executing all wrapper que-
ries it contains, materialising the results in a temporary database, and finally executing the
user query on this temporary database. However, if a QCA r appears twice in a query plan (or
in different query plans), it is often possible to obtain the result of the query plan by executing
the wrapq(r) only once. Other occurrences of r are redundant.

The optimisation discussed in the previous section removes query plans entirely; here, we
show that how we can compute the results of different remaining query plans without having
to execute all wrapper queries they contain.

Example 5.20.
Consider the following user query u and QCAs r1, r2, and r3:
u(gid,gn,se) ← gene(gid,gn,-),genesequence(gid,sid,-),sequence(sid,se);

r1: gene(gid,gn,gd) ← W1.v1(gid,gn,gd) ← genes(gid,gn,gd);
r2: genesequence(gid,sid,-),sequence(sid,se) ← W2.v1(gid,se) ← sequen-

ces21(gid,se);
r3: genesequence(gid,sid,-),sequence(sid,se) ← W2.v2(gid,se) ← sequen-

cesX(gid,se);

W2 supports two different queries: One for genes on the X chromosome and one for genes on
chromosome 21. There are two query plans for u, expanding to:
p1(gid,gn,se) ← W1.v1(gid,gn,-),W2.v1(gid,se);
p2(gid,gn,se) ← W1.v1(gid,gn,-),W2.v2(gid,se);

To obtain the results of both plans it is not necessary to execute W1.v1 twice.

Finding and eliminating redundant parts in a set of queries is called multiple query optimi-

sation (or multi query optimisation) [Jar85; SG90]. In a centralised database system, the goal

131

5. Query Planning using QCAs

... um

u

φ1 ... φn

(a) (b)

Wrapper queries

User query

Query plansUser queries

Query
execution

plans

Figure 31. Multiple query optimisation. (a) In a central database. (b) In MBIS.

u1

of a multiple query optimiser (MQO) is to find a query execution plan of minimal cost for a
given set of queries. The problem can be decomposed into two sub-problems:

The MQO needs to identify common subexpressions, i.e., subqueries that appear more
than once in the set of queries [CD98].

•

•

•

•

Assigning some cost to each operation (and therefore, indirectly, to each subexpression),
the MQO needs to find a plan, i.e., a set of operations and an order on them, which com-
putes the results of all queries at minimal cost [SSN94].

In MBIS, we have a single user query that is rewritten into a set of query plans. The differ-
ence between a MQO in a central database and in MBIS is illustrated in Figure 31. In central-
ised database systems, execution plans for a set of queries are compared and identical subex-
pressions are isolated. In MBIS, a single query results in multiple query plans potentially us-
ing common wrapper queries. This set of plans is the input to a MQO. The smallest, unbreak-
able “operation” in our context is the execution of single wrapper query because only entire
wrapper queries are semantically defined (through a QCA), and only entire wrapper queries
are guaranteed to be executable (see Definition (D3.2), page 53).

The two subproblems of MQO remain the same. We approach them as follows:

We describe two approaches for the identification of common subexpressions. In Section
5.4.2.1, we describe an algorithm that identifies multiple occurrences of the same wrapper
query. The algorithm is linear and already detects many typical cases of redundant que-
ries.
In Section 5.4.2.2, we introduce an algorithm that also detects redundancy between differ-
ent QCAs. It is based on a modification of query equivalence (see Definition (D2.13),
page 19). This algorithm is more powerful than the first one, but also more complex.

We use a very simple cost model. We strive for the maximal reduction in the number of
remote query executions. Therefore, our cost model can be described through the follow-
ing formula. Let Q be the bag of all wrapper queries of any query plan for a user query u.
The cost of answering u, c(u), is defined as:

∑
∈

=
Qq

)q(c)u(c

where the cost of a single wrapper query, c(q), is defined as:

=∈∀
else:

executedisq:
)q(c:Qq

0
1

132

5. Query Planning using QCAs

In general, this does not coincide with minimal query execution time, as we shall discuss
at the end of this section. The combination of our logic model with a detailed time-based
cost model for distributed query optimisation, as described in [OV99], is beyond the scope
of this work. Examples where our cost model is adequate and where not are given in Sec-
tion 5.4.2.3.

5.4.2.1 Finding redundancy between identical QCAs.
At first, we assume that no selection or projection in a plan can be pushed to the wrapper.
Under this assumption, a query plan is executed by executing (in isolation and possibly in
parallel) each wrapper query as it is. Joins, constraints, and projections as derived from the
user query are applied by the mediator. The order of executing wrapper queries does not mat-
ter. Furthermore, if two query plans are based on the same plan candidate, the result of both
can be obtained by executing all queries of the candidate only once, since those query plans
can only differ in the attributes they select or in additional conditions they require. Recall that
a plan exports all attributes that are exported in any of the QCAs it contains (see Definition
(D5.2), page 87).

We conclude that all occurrences of a QCA in any query plan are equivalent if no opera-
tions are pushed. If we have a set P of query plans, we must only execute the set Q of wrapper
queries defined as:

U
P,q

qQ
∈φφ∈

=

The extensions of all query plans may be derived from those results. Q may be computed in
time linear to the sum of the lengths of all query plans. Furthermore, the wrapper queries in Q
can be executed in parallel.

However, ignoring the possibility to push operations often leads to non-optimal execution
strategies, as shown in the following example.

Example 5.21.
Consider the following two QCAs r1 and r2 and user queries u1 and u2. u1 asks for all map
positions of clones smaller than 100KB, while u2 asks for all map positions of a specific BAC
clone.
u1(cid,cn,mid,po) ← clone(cid,cn,-,cl),clonelocation(cid,mid,po),cl<100;
u2(mid,po) ← clone(cid,cn,ct,-),clonelocation(cid,mid,po),ct=’BAC’,

cn=’yWXD1’;

r1: clone(cid,cn,-,cl),clonelocation(cid,mid,po),map(mid,mn,-,-,-) ←
W1.v1(cid,cn,cl,mid,po,mn) ← WWWList(mid,mn,po,cid,cn,cl);

r2: clone(cid,cn,ct,cl),ct=’PAC’ ← W2.v1(cid,cn,cl) ← PacList(cid,cn,cl);

We first plan u1. There are two query plans:
φ1=({medq(r1)},[],{cl<100}},[cid→cid,cn→cn,cl→cl,mid→mid,po→po]);
φ2=({medq(r2),medq(r1)},[cid2→cid1],{cl1<100},[cid→cid1,cn→cn1,cl→cl1,

mid→mid2,po→po2]);

The first query plan uses only W1, while the second gets all clones from W2 that are smaller
than 100 KB and then combines them with their map position in W1. The extensions of both
query plans can differ, since W1 and W2 may store different values for the length of a specific
clone. Consider a clone whose length is above 100KB in W1 and below 100KB in W2. This
clone will only be found by the second query plan. The extension of both plans can be com-
puted by executing W1.v1 (without a condition on the clone length!) and W2.v1.

133

5. Query Planning using QCAs

Now consider u2, which requests information about a specific clone. There is only one
query plan φ, which uses r1. Using r2 is not possible because of the conflict in ct. Clearly, φ
can be executed by executing wrapq(r1) and applying the condition on cn and ct in the
mediator. However, this approach is not optimal since it requires to download much more
data than necessary. If W1 is capable of accepting equality conditions, it is more efficient to
push the selection.

The question at hand is: When it is possible to combine pushing of operations with the ef-

ficient and simply optimisation model discussed so-far? We identify the following cases:

Pushing conditions can be integrated as follows. Instead of removing all copies of a QCA
except one, we only remove queries whose “footprint” is contained in the “footprint” of
another instance of the same query. The footprint of QCA is the head of the QCA plus all
conditions on variables appearing in this head, with variable renamings associated with
the query plan being applied.

•

•

•

Using this model, the conditions in u2 (see Example 5.21) are pushed. Furthermore, we
correctly detect that executing r1 in the query plan φ2 for u1 is not necessary because the
footprint W1.v1(cid,cn,cl,mid,po,mn),cl < 100 is contained in the footprint of
the occurrence of r1 in φ1, i.e., W1.v1(cid,cn,cl,mid,po,mn). The necessary “con-
tainment tests” are linear since either query of each tested pair has only one literal.

Pushing joins between different QCAs cannot be integrated as easily. Assume a plan with
body “q1(X,Y),q2(Y,Z)”. The idea would be to first execute q1 (or q2), obtain the
values for Y and then push these values as conditions into q2 (or q1, respectively).
This approach is not compatible with a MQO using query containment because we do not
know any more in advance what wrapper queries are actually executed at run-time. Push-
ing joins requires a dynamic MQO.

Pushing projections can be integrated as follows. Imagine a QCA r appearing multiple
times, requiring different subsets of export(r). If r has no conditions, it suffices to
execute r once, selecting the union of all required attributes in all occurrences of r. How-
ever, we have to be more careful if r contains conditions that shall be pushed, too. Imag-
ine two occurrences r’ and r” of a QCA r, selecting the attribute sets E1 and E2 and car-
rying different conditions. Suppose that there exists a symbol mapping from the footprint
of r” into the footprint of r’ that fulfils conditions CM2 - CM4 (see Definition (D2.16)).
If E1 = E2 or E1 ⊆ E2, then only r” needs to be executed. Otherwise, r” needs to “piggy-
back” the exported attributes of r’, which means that r” has to be modified such that
more variables are exported. The necessary tests are again linear.

We highlight the problems of combining MQO with pushing of operations by the following
examples.

Example 5.22.
Consider the following user query and QCA:
u(a,b,c) ← rel(d,a,b),rel(a,c,-),d=’1’;
r: rel(x,y,z) ← W.v(x,y,z) ← somehow(x,y,z);

There are two query plans:
φ1=({medq(r)},[x→y],{y=’1’},[d→y,a→y,b→z,c→y]);
φ2=({medq(r),medq(r)},[x2→y1],{x1=’1’},[d→x1,a→y1,b→z1,c→y2]);

134

5. Query Planning using QCAs

The footprint of the three occurrences of r are:
q1: W.v(y,y,z),y=’1’;
q2: W.v(x1,y1,z1),x1=’1’;
q3: W.v(x2,y2,z2);

If we push projections and joins, the actual queries are:
q1: W.v(‘1’,’1’,z);
q2: W.v(‘1’,y1,z1);
q3: W.v(x2,y2,-);

Since q1 ⊆ q2, we conclude that q1 is redundant. Furthermore, q2 ⊆ q3 – but we cannot an-
swer q2 by executing q3 because q3 does not export the attribute corresponding to z1. Fortu-
nately, we can modify q3 to a query q3’:
q3’: W.v(x2,y2,z2);

which is the only query we must execute remotely.

5.4.2.2 Finding redundancy between different QCAs.
In the previous section we presented a method to remove redundancy in plans that stem from
multiple occurrences of a the same QCA. We now consider redundancy between different
QCAs. Again, we first assume that no operations can be pushed and discuss extensions at the
end of the section.

To compare the extensions of different wrapper queries, we make the assumption that the
extension of a literal of a relation rel of the export schema of a wrapper W is identical in all
appearances of rel in any wrapper query of W. This assumption is intuitive and correct if
RDBMS are used as data sources, but has to be carefully checked if web sites are used.

Based on this assumption we strive for a definition of replaceability of QCAs. Intuitively,
a QCA r1 is replaceable through another QCA r2 if the result of r1 can be computed only
from the result of r2. Hence, if r1 is replaceable by r2 and both appear in some query plan, it
suffices to execute only r2 remotely – the extension of r1 can be computed from this result.

A first attempt to define replaceability formally is to require containment. However, the
following examples motivate that containment is not enough. A next approach is to require
containment of one QCA in a transformed and executable form of the other QCA. Requiring
query transformers is necessary, but still not sufficient. Finally, we show that equivalence of
two QCAs is too strong.

Example 5.23.
Consider the following wrapper queries:
W.v1(cid,cn,ct) ← clone(cid,cn,ct,cl),cl<50;
W.v2(cid,cn) ← clone(cid,cn,-,cl),cl<100;
W.v3(cid,cn,ct) ← clone(cid,cn,ct,cl),cl<100;
W.v4(cid,cn,ct) ← clone(cid,cn,ct,cl),cid<10,clonelocation(cid,mid,po),

map(mid,-,mt,-),mt=’physical’;
W.v5(cid,cn) ← clone(cid,cn,-,cl),cl<50;

Clearly, v1 ⊆ v2. But we cannot compute the extension of v1 from the result of v2 because v2
does not export the clonetype. v1 ⊆ v2 only implies that the result of v1, projected to the
exported variables of v2, is contained in the result of v2. This does not suffices for replace-
ability (see Figure 32).

135

5. Query Planning using QCAs

(b)

q1 q1

q2q2

(a)
Figure 32. Difference between containment and replaceability.

(a) q ⊆ q : all rows of q are contained in q , and all exported variables of q are computed.
(b) q ⊑ q . The rows and columns for q are contained in q . They must also be identifiable.

1 2 1 2 2

1 2 1 2

Next we see that v1 ⊆ v3. But, again, we cannot compute the extension of v1 from the re-
sult of v3 because cl is not exported, and therefore the condition in v1 cannot be enforced on
the result of v3.

We next consider v1 and v4. We find that v4 ⊆ []<v1(cid,cn,ct),cid<10>. How-
ever, to obtain the result of v4 we must consider all clones and then filter out all tuples de-
scribing clones that are not on any physical map. This filtering is not possible on the result of
v1 only.

All the problems discussed so far could be avoided by requiring equivalence of one wrap-
per query with the other wrapper query plus a query transformer. However, this requirement
is too strong. Consider v1 and v5. Both wrapper queries are equivalent, except that ct is not
exported in v5. But nevertheless v5 is obviously replaceable through v1.

We can formally define replaceability.

Definition (D5.25) (Replaceable QCAs).
Let M = (Σ,Ψ,Γ) and u ∈ CQC Let r1,r2 ∈ Γ, origin(r1) = origin(r2), be two
QCAs and let q1 = wrapq(r1) and q2 = wrapq(r2).

(D5.25) r1 is replaceable by r2, written r1 ⊑ r2, iff ∃ α,C:
• α(q2,C) is an executable mediator query, and
• α(q2,C) ⊆ q1, and
• q1 ⊆ α(q2,C), ignoring rule CM1 of Definition (D2.16), page 19.

Remark:
Every QCA is replaceable by itself. The definition therefore subsumes all cases discussed in
the previous section. Checking replaceability is more general than comparing only query
heads, but is also computationally more complex and makes additional assumptions that may
not always hold.

Our definition of replaceability is independent of any query plan. Replaceable QCAs may,

for instance, occur during the design of a MBIS if an administrator has certain “typical”
global queries in mind. This administrator will naturally try to define QCAs according to
these queries, even if they are overlapping or replaceable with other QCAs.

136

5. Query Planning using QCAs

It is tempting to simply remove all replaceable QCAs from a mediator. But even replace-
able QCAs can help the mediator to answer queries more efficiently, as shown in the follow-
ing examples.

Example 5.24.
Consider the following QCAs describing two queries against a wrapper W. One query obtains
information about STS’s, which are a type of short PCR markers, and the other obtains infor-
mation about EST’s, which are a special kind of STS’s. W stores both classes in a single rela-
tion together with a discriminating flag; in the mediator schema, the classes are stored in sepa-
rate relations.
r : sts(stid,na,flag) ← W.v (stid,na,flag) ← PCR_marker(stid,na,flag); 1 1

r : est(esid,na) ← W.v (esid,na) ← PCR_marker(esid,na,flag),flag=’true’; 2 2

Clearly r2 ⊑ r1 – the result of r can be computed by filtering from the result of r all tuples
with flag ≠ ’true’. Formally, the conditions for replaceability are fulfilled with α = []
and C = {flag=’true’}. But it is nevertheless meaningful to specify both QCAs. A user
query asking for ESTs can be answered using r only, shipping less data, while a user query
asking for STS’s and EST’s can be answered using only r .

2 1

2

1

Proving replaceability of QCA includes the discovery of executable query transformers.

For this purpose, we can reuse our query planning algorithms.

Algorithm 12. Testing replaceability of query plans.

Input: Two QCAs r , r . 1 2

Output: If r ⊑ r then true, else false. 1 2

Algorithm: If origin(r) ≠ origin(r) then report false. Else, let q = wrapq(r),
q = wrapq(r). Search a correct and executable plan p = ({q },α,C) for q . If no such
p exists, report false. Else, test if q ⊆ α(q ,C), ignoring CM1 from Definition (D2.16). If
yes, report true, else false.

1 2 1 1

2 2 2 1

1 2

The two conditions tested in Algorithm 12 are sufficient for complex QCAs and sufficient

and necessary for simple QCAs. We omit a formal proof.

Lemma (L5.22)-(L5.23) (Complexity of testing replaceability).
Let Q be the set of all wrapper queries that must be executed to compute the answer to a user
query u. Let q ,q ∈ Q with origin(r) = origin(r) and q = wrapq(r), q =
wrapq(r). Furthermore, let k = |q |, k = |q |, and l be the maximal length of a
wrapper query in Q.

1 2 1 2 1 1 2

2 1 1 2 2 max

(L5.22) Testing whether r ⊑ r is 1 2 .

(L5.23) Finding all replaceable QCAs in Q is O .

() ()()12
21

kk kkO +

()()maxl
maxl*Q 2

137

5. Query Planning using QCAs

Proof:
(L5.22): We can use the IBA to test the first condition of Algorithm 12. The complexity of
the IBA was given in Theorem (T5.17), page 122. We search a plan for q1, hence k = k1,
only using q , hence s = k . To test the second condition, we can use the DFA, whose
complexity was given in Theorem (T2.19), page 34. Removing CM1 neither increases nor
decreases the complexity of the DFA.

•

•

2 sum 2

(L5.23): In the worst case, the origin of all QCAs in Q is the same, all QCAs are different,
none is replaceable, and they all have the same length l . We have to perform |Q| -
|Q| replaceability tests. Together, we get:

max
2

Remarks:
•

•

•

We require Q to be a set (and not a bag) since it is reasonable to remove duplicates first,
using the methods presented in the previous section.
Replaceability only has to be tested between QCAs defined for the same wrapper. This
greatly reduces the number of tests in real-life applications.
Finding all redundant query plans is much faster than finding all query plans. For instance,
assume that no QCA has a repeated literal. Then each replaceability test is linear in the
size of the two QCAs because each bucket computed by the IBA contains at most one lit-
eral. In contrast, query planning can be arbitrarily expensive depending on how many
times a relation appears in any QCA.

Replaceability of QCAs essentially requires the containment of one QCA in the other.

Therefore, it is compatible with the pushing of conditions of the user query, i.e., we can safely
ignore replaceable QCAs even if conditions are pushed to the wrappers. For pushing projec-
tions the same provisions must be made as for the removal of identical QCAs (previous sec-
tion). Pushing joins again requires dynamic optimisation.

5.4.2.3 Assessing the cost model.
The optimisations we discussed in this section strive for the maximal reduction of queries that
must be executed remotely. This is a heuristics for achieving the primary goal of query opti-
misation, i.e., minimising the time to answer a query. Under the assumption that latency is
becoming the predominant factor in modern networks, this heuristic is reasonable. However,
as soon as the difference in time it needs to transmit packages of varying size dominates la-
tency, out cost model will not produce optimal results. An improved cost model, taking both
transmission time of query results and network latency into account, is left to future work.

We finish this section by discussing one example where our MQO achieves very good re-
sults and one where it fails.

Example 5.25 (good).

() () ()()() ()()maxmaxmax l
max

l
max

l
max l*QOll*QQO 22 =+−

Consider a mediator whose schema has only one relation, parentOf(parent,child). A
wrapper W stores relationships between persons and their grandparents. Consider the follow-
ing query u, asking for all persons having grandchildren, and QCA r:
u(y) ← parentOf(y,x),parentOf(x,z);
r: parentOf(a,b),parentOf(b,c) ← W.v(a,b,c) ← grandParent(a,b,c);

138

5. Query Planning using QCAs

Let q = medq(r). The IBA generates four query plans:
φ =({q,q},[a →b],∅,[y→a ,x→b ,z→b]); 1 2 1 1 1 2

φ2=({q,q},[b2→b],∅,[y→a ,x→b ,z→c]); 1 1 1 2

φ =({q,q},[a →c],∅,[y→b ,x→c ,z→b]); 3 2 1 1 1 2

φ =({q,q},[b →c],∅,[y→b ,x→c ,z→c]); 4 2 1 1 1 2

which expand to the plans:
p (a) ← q(a ,b ,c),q(b ,b ,c); 1 1 1 1 1 1 2 2

p (a) ← q(a ,b ,c),q(a ,b ,c); 2 1 1 1 1 2 1 2

p (b) ← q(a ,b ,c),q(c ,b ,c); 3 1 1 1 1 1 2 2

p (b) ← q(a ,b ,c),q(a ,c ,c); 4 1 1 1 1 2 1 2

None of these query plans is redundant. The MQO will find that all except one QCAs are re-
placeable, i.e., it will execute q only once. This is reasonable. The extensions of all four query
plans can be computed on the extension of q.

Example 5.26 (bad).
Consider the same mediator schema as in the previous example, and a wrapper W’ having the
same schema as the mediator. Consider the query u’ asking for the grandparents of a person
called ‘Peter’, and QCA r’:
u’(y) ← parentOf(y,x),parentOf(x,z),z=‘Peter’;
r’: parentOf(a,b) ← W’.v(a,b) ← parentOf(a,b);

There is one query plan:
φ=({medq(r’),medq(r’)},[a →b],{b =’Peter’},[y→a ,x→b ,z→b]); 2 1 2 1 1 2

The MQO detects that both queries address the same wrapper and that the result of one (in-
cluding the condition) is contained in the result of the other one (without condition). This is
independent of whether the MQO assumes that the condition is enforced at the wrapper side
or at the mediator side. The MQO will therefore execute q without any bindings. Imagine that
W’ stores 100.000 tuples. The redundancy-free plan results in the execution of one remote
query and the transmission of 100.000 tuples.

However, we can also execute wrapper queries sequentially. We can assume that each
child has exactly 2 parents. The sequential execution strategy will therefore at most execute
two queries: The first asks for the parent of Peter, resulting in the transmission of at most
two tuples (assuming that only one person called ‘Peter’ exists). The second query then re-
quests the parents of the parents of Peter, resulting in at most four tuples. Altogether, not
more than six tuples are transmitted over the network.

5.5 Summary and Related Work

This chapter discussed algorithms for query planning and for the detection of redundancy in
query plans. Our goal was to investigate methods to find the minimal set of remote query exe-
cutions that is necessary to compute the complete answer to a given user query.

139

5. Query Planning using QCAs

We formally introduced plan candidates, plans, and query plans. Plan candidates are sim-
ply sets of mediator queries; plans are plan candidates together with some transformations;
finally, query plans are plans whose expansions are contained in a given user query.

We analysed the connection between query plans and the semantics of a user query. We
proved that any algorithm finding all query plans for a user query u computes the answer to
u. However, there potentially exists an infinite number of query plans for any user query. For-
tunately, we could prove that most of those query plans do not compute helpful tuples. Pre-
cisely, we showed that any query plan that contains more mediator queries than the user query
has literals is non-minimal, i.e., computes only tuples that are also computed by a minimal
plan. This theorem allows query planning algorithm to consider only query plans up to the
size of the user query.

We described and analysed two such algorithms: the generate & test algorithm and the im-
proved bucket algorithm. Both algorithms are sound and complete for CQ queries. A com-
plexity analysis revealed that the IBA is considerably more efficient than the GTA. We con-
firmed this statement through simulations, in which the IBA behaved well for – on average –
mediators with up to 50 and more QCAs and queries with up to six literals. To our best
knowledge, the IBA is the most efficient algorithm for query planning published until today.

S

Next, we studied redundancy in query plans. Query planning essentially produces a set of
query plans. Computing the union of the results of those plans does not necessarily require
that each query plan is executed literally. We described three algorithm that detect and re-
move redundancy within and between query plans. These algorithms differ in their complex-
ity and in the classes of redundancy they detect: The more complex the algorithm, the more
types of redundancies are detected. However, even the simplest method is already capable of
considerably accelerating the computation of the answer to a user query.

Related Work.

The basis for query planning in MBIS using an LaV approach was first studied in [LMSS95].
In this paper, Levy et al. formally analyse the problem of “answering queries using views”:
They assume the existence of a set of materialised views and study how they can answer arbi-
trary queries using only those views. They prove that, for conjunctive queries with only equal-
ity predicates, it suffices to consider only combination of views up to the length of the query
(see Section 5.1.2). Using such a mechanism for data integration was first sketched by Tsata-
los et al. in [TSI94]. In gained popularity through a seminal paper of Levy et al. published in
1996 [LRO96a].

Apart from our work, three algorithms for query planning have been published since: The
bucket algorithm developed by Levy et al. in the Information Manifold project [LRO96a;
LRO96b], the query folding algorithm published by Qian [Qia96], and the inverted rules al-
gorithm developed in the Infomaster project by Genesereth et al. [GKD97]. A predecessor of
the IBA was published in [Les98a]. In the following we describe each of those three algo-
rithms and compare them to our results.

Information Manifold: The bucket algorithm.
The Information Manifold project (IM) was the first to apply a Local-as-View approach to the
integration of heterogeneous data sources. The IM uses a subset of description logic CARIN
[LR96] as data model for mediator schemas. This subset is equivalent to non-recursive, posi-
tive DATALOG extended with inclusion dependencies between relations.

In the IM data sources are represented through capability records. A capability record is a
five-tuple that contains an intensional description of the content of the data source in terms of
a conjunctive view on the mediator schema, and information about possible conditions on

140

5. Query Planning using QCAs

attributes. The IM assumes that every data source is described through one interface program,
i.e., through one relation.

Therefore, it is difficult to compare the BA with our algorithms in detail. Roughly, the BA
proceeds as follows:

•

•

It first constructs one bucket per literal of the user query. Into this bucket it puts every
view that contains a literal with the same name and for which a most general unifier be-
tween both literals exists. It does not check if all necessary variables are exported, as the
IBA does, although the authors recognise this as a problem in [LRO96a]. The authors also
observed the problem of non-exported variables carrying conditions that cannot be en-
forced by the mediator, but do not address it in the following.
In a second step, the BA enumerates the cartesian product of all buckets. Each element of
this product is a combination of views. However, the BA has to test more view combina-
tions then contained in the cartesian product of the buckets. Consider that a combination
<q ,q ,q ,q > was enumerated. To ensure completeness, the BA has to test the follow-
ing combinations: <q ,q >, <q ,q ,q >, <q ,q ,q >, and <q ,q ,q ,q >, because
the BA has no merging operation as the IBA has. The BA checks for each such combina-
tion whether it is contained in the user query or not. If yes, the combination is considered
as correct.

1 2 2

1 2

The IM uses the bucket algorithm (BA) for query planning. The algorithm is described in
three different papers. [LRO96a] describes the Information Manifold project in general. The
paper only sketches query planning but concentrates on whether or not a query plan can be
executed considering the capabilities of the sources represented through the binding patterns.
The planning algorithm is explained in more detail in [LRO96b], but without explaining the
actual algorithm for containment tests. The reader is referred to [LR96], which discusses the
“existential entailment problem” for CARIN. The relationship to the containment problem for
conjunctive queries is not straight-forward.

1

1 1 2 1 2 2 1 2 2

This approach is equivalent to the GTA enhanced with a bucket generation strategy as dis-
cussed in Section 5.2.4. We there also showed that bucket construction alone does not im-
prove the complexity of query planning. Furthermore, the BA does not consider the difference
between plans and query plans, and especially the 1:n relationships between both.

The IM applies a minimisation procedure to each correct plan [LRO96a]. This procedure is
exponential in the length of a plan. We discussed similar techniques in Section 5.4. We also
included heuristics that are faster and already find many non-minimal plans. Recall that exe-
cuting only minimal plans does not guarantee the execution of a minimal number of queries.
The notion of minimality used in [LRO96a] does not take plan transformer into account, and
it is not clear how this would affect their algorithms.

Query folding.
Qian [Qia96] analyses the problem of query folding. A query folding is a rewriting of a query
using views, and hence a different term for the problem of answering queries using views.
Qian calls a query folding

• complete if the rewriting uses only views and no other relations. For information integra-
tion, only complete foldings are interesting.

1

Neither of the papers gives a precise complexity of the BA algorithm. The authors only
state that it is exponential in the length of the user query. This confirms our Theorem (T5.10),
assuming that every QCA is considered as a unique data sources.

• strong if the rewriting is equivalent to the original query. In MBIS, planning algorithms
usually produce only contained rewriting, since extensional relationships between differ-
ent data sources are anyway unknown.

141

5. Query Planning using QCAs

The query folding algorithm (QFA) presented in [Qia96] proceeds as follows. It first con-
structs a set of folding rules by “inverting” each view. This means that each view is translated
in as many rules as the view has literals. The head of each of these rules is the literal of the
view and the body is the original view head. Non-exported variables in a rule are skolemized,
i.e., replaced by a function term using all exported variables of the view as arguments.

Given a user query u, the QFA constructs one set for each literal l of u, called the label of
l. In the label of l it puts all rules where:

• the head of the rule unifies with l, and
• after unification, the body of the rule does not contain any skolem term and the head does

not contain a skolem term for an exported variable of l.

We describe the algorithm by an example. Consider the following user query and views:
u(ge,se,pr,or) ← gene(ge,se,pr),org(ge,or);

v (ge,se,pr) ← gene(ge,se,pr); 1

2

The inverse rules are (note the skolemisation of the non-exported variable in v): 2

gene(ge,se,pr) ← v (ge,se,pr);
gene(ge,se,f(ge,se)) ← v (ge,se,or); 2

org(ge,or) ← v (ge,pr,or); 2

Finally, the QFA constructs the cartesian product of all labels. Rules, i.e., their bodies, are
connected using the unification join (u-join).

v (ge,se,or) ← gene(ge,se,-),org(ge,or);

1

The labels for the two literals of u are:
Lgene= {(ge,se,pr)|v1(ge,se,pr),

 (ge,se,f(ge,se))|v (ge,se,or)}; 2

L = {(ge,or)|v (ge,se,or)}; org 2

The second element of L is deleted because it is not “proper”: It contains a skolem term in
the place of an exported variable. The two remaining label elements are then combined using
the u-join. This yields the one and only query plan:

gene

u(ge,se,pr,or) ← v (ge,se,pr),v (ge,se,or); 1 2

The QFA is somehow similar to the IBA. The labels are similar to the initial buckets, and the
u-join essentially plays the role of the union of two partial plans. However, the QFA cannot
deal with conditions in queries apart from equations. The QFA is, as the IBA, exponential in
the size of u. A more detailed complexity analysis is not published.

Infomaster: the inverse rules algorithm.

142

A third algorithm for query planning, called the inverted rules algorithm (IRA), was devel-
oped in the Infomaster project [GKD97]. The IRA first generates inverse rules in the same
way as the QFA. These rules, together with the user query, are interpreted as a logic program.
This program can be cleaned from potentially occurring functional terms. The resulting
DATALOG program can be executed, where inverse rules are executed by calling the appro-
priate source interface.

The idea of the IRA is enticingly simply. Notably it can also deal with recursive user que-
ries [DG97] (but not with recursive views, since this problem is undecidable, see Section 2.4),
and can be extended to consider functional dependencies and binding patterns [DL97].

The IRA is very similar to the QFA. The main difference is that it generates a more com-
pact representation of the overall solution – the result is a DATALOG program instead of a
union of query plans. As the QFA, the IRA cannot deal with built-in comparison predicates. A
further disadvantage is that, in contrast to the BA and the IBA, the IRA has no way of detect-

5. Query Planning using QCAs

ing when views have to be executed multiple times and when not. For instance, if a view body
consists of a join between two literals that also appears in the user query, then the resulting
DATALOG program will execute this view twice – once for each of the two literals, repre-
sented through different inverse rules. The IBA also generates a query plan with two occur-
rences of the view, but we showed that such redundancies can be removed easily.

The IRA is polynomial in the sense that generating the DATALOG program takes only
polynomial time [DG97]. However, executing the program, for instance by a top-down
evaluation, will nevertheless need exponential time. Generating the program is the same step
as computing buckets in the IBA – and executing the program amounts to a traversal of the
search tree. Infomaster uses only conjunctive queries with equality. For such queries, partial
plans are only rarely incompatible. However, as soon as more expressive queries are permit-
ted, it is reasonable to first test entire plans (as the BA and IBA does), instead of immediately
starting to execute views (as the IRA does).

Interestingly, the IRA has a restricted, built-in multiple query optimiser. Consider the fol-
lowing user query and views:
u(a,b) ← rel (a,c),rel (c,d); 1 2

v (x,z) ← rel (x,z); 1 1

v (z,y) ← rel (z,y); 2 2

v (z,y) ← rel (z,y); 3 2

The BA, as the IBA or the QFA, will find two query plans:
u(x,y) ← v (x,z),v (z,y); 1 2

u(x,y) ← v (x,z),v (z,y); 1 3

and, without recognising the redundancy, execute v twice. In contrast, the IRA will generate
the following logic program:

1

u(a,b) ← rel (a,c),rel (c,d); 1 2

rel (x,z) ← v (x,z); 1 1

rel (z,y) ← v (z,y); 2 2

rel (z,y) ← v (z,y); 2 3

Executing this program requires to execute v only once. 1

This mechanism does however not find all redundancies. As already mentions, the IRA
can, for instance, not decide whether or not a view that appears twice in a program indeed has
to be executed twice.

More query planning algorithms.
Chaudhuri et al. describe an algorithm for using materialised views in a central database
[CKPS95]. Accordingly, the authors are only interested in equivalent and not in contained
rewritings. The main advantage of their algorithm is that it can be seamlessly integrated in a
conventional dynamic programming query optimiser. However, it is not complete, i.e., it does
not find all possible query rewritings. The reason is that every replacement of a subquery of
the query with a view is immediately performed whenever the algorithm finds one. Other
views that also cover parts of this subquery are not considered any more.

Grahne & Mendelzon investigate the semantics of LaV [GM99] (see also Section 4.5).
They briefly sketch an algorithm conforming to their semantics. Due to the brevity of the de-
scription, no comparison is possible. However, the authors compare their approach to the BA.
They claim that a “straight-forward implementation” of the BA has complexity O .
This result conflicts with our observation that the BA has the same complexity as the GTA,
which is O (see Theorem (T5.10)). The difference is tremendous, since
their formula implies that the BA is exponential both in the size of the query and in the num-

()maxnsknn

() ()()kk
avg

k knse +

143

5. Query Planning using QCAs

ber of QCAs. Since the authors do not motivate their formula, we cannot explain the differ-
ence.

Extending user queries.
Extending the expressiveness of user queries with interpreted predicates is relatively simply.
Consider, for instance, inequality predicates (a ≠ b). We can treat inequalities in the follow-
ing way: We first remove all inequalities from the user query and generate query plans for this
modified query as usual. After executing all query plans, we compute the original query on
those results.

Note however that, by doing so, predicates are never pushed into the wrappers. Further-
more, it is not detected when a mediator query conflicts with such predicates. Consider for
instance:
u(a,x) ← rel(x,y),x≠y;
q(a) ← rel(a,a);

The mediator executes q although the result of q is certainly not contained in the result of u.
User queries with disjunctions can be treated by first rewriting them into their disjunctive

normal form and then planning each of the disjuncts separately. As for inequalities, this
method is feasible, but not optimal, since disjunctions are never pushed.

Binding patterns.
Query planning in the presence of binding patterns was first analysed in [RSU95]. To include
binding patterns, a couple of things have to be considered:

•

•

•

The bound for the length of query plans does not hold any more. Kwok & Weld show that
actually no length bound exists at all [KW96]. Query planning with binding patterns is
hence inherently incomplete.
Our semantics for MBIS is ill-defined in the presence of binding patterns since our notion
of “executable query” is not sufficient any more (see Definition (D3.2), page 53).
Consequently, the definition of “executable plans” also needs to be adapted (see (D5.5),
page 88). A plan is only executable if there exists an ordering on its QCAs such that all
binding patterns are respected. Finding such an ordering is simple. A polynomial algo-
rithm is described in [LRO96a].

A detailed analysis of the impact of binding patterns on the search space of a query planner is
given in [FLMS99].

Quality based query planning.
In many domains, the quality of information obtained from different data sources varies to a
great extent. This leads to the situation that, within the many query plans that may be found
for a user query, already a few will produce most of the relevant data. Avoiding the execution
of query plans that obtain only qualitatively bad results can save considerable time without
significantly lowering the quality of the overall result. Identifying “bad” query plans incorpo-
rates two sub-problems: measuring information quality, and using quality measurements in
the query planner.

In joint work with Naumann and Freytag, we described a framework and algorithm for
quality-driven query planning in [NLF99b]. We address the first problem by introducing
quality-annotated QCAs. We describe a set of 12 different criteria that capture a domain spe-
cific definition of information quality, including for instance completeness, accuracy, and
timelines. A vector of scores for those 12 criteria is attached to each QCA, measuring the
quality of the information described through this QCA. During query planning, we consider
information quality annotations in a two step procedure: In the first step we compute the set of

144

5. Query Planning using QCAs

all query plans. In the second step we sort query plans according to their quality, where the
quality of a query plan is aggregated from the quality of its QCAs following the join structure
of the plan. We therefore devise appropriate merge functions to combine quality annotations.

Other extensions to query planning.
Query planning with specialisation relationships between relations of the mediator schema is
not more difficult than without. For the IBA, it is only necessary to adopt the bucket construc-
tion. For a bucket of a literal l of a relation rel in the user query, we not only have to con-
sider literals for rel in mediator queries, but also literals for specialisations of rel. The
complexity of the algorithm does not change. Specialisation relationships have already been
mentioned in the Information Manifold project. A generalisation to arbitrary inclusion de-
pendencies is formally analysed in [Gry98].

Recursive user queries and mediator schemas with functional dependencies are considered
in [DG97; DL97]. Query planning with negation is described in [LS93]. [CNS99] treats mate-
rialised views involving aggregation. [LS97] discussed complex objects and query contain-
ment. Finally, [Mil98] investigates query containment and query planning in the presence of
schematic variables, i.e., queries where relations or attribute names can be variables.

Multiple query optimisation.
Multiple query optimisation has received surprisingly little attention in the database research
community. Only a handful of publications appeared in the last decade (e.g., [AR94; SSN94;
CD98]; see also [Kin99] for a more detailed survey). MQO is usually carried out in two
phases: (1) The detection of common subexpressions, and (2) the finding of the least expen-
sive set (and order) of subexpressions such that all required queried are answered. Our ap-
proach described in Section 5.4 concentrates on the first of these two problems. Our cost
model assumes that the less remote query executions are performed, the better will be the re-
sponse time. This consideration was mainly motivated by the work of Johansson [Joh98],
which shows that network latency dominates network bandwidth more and more.

Multiple query optimisation has received virtually no attention in information integration,
although almost every algorithm in this context generates sets of highly redundant plans. Nei-
ther the BA nor the QFA algorithm consider MQO. As described above, the IRA implicitly
carries out a limited form of multiple query optimisation. Apart from this work, this topic
was, to our best knowledge, not discussed in a MBIS context before.

Friedman & Weld analyse extensional relationships between different data sources, which
can also be considered as a form of redundancy [FW97]. Their idea is to define inclusion de-
pendencies between wrapper queries explicitly, using so-called local-completeness axioms.
With this mechanism one can, for instance, specify that a certain source is complete with re-
spect to a certain mediator relation, implying that only this source should be used for the “fill-
ing” of the relation. All other sources can be disregarded.

The advantage of this approach compared to our methods is that more forms of redundancy
can be detected. Local completeness axioms can also be used to model preferences between
different sources, determining for instance that data from a source A should be considered
before data from a (perhaps qualitatively worse) source B. The main disadvantage of local
completeness axioms is that additional rules have to be specified. Especially in a web context,
it is almost impossible to derive such rules or to control their correctness in the presence of
change.

Another line of related work is semantic caching (see [KB94; DFJ+96]). Semantic caching
means the caching of query results together with their definitions. Semantic caches may be
considered as temporarily materialised views. It remains an open question whether or not the
same effect as with MQO can be achieved through an intelligent usage of semantic caching.

145

6. Methodology

6. METHODOLOGY

In the previous chapters we have discussed techniques for the construction of MBIS. In par-
ticular, we presented a language for the specification of correspondences between heteroge-
neous relational schemas, and we introduced algorithms that can translate queries against one
schema into sets of queries against other schemas. These two contributions build the techno-
logical core of a MBIS.

However, developing a running system requires more than a technological basis. In this
chapter, we discuss issues in the development and deployment of a MBIS. We do not examine
the development of programs that constitute a MBIS, such as programming wrappers or im-
plementing query planning. Instead, we assume such programs to be given and analyse their
usage for the construction and maintenance of a concrete system.

The intention of this chapter is to show that the usage of MBIS using QCAs is a feasible
approach to information integration. We highlight issues that support this claim. We do not
attempt to give a complete development methodology for MBIS. Issues such as tool support,
construction of user interfaces, or run-time management, are beyond the scope of this thesis.
Interested readers are referred to [BS95; BE95; BBE98; KPS99].

The lifetime of a MBIS consists of four phases:

•

•

•

•

In the analysis phase, the information requirements are identified and available data
sources are characterised wrt. those requirements. If certain requirements remain uncov-
ered, i.e., the necessary data is not available in any of the data sources, new data sources
have to be identified and analysed.
In the design phase, the mediator schema is designed based on the information require-
ments. Furthermore, the export schemas of wrappers are determined. If the requirements
yield a large and complex mediator schema, is should be considered to break up that
schema into a set of smaller schemas managed by separate mediators. In this case, the de-
veloper needs to determine which mediators use which data sources or mediators. Once
the participating schemas and their relationships are established, suitable sets of executa-
ble queries against wrapper schemas (or mediator schemas in case of multiple mediators)
are identified. Finally, QCAs are specified that describe those queries wrt. the schemas of
the mediators that are supposed to use them.
In the implementation phase, wrappers are developed that encapsulate data sources and
that export the previously specified schemas. It has to be ensured that the previously iden-
tified queries are executable.
In the deployment phase, user queries are answered through the mediator. Furthermore,
the MBIS needs to react on various types of change, such as the addition or deletion of
data sources or evolution in wrapper schemas. This is especially important in a web envi-
ronment, where data sources can appear and disappear over night.

146

6. Methodology

In the following, we discuss three critical issues in the design, implementation and deploy-
ment of MBIS based on QCAs. In Section 6.1 we describe properties of different types of data
sources wrt. their integration in a MBIS. We examine relational databases, information sys-
tems accessed through a CORBA interface (CORBA based information systems, CBIS), and
information systems accessed through the web (Web based information systems, WBIS). Our
discussion covers the construction and reuse of wrappers as well as guidelines for the deriva-
tion of wrapper schema and wrapper queries.

Together, a wrapper schema and a set of wrapper queries form the interface between a me-
diator and a wrapper. The schema and the queries against this schema are of course strongly
interdependent. This observation does not imply that either of both is superfluous. Despite
their strong interconnection, both schema and queries are important for the description and
integration of wrappers into MBIS. For instance, if a relational database is integrated, the
natural point to look at is the schema of this database. Interesting queries may be derived in a
second step, since all queries are executable. In contrast, if a WBIS is integrated, it is more
natural to first look at the set of executable queries.

In Section 6.3 we analyse one important aspect of the deployment phase of a MBIS: main-
tenance. In Section 3.2 we argued that a top-down development has advantages over a bot-
tom-up development regarding maintainability. The reason is that the mediator schema and
the wrapper schemas are not tightly connected, but only loosely coupled through declarative
rules, i.e., QCAs. Due to this independence, many types of changes in a MBIS can be handled
on the level of QCAs without affecting schemas. In Section 6.3 we confirm this statement by
investigating five types of change in MBIS. For each, we describe the actions a mediator has
to take for compensation.

6.1 Integrating Different Types of Data Sources

Typically, MBIS must deal with a large variety of different data sources: relational and ob-
ject-oriented databases, web based information systems, files and email-collections, CORBA-
or DCOM-based information systems, etc. One of the distinctive features of MBIS in contrast
to FDBS is their ability to handle this heterogeneity (see Section 3.1).

In the following we discuss specific problems that are posed by three different types of
data sources: relational databases, CORBA based information systems, and web based infor-
mation systems. We aim at providing guidelines for the derivation of the logical interface be-
tween a wrapper for such sources and a mediator. The logical interface comprises the export
schema of the wrapper and the set of executable queries against this schema – independent of
its technical implementation.

In the literature, one can find many types of wrappers, ranging from as few lines of PERL
code searching a web page using “grep”, to large software projects integrating a file-based
document system in a transaction oriented CORBA architecture. In MBIS, wrappers can be
distinguished by the amount of additional functionality they implement to facilitate access to
the data source. Possibly add-ons are for instance:

However, we illustrate in Section 6.1 that, for conceptual design, it suffices to consider
only the export schema. Since wrapper schemas are developed independently from the media-
tor schema, conflicts are inevitable. In Section 6.2 we show how QCAs bridge different types
of such conflicts, including semantic, structural and schematic conflicts. The section also in-
cludes a classification of possible conflicts between relational schemas.

Implementation of additional search capabilities. •

147

6. Methodology

• Translation of languages, codes, vocabularies, and units.
•

Session management and failure handling.

However, we assume that the goal is to provide “thin wrappers” quickly, i.e., we are inter-
ested in being able to provide wrappers with minimal effort. Thin wrappers only export func-
tionality that is provided by the data source they wrap. We develop guidelines to support the
development of thin wrappers.

6.1.1 Relational Databases
12

Furthermore, RDB are accessible through a query language such as SQL. All types of que-
ries discussed in this work are supported. Therefore, all queries against the export schema of a
RDB wrapper may be considered as executable.

Technically, RDBMS are accessible through a vendor-specific protocol, such as the “Ora-
cle Call Interface”. Vendor-independent database gateways, such as “Open Database Connec-
tivity” (ODBC) from Microsoft or “Java Database Connectivity” (JDBC) from Sun, have
been developed to shield a developer from those proprietary protocols by providing standard-
ised methods, for instance for the execution of queries and the reception of query results.
They do not hide syntactical heterogeneity, as for instance present in different SQL dialects.
Therefore, a wrapper developed for one RDB, for instance using JDBC, may often be reused
for all other RDB running on the same RDBMS. To reuse it for a different RDBMS, modifi-
cations will be necessary.

13

More recently, database vendors also started to develop gateways that also access data that
is not stored in RDBMS but, for instance, in structured files. This approach follows the idea
of universal access (the database is able to access everything) as opposed to universal storage
(the database is able to store – and access – everything) [BP98]. For instance, Microsoft’s
OLE DB (object link embedded – database) defines a standard interface for the access to any
type of data based on the concept of rowsets [Mic98]. The same line is followed by IBM with
the Garlic project [HKWY97]. Note that the integration of non-databases into such systems
also requires the development of appropriate wrappers.

Gateways and database middleware may greatly facilitate the integration of data sources
into MBIS. The usage of middleware components increases reusability of code and often
achieves increased performance compared to hand-made wrappers. However, gateways and
database middleware must not be confused with mediators. A mediator provides location,
schema, and language transparency for users. Typical database middleware at most provides

Integrating a relational database (RDB) as data source into a MBIS is relatively easy be-
cause, in contrast to many other types of data sources, a relational database has a schema. The
export schema of a wrapper for a RDB will usually be either identical to the schema of the
RDB or a subset of it. Additional views inside the RDB can be used to facilitate the definition
of QCAs, or to protect the MBIS from schema changes.

Providing true vendor-independent database access is the aim of database middleware
[FRH98]. Examples are IBM’s “DataJoiner” [CHKR98] or Oracle’s “Oracle Transparent
Gateway” . Gateways hide location, network, and language heterogeneity within SQL dia-
lects. For instance, the Oracle Transparent Gateway allows to access more than 30 different
RDBMS using Oracle’s SQL syntax. Using such gateways enables wrapper developers to
write code that can be used on any RDBMS supported by the gateway – but also ties develop-
ers to the vendor of the gateway product.

148

12 With use the abbreviation RDB for a concrete relational database, whereas the acronym RDBMS stands for a
software system for the generation and administration of RDBs.
13 See http://www.oracle.com/gateways

6. Methodology

location and language transparency, but never rewrites queries. Middleware does not translate
between queries against different, heterogeneous schemas apart from the possibility offered
by relational views. Furthermore, middleware does not automatically compute unions of re-
sults obtained from different data sources as query planning does. Middleware should there-
fore be considered not as replacement, but as support for MBIS (see Figure 33).

6.1.2 CORBA Based Data Sources

We do not intend to discuss CORBA exhaustively but only give a short summary here and
then concentrate on their integration in a MBIS. Interested readers are referred to [WT94;
Bak96; LTB98; ML99].

CORBA based information systems (CBIS) are accessed through an interface described in
the “Interface Definition Language” (IDL) defined by the OMG (see for instance [Bak96;
OHE97]). CBIS interfaces are independent of the type of underlying system. To achieve this
independence, CORBA servers are in fact object-oriented wrappers.

14

A CBIS interface comprises classes with attributes and methods . There are several possi-
bilities how the structure of databases, or of any structured data store, can be mapped to a
CORBA interface [LTB98]. The simplest is to wrap the entire database into one class with
one method, which takes arbitrary queries as strings and returns answers as some kind of
structured string list. On the other extreme, every relation of a RDB is modelled through a
proper interface class . 16

In between those two extremes lies the most common usage: Modelling only selected rela-
tions as interface classes, and offering a fixed set of parameterised queries with predefined

15

14 See http://www.omg.org
15 In OMG notation, every class is an interface, and attributes are called members.
16 This approach faces the serious problem of representing results that are not tuples of a relation.

Wrapper

Mediator

Wrapper

Web-based
information

systems

Wrapper Wrapper

RDB,
with RDBMS Y

File

Universal
access

gateway

RDB,
with RDBMS X

Figure 33. Gateways in MBIS.

149

6. Methodology

result type. This approach has the additional advantage that it is truly independent of the un-
derlying data store. The previous two strategies either directly reflect a schema in the interface
or require the client to have detailed knowledge about the schema for the formulation of que-
ries. Domain standards defined by the OMG, such as in the field of life science research
[LSR97], adopt this strategy to insulate clients from heterogeneous data providers.

To integrate a CBIS into a MBIS, we must synthesise an export schema and a set of que-
ries. Consider the interface of a CBIS consisting of classes and methods that essentially en-
capsulate queries. One possibility is to represent each interface class and each method through
a proper relation in the relational export schema of the CBIS wrapper.

The attributes of an interface class all become attributes of the according “class relations”.
However, there is no generic way to query such classes in CORBA. The only possibility is to
access objects by their CORBA reference, which could be included as additional attribute in
the relation. All queries must have a binding for that attribute, and no other bindings may be
permitted. This approach faces two serious problems: First, CORBA references are transient
if the server uses the basic object adapter [Muel99]. Transient references change between
sessions, rendering them unusable in a global context. Second, CORBA references carry no
meaning and are hence inadequate as global keys. We conclude that “class relations” are not
useful.

Unfortunately, IDL is not a data model – methods are not declaratively described (as que-
ries are) but programmed. It is therefore not possible to derive universally valid statements
from the signature of a IDL method. On the other hand, in many CBIS, methods indeed corre-
spond directly to fixed queries against a database backend server. A mapping from the method
signature into a relation of the export schema is then straight-forward.

Compared to RDB, CBIS introduce the need for binding patterns on queries. A query that
is translated into a method call

•
•
•

must have bindings for attributes corresponding to input parameters,
must not have bindings for attributes corresponding to output parameters, and

In Section 4.5 we showed that annotating QCAs with binding patterns does not pose concep-
tual problems. In Section 5.5 we discussed necessary modifications to a query planning algo-
rithm considering binding patterns.

Technically, a CBIS is accessed by binding to an object request broker, which are avail-
able from different vendors. At the client site, first interface stubs are generated through an
IDL compiler and second the desired functionality is programmed using those stubs. The in-
terface and the implementation together form a CORBA server. Whether or not CORBA serv-
ers can be reused cannot be judged in general. First, it requires that the interface itself is reus-
able. This is, for instance, the case if the interface is a standard, or if it is highly generic. Sec-
ond, it requires the use of widely accepted methods for the implementation, such as JDBC or
ODBC for accessing the backend data store.

Attributes of “query relations” are all parameters of the corresponding method. Methods in
IDL are remote procedures with input, output, and inout parameters. All queries can be
allowed that adhere to the binding pattern determined through the input/output status of
the attributes. Clearly this simple 1:1 mapping cannot cope with complex attributes such a
IDL struct’s or sequence’s. In such cases more elaborated mapping functions must be
implemented.

may have bindings for attributes corresponding to inout parameters.

150

6. Methodology

6.1.3 Web Based Data Sources

Therefore, it is reasonable to build wrappers for WBIS using a wrapper specification lan-
guage (WSL). Typically, WSL have special elements for text parsing, such as regular expres-
sions or grammar rules, and for HTTP operations, such as requesting a web page or submit-
ting a HTML form. Existing wrapper languages are, for instance, JEDI [HFAN98] or W4F
[SA99].

In [Hol99], the author describes the wrapper language WWScript, which is exemplarily
considered in the following. The interface between a wrapper written in WWScript and a me-
diator is defined through a single export relation forming the export schema of the wrapper.
This relation is a denormalised representation of the content of the data source similar to a
universal relation [Ull89]. It can be derived through a analysis of the web sites. The attributes
of that relation carry query capabilities, such as possible selection operations and binding pat-
terns. Those query capabilities are determined by the forms offered by the data sources, since
web forms often only allow the specification of conditions for some of the attributes. For in-
stance, a search form of a library often only allows to search for authors and title, although the
results will also include the publisher, the date of publication, etc. On the other hand, many
source have several different search forms to support different types of queries and differently
skilled users. For instance, the “Genome Database” [FLL+97] has one search form for every
of its over 30 different object classes. Using WWScript, this can only be described through
different wrappers.

The export schema of a wrapper written in WWScript is its export relation. The range of
executable queries is determined through the query capabilities. QCAs can use any executable
query as wrapper queries.

Internally, a wrapper consists of three layers (see Figure 34). The communication layer re-
quests documents from a remote web server and receives HTML pages. The extraction layer
parses those pages and extracts desired information. This information is transformed into tu-
ples of the export relation in the restructuring layer.

Queries are transmitted to the wrapper in the form of bindings for attributes of the export
relation. Such queries are pushed to the source by using the appropriate web forms. A
WWScript developer can also choose to program manually additional selection operations
inside the wrapper, for instance to filter out temporary tuples extracted from a web page. Con-
sider the DBLP web site, which is a collection of publications in database research (see also
[Hol99]). The export schema of this site will be a relation with attributes for the authors, title,
date and journal/conference of publications. The site offers two search forms: either searching
the collection by author name or by publication title. To use those forms, the corresponding
query capabilities must specify that either a author name or a title must be given but not both
at a time. The wrapper can then use the proper form to answer the query. However, the
WWScript developer could also choose to allow the specification of both an author name and
a title at the same time. For such queries, the wrapper could use the author form to retrieve all
publications of the searched author and scan this list for the given title, removing all non-
matching entries.

Web based information systems (WBIS) are accessed through a World Wide Web page or
page collection (web site). WBIS interfaces are not designed to be used by programs, but by
humans. Constructing wrappers for WBIS is therefore considerably harder than for RDB or
CBIS. WBIS require wrappers that include complex and fault-tolerant parsers to pick the de-
sired information from primarily design-oriented HTML pages. Also, such wrappers must
translate declarative queries into a typically navigation-oriented site logic.

17

151

17 See http://dblp.uni-trier.de

6. Methodology

Searching for publications for a given author and a given title is an example for a capabil-
ity that is not offered by the source, but can easily be implemented by the wrapper. A more
elaborate wrapper could even answer queries without any bindings, because DBLP has a web
page that contains a list of all authors. This page can be used to access all publications in
DBLP.

These examples show that a wrapper developer often has the choice of how powerful its
wrapper shall be. Tork Roth et al. suggest in [TRS97] the reasonable strategy to first imple-
ment dumb wrappers quickly and then, if necessary, successively refine them by adding new
functionality.

Technically, a WBIS is accessed through the wrapper, which uses HTTP. The two essential
mechanisms is the request of HTML pages and the execution of so-called “CGI programs”
(common gateway interface), which amounts to the execution of a program on the web
server’s machine. CGI programs are used to execute queries triggered through the use of web
forms.

Mediator

Data restructuring layer

Data extraction layer

Communication layer

HTML
pages

CGI
requests

Results

Queries

Web site

Rule base
Wrapper

Figure 34. Architecture of a web wrapper.

Due to the high individuality and evolvability of web pages, it is difficult to reuse wrappers
for WBIS [Fau00]. The design and structure of a web site is nowadays – commencing into the
e-commerce area – considered as a distinguishing feature of companies giving competitive
advantage or disadvantage. Therefore, no standardisation can be expected in the near future.
However, the content of web sites could soon be represented through XML [MG98; SA99]
rather than HTML, which would greatly facilitate the construction of wrappers (less parsing)
and also increase their reusability.

6.2 Bridging Heterogeneity through QCAs

Query processing in MBIS is mainly hindered through the existence of various forms of het-
erogeneity in the participating systems. Heterogeneity results from autonomy, since autono-
mous systems naturally use different ways to achieve their particular goal. If we accept auton-
omy of data sources as prerequisite, heterogeneity is inevitable.

152

6. Methodology

The previous section described ways to derive export schemas and executable queries from
autonomous data sources. To make them available for a mediator, we must define the results
of those executable queries in terms of the mediator schema. We use QCAs for this purpose.
QCAs declaratively describe correspondences in the presence of heterogeneity.

In the following discussion we consider various conflicts between two relational schemas.
We implicitly assume that every query against those schemas is executable. This is reasonable
for the mediator side of a QCA and also justified for wrappers for RDB. However, for other
types of data sources it is not obvious since we assumed throughout this work that only some
queries against the export schema of a wrapper are executable. However, we have seen in the
previous sections that for CBIS and for WBIS the export schema of a wrapper is determined
by the set of executable queries – the interface to such sources actually is a set of queries. In
both cases we essentially considered each executable query as a relation of the export schema.
Therefore, each query against the export schema is, by construction, executable: at most, it
can require the concatenation of different wrapper queries.

We start with a brief classification of types of heterogeneity. Then, we demonstrate the
flexibility of QCAs by examples for semantic, structural, and schematic conflicts. MBIS are
developed top-down, i.e., the first step is to design a mediator schema. However, QCAs are
designed bottom-up: First, we identify executable wrapper queries. Then, we describe them
through corresponding mediator queries.

6.2.1 Heterogeneity in MBIS

There exist numerous classifications of heterogeneity in database integration. Examples in-
clude [SPD92; KCGS95; KS96; VJB+97]. Usually they discern between:

• Technical heterogeneity: Data sources can differ in their hardware platform, operating
system, query language, access mechanism, data representation, etc.

• Data model heterogeneity: Data sources can present data using an object-oriented, seman-
tic, hierarchical, or relational data model [SCGS91].

• Semantic heterogeneity: Data may differ in the meaning of terms, and units, leading to
synonyms and homonyms [Web82; SK93; VJB+97].

• Structural heterogeneity: Data can be stored in different structures, e.g. different degrees
of relational normalisation [KCGS95; Sau98].

• Schematic heterogeneity: Schematic heterogeneity is a special case of structural heteroge-
neity. We speak of schematic heterogeneity if data is be represented by different concepts
of the same data model, for instance attribute versus relation or value versus relation.
[LSS93; Mil98].

For our work, we assume that technical and data model heterogeneity are resolved on the
wrapper level (see Section 3.3.1). Therefore, QCAs only have to cope with the last three
cases. We treat each of these types of conflicts in a separate section in which we also explain
the nature of the conflict in more depth. Since we use the relational data model, only conflicts
between relational schema are considered.

In real life applications, different types of heterogeneity usually appear in combination. It
is usually difficult to break up such combinations into their “true” types of heterogeneity. No
classification claims to define orthogonal classes of conflicts. Many conflicts are ambiguous;
others are assigned to different conflict classes by different authors. For instance, [SPD92]
defines semantic conflicts as conflicts in the extensions of classes; discrepancies in the repre-
sentation of classes are called descriptive conflicts; and their examples of structural heteroge-
neity can be found as schematic heterogeneity in our classification.

153

6. Methodology

For these reasons we do not aim to give a precise and complete characterisation of all pos-
sible conflicts between relational schemas. Instead, we show the potential of QCAs by exam-
ples. We use the mediator schema defined in Table 1, page 18, and the schema of a wrapper W
defined in Table 5. A graphical representation is given in Figure 35. We denote the mediator
schema with S and the wrapper schema with T. Relations of either are identified by prefixing
them with either S or T.

 map(mid, mapname, maptype, species);
 PAC(id, name, length, mid, position);
 YAC(id, name, length, mid, position);
 contains(id, tid);
 transcript(tid, genename, genedescription, sequence);

Table 5: Relational schema T of the fictive wrapper W. See also Figure 35.

In general, conflicts between different relational schemas can not be identified by consider-
ing only the schema definitions. One also needs a documentation clarifying the meaning of
terms. In this sense, we shall give the semantics of T by explaining the conflicts with S.

We assume the following correspondences and conflicts between S and T:

• T.transcript has the same intension as S.gene (homonym, semantic conflict).
• Clones as stored in S.clone can occur in the tables T.YAC and T.PAC in T (structural

and semantic conflict). The names of these two relations correspond to the cloneType at-
tribute in S.clone (schematic conflict).

• T.YAC and T.PAC directly store the location of a clone on a map (through mid and posi-
tion) (structural conflict). This implies a 1:n relationship between T.YAC/T.PAC and
T.map.

• The length of S.clone is given in KB while the length of T.YAC and T.PAC are given in
MB (structural conflict).

• Sequences for clones are not stored in T. Sequences for transcripts are stored in
T.transcript. There is no separate sequence relation in T (structural and semantic
conflict).

Figure 35. Exemplary wrapper schema.

Map

MID
mapnam
maptype
species

e

Transcript

TID
name
description
sequence

Contains

YAC

ID
name
length
MID
position

PAC

ID
name
length
MID
position

154

6. Methodology

• The two maptype attributes have different meanings: in S, maptype describes the type of
a map, i.e., the way it was constructed (e.g. physical, genetic, or radiation hybrid), while
in T maptype describes the status of a map (e.g. atwork, confirmed, finished). All maps
in T are physical maps in S (context problem, semantic conflicts).

• T.map has no mapSize and chromosome information in contrast to S.map. S.map lacks
the species attribute (missing attributes, structural conflict). We assume that T stores
data about arbitrary mammals (discerned through the species attribute), while S only
addresses humans (context, semantic conflict).

In the following three sections, we classify the conflicts and give appropriate QCAs.

6.2.2 Semantic Heterogeneity

A data value alone has no meaning. Only the combination of a value and a description of what
this value should mean is considered as information. The value of such a pair is its extension;
the description is its intension and defines the set of allowed values, i.e., real-world objects.
This perception is shared by many authors, and also used in the ANSI and ISO standards for
“Information Recourse Dictionary Systems” (IRDS, see [ISO90; HL93]).

155

A semantic conflict only occurs in the description of data. In the case of relational sche-
mas, such a “description” is in first place the name of a schema element, i.e., a relation or an
attribute. This name must be accompanied by a textual documentation of what it stands for,
since the meaning of names is highly context dependent and often ambiguous. A prominent
German example is the term “Bank”, which can be a financial institute or a resting place in a
park. The documentation of a name must precisely define the semantics of any tuple (value)
that is stored in a relation (attribute). The type of the schema element itself, i.e., the arity of a
relation name or the domain of an attribute, is in contrast only a structural property of the in-
formation. Therefore, we consider type conflicts in Section 6.2.3.

It follows that semantic heterogeneity only occurs as conflicts in the meaning of names. A
name has a denotation, which is a real world thing, and it stands for a concept, which deter-
mines the thing [Web82].

A similar triplet is used in the context of ontologies. An ontology is a “an explicit specifi-
cation of a conceptualization” [Gru93]; for our purpose, it suffices to consider an ontology as
an exact definition of terms within a certain domain, similar to a thesaurus or glossary.
[VJB+97] uses the following terms: a (new) concept T (definiendum) of an ontology is char-
acterised by a definition in terms of existing concepts of the ontology (the definiens) and an
“ontological description” (concept description) in natural language. Projects that concentrate
on the (semi-)automatic detection and removal of semantic conflicts therefore often use on-
tologies [Gru93; GMS94] as a formal and homogeneous basis for the definition of terms.

In our setting, the mediator schema takes the role of an ontology, although it clearly lacks
certain properties that are usually assigned to “real” ontologies, such as a highly expressive
language (for instance a description logic [Bor95; CPL97]) and the intention to model a do-
main completely . Nevertheless, the intuitive semantics of concepts of wrapper schemas have
to be defined in terms of he concepts in the mediator schema. This does not imply any seman-
tic reasoning: Semantic relationships, i.e., QCAs, are defined by humans.

We discuss the following cases of semantic heterogeneity:

• Synonyms in relation and attribute names.
• Homonyms in relation and attribute names.
• Relations with overlapping, but not identical meaning.
• Context propagation as a particular problem occurring with overlapping, but not identical

scope in different schemas.

6. Methodology

All our observation hold for attributes, relations, and queries, although we only give examples
for the first two.

Synonyms.
Two relation (attribute) names are synonyms if the names are different, but express the same
concept and hence have the same intension. In our example, the relations T.transcript and
S.gene are synonyms, as are the attributes name in T.YAC and clonename in S.clone,
restricted to clones of clonetype ”YAC”.

Expressing this relationship in QCAs is straight-forward, especially since our query nota-
tion identifies attributes by position and not by name. Synonymous attributes are simply rep-
resented through the same variable in the mediator query and the wrapper query of a QCA
they appear in. Synonymous relations are connected through a QCA expressing the inten-
sional equivalence.

A QCA describing the relationship between T.transcript and S.gene is:
r : gene(gid,gn,gd) ← W.v (gid,gn,gd) ← transcript(gid,gn,gd,-); 1 1

Homonyms.
Two relation (attributes) names are homonyms if the names are identical, but express different
concepts and hence have different intensions. In the example, the attributes maptype of
T.map and S.map are homonyms, since the two attributes have different meanings.

Homonyms are also easy to capture through QCAs. The real problem in homonyms is not
about names, but about the concepts that the names stand for. If two equal names, one in the
mediator schema and one in the wrapper schema, stand for different concepts, then two cases
are possible:

• either the concept that a name stands for exists in the other schema as well, probably as-
signed to a different name. Then we ignore the homonym and treat the synonym.

• or the concept that a name stands for does not exist in the other schema. Then we ignore
it, since QCAs only connect intensionally identical relations and queries.

Consider the maptype attribute. The concept that T.maptype stands for, i.e., the processing
status of a map, does not exist in S. Hence, we ignore T.maptype. Similarly, the concept of
S.maptype does not exist in T. But we have additional knowledge that can substitute the
missing concept with a constant:
r : map(mid,mn,mt,-,-),mt=’physical’ ← W.v (mid,mn) ← map(mid,mn,-,-); 2 2

Overlapping meaning of relations.
Two relations with overlapping, but not identical intensions are the most difficult type of se-
mantic heterogeneity. For instance, S.map is similar to T.map, but not identical: S.map is
more general since it comprises all types of maps, while in T only physical maps are intended.
r exactly handles this conflict. In this case, the difference between the intensions of the two
map relations is clearly defined and can be leveraged by a condition. Unfortunately, this is
nothing one can rely upon, because relations may have different intensions without represent-
ing this difference in the schema.

2

We structure our discussion in the following way. First, we assume that the discerning ‘bit’
is available in one of the schemas, i.e., expressible through a query. We distinguish three dif-
ferent cases for the relationship between the intensions of R and R . Next, we discuss the
case that the ‘bit’ is not expressible through a query.

M W

1. R and R are semantically overlapping, but not identical. The difference can be expressed
through conditions in a QCA:
M W

156

6. Methodology

a) intension(R)⊇intension(R), i.e., R has a more restricted scope compared
to R , which implies that R is a generalisation of R . An example is the map relation
regarding maptype. Intensionally equivalent queries can be achieved through a condi-
tion in the mediator query.

M W W

M W M

b) intension(R)⊆intension(R), i.e., R is a specialisation of R . For instance,
S addresses only human maps, while T stores maps about all mammals. Since the
source does store the species of each map, we can include an appropriate condition in
the wrapper query:

M W M W

r : map(mid,mn,-,-,-) ← W.v (mid,mn) ← map(mid,mn,-,sp), sp=’human’; 3 3

Together with r we can derive an improved QCA for map: 2

r : map(mid,mn,mt,-,-),mt=’physical’ ← W.v (mid,mn) ←
map(mid,mn,-,sp), sp=’human’;

4 4

c) intension(R)∩intension(R) ≠ ∅ and neither is contained in the other.
This is a combination of cases (a) and (b). map is actually an example for exactly this.
As another example, assume that S.map is restricted to physical, genetic and radiation
hybrid maps, while a source Y has a map relation for physical, genetic and transcript
maps. Expressing this in QCAs is a bit awkward, since we do not allow the IN opera-
tor in queries . We have to define one rule for each of the common map types:

M

18

W

r : map(mid,mn,mt,-,-),mt=’physical’ ← Y.v (mid,mn,-) ←
Y_map(mid,mn,mt),mt=’physical’;

5 1

r : map(mid,mn,mt,-,-),mt=’genetic’ ← Y.v (mid,mn,-) ←
Y_map(mid,mn,mt),mt=’genetic’;

6 2

This makes all transcript maps from Y invisible for the mediator. This is necessary if
the map types in S are only those given above.

There is a notable difference in the consequences of failing to specify such conditions. In
case (a) no wrong data appears at the mediator. Actually, QCAs with subsuming queries are
perfectly allowed. However, it is advantageous to “achieve” equivalence since otherwise we
loose an optimisation possibility: Only queries asking for physical maps should use W. In case
(b) the mediator will report wrong data because the QCA (without the condition) is wrong:
the intension of the wrapper relation is neither equivalent to nor subsumed by the intension of
the mediator relation. Since no species attribute is present in S, we cannot distinguish
“good” tuples from “bad” tuples in M. Wrong data will be produced for any user query asking
for a map of non-humans, including queries asking for all maps.

2. R and R are semantically overlapping, but not identical. The difference can not be ex-
pressed through conditions in QCAs:
M W

a) intension(R) ⊇ intension(R). For instance, a source might store only RNA
genes, i.e., genes that are not translated into proteins. This property is not expressible
in a query against S. We have two options:

M W

• We extend S with a genetype attribute. This allows for pruning in user queries
requesting genes of other types because we can conclude that R is not appropriate. W

157

18 Including an IN operator would be easy. One could either directly extend the algorithm for query planning or
translate such a QCA in one QCA for each element of the IN set.

6. Methodology

• We ignore the problem. This is not harmful if we assume that the mediator schema
does not mind the difference between RNA and non-RNA genes. Since no ge-
netype attribute exists in S, a user cannot specify a condition on it in a query. No
wrong data occurs, since all tuples from RW are correct for RM.

b) intension(RM) ⊆ intension(RW). Our mediator addresses only human maps.
consider a source X having maps of all mammals without storing the species. This
problem cannot be resolved by extending the schema of the mediator – it requires a
condition in the wrapper query, not in the mediator query. But we cannot change the
schema and content of a data source. Therefore, the problem unavoidably results in
wrong data. M cannot decide upon the species of maps from X. There are two solu-
tions: either the R is ignored, or the intension (not only and not necessarily the
schema) of the mediator is extended.

W

c) intension(R) ∩ intension(R) ≠ ∅ and neither is contained in the other.
This is a combination of (a) and (b). All problems discussed in (b) apply.

M W

Context propagation.
Our discussion about relations with overlapping but not identical intensions has hidden a
tricky problem that is not immediately visible but can complicate the specification of QCAs.
We devote a separate section to it.

Recall case 1. from the list above. We expressed the difference between the intension of
the two relations by means of a condition in either the mediator query or the wrapper query.
However, the requirement that the difference must be expressible by a query does not imply
where the discerning information is present in the schema. The difference in the intension
between T.map and S.map does not only apply to maps, but carries over to clones and tran-
scripts – actually, it affects the entire schema. r1 is therefore wrong since it potentially re-
trieves transcripts of all mammals and not only of humans. The mediator is not able to filter
out erroneous tuples obtained through r1. Therefore, a correct QCA needs to join clones and
transcripts with map in the wrapper query:
r7: gene(gid,gn,gd) ← W.v5(gid,gn,gd) ← map(mid,-,-,sp),

YAC(cid,-,-,mid,-),contains(cid,gid),transcript(gid,gn,gd,-),sp=’human’;
r : gene(gid,gn,gd) ← W.v6(gid,gn,gd) ← map(mid,-,-,sp),

PAC(cid,-,-,mid,-),contains(cid,gid),transcript(gid,gn,gd,-),sp=’human’;
8

For every relation of T, one must include a join to T.map in the wrapper query to ensure the
correctness of the QCAs. The same situation occurs the other way round in case (1.a) for me-
diator queries. It is a problem of context [GMS94; KS98]: QCAs have to ensure that the same
context is used in both queries. We required that this context is expressible by a query, but we
cannot restrict the length of such a query.

Although this is a problem, we notice the following:

• The problem does not occur in all cases of overlapping intensions. For instance, the inten-
sional difference in the maptype attributes does not propagate to clones or transcripts.
The difference only affects map, and not the entire schema.

• The problem only affects the specification of QCAs. It does not affect query planning. As
shown in Section 5.4, the mediator will remove possible redundancies in plans that follow
from QCAs that need large queries to ensure the right context.

158

6. Methodology

6.2.3 Structural Heterogeneity

In contrast to other authors, we consider only a relatively small group of conflicts as structural
in nature. For instance, Kim et al. have a much broader understanding of structural conflicts
[KCGS95], including synonyms and homonyms in relation names.

We assume that two classes are semantically identical if they have the same name. How-
ever, different schemas may represent classes with identical intension differently. We con-
sider the following cases:

• Missing or additional attributes in relations.
• Different attribute types and units.
• Different attribute positions.
• Decomposed attribute values (horizontal aggregation).

Missing or additional attributes in relations.
Two relations intending the same concept can represent this concept with different sets of
attributes. Imagine S.map and T.map would both address physical maps of mammals. Still,
S.map lacks the species attribute, while T.map lacks maplength and chromosome.

Handling such conflicts in QCAs is straight-forward using projections.

Different Attribute units.
Attributes having the same intention can have different types, such as real versus integer, or
can express their value using different units, such as different currencies, or can have different
numerical precision. In the example, the length of clones is once stored in kilobases and once
in megabases. Such conflicts require a attribute value transformation as possible in enhanced
QCAs (see Definition (D4.2)).

However, it is not always possible to find transformation functions. Imagine one attribute
a storing grades in a range between 1-15 and another attribute a representing grades in six
levels from ‘good’ to ‘bad’. While a transformation from a to a is feasible, no unambiguous
transformation from a to a exists.

1 2

1 2

2 1

A QCA for T.YAC including the transformation is:
r : clone(cid,cn,ct,cl),ct=’YAC’ ← W.v (cid,cn,cl) ← YAC(cid,cn,l,-,-),

cl=l*1000;
9 7

Type conversions, for instance from string to integer, may also achieved through transforma-
tion functions.

Different attribute positions.
Attributes storing the same information do not necessarily appear at the same position in dif-
ferent schemas. Different positions within the same relation are trivial and handled by using
the same variable. The situation is more complex if attributes are placed in different relations.

Imagine a relational schema generated by translation from an entity-relationship model
with cardinality constraints. A 1:N relationship between two entities in the entity-relationship
model will usually be mapped into a foreign-key constraint between two relations. A N:M
relationship will be mapped into a separate bridge table. In both cases, the scope of the enti-
ties can be identical, but the structural representation in the relational schema is not.

Another source of such conflicts are different degrees of normalisation [EL94]. This case
is especially important if data sources are addressed that are not based on the relational data
model. For instance, wrappers for web based information systems often export their data
through a highly de-normalised relations because a web page is not formatted according to its
logical structure, but to human readability (see Section 6.1.3).

159

6. Methodology

In our example, T does not have a sequence relation but directly incorporates sequences
in the transcript relation. A QCA can bridge this as follows:
r : gene(gid,gn,gd),genesequence(gid,sid,-),sequence(sid,bp) ←

W.v (gid,gn,gd,bp) ← transcript(gid,gn,gd,bp);
10

8

The attribute for which the variable bp stands for in the mediator query of r has the same
meaning as the attribute for which the variable bp stands for in the wrapper query. The join
with gene is important since there is no counterpart for bp in T for sequences of clones.

10

The relationship between maps and clones is similar. We need two QCAs, one for PAC and
one for YAC (see Section 6.2.4 for a further analysis of why we need two QCAs):
r : map(mid,mn,mt,-,-),clonelocation(mid,cid,po),clone(cid,cn,ct,cl),

mt=’Physical’,ct=’YAC’ ← W.v (mid,mn,cid,cn,cl,po) ← map(mid,mn,-,sp),
YAC(cid,cn,le,mid,po),sp=’Human’, cl=le*1000;

11

9

r : map(mid,mn,mt,-,-),clonelocation(mid,cid,po),clone(cid,cn,ct,cl),
mt=’Physical’,ct=’PAC’ ← W.v10(mid,mn,cid,cn,cl,po) ← map(mid,mn,-,sp),
PAC(cid,cn,le,mid,po),sp=’Human’, cl=le*1000;

12

Decomposed attribute values.
The information content of an attribute in one schema may correspond to the information con-
tent of multiple attributes in another schema. Consider two schemas for product sales, one
storing net prices and the other storing gross prices and VAT separately. Or imagine two
schemas storing the income of employees paid according to the projects they work in. One
schema could only stores the total income of each person while the other might have a sepa-
rate value for each project (see Table 6).

Schema 1 stores total income per person person (name,age,totalIncome) 1

Schema 2 has separate values for each pro-
jects. The total income is the sum over the
income in each project.

person (name,age,p ,p ,p ,p ,p ,p) 2 1 2 3 4 5 6

Table 6: Two schemas with decomposed attribute values.

If schema 1 were the mediator schema, we may specify the relationship as follows:
r13: person1(na,ag,ti) ← X.v(na,ag,ti) ← person (na,ag,p ,p ,p ,p ,p ,p),

ti=p +p +p +p +p +p ;
2 1 2 3 4 5 6

1 2 3 4 5 6

We need enhanced QCAs to express a relationship that entails horizontal aggregation of val-
ues. Note however that no QCA can be formulated if schema 2 were the mediator schema,
since we cannot deduce project-specific incomes from the total income. There is no bijective
transformation function.

6.2.4 Schematic Heterogeneity

A schematic conflict is present if the model element, i.e., relation, attribute, and value, that is
used to represent a concept is different in two schemas. Such conflicts cannot be bridged
through relational views [KLK91], although their occurrence is common-place [Mil98]. Con-
sequently, most multidatabase query languages (see Section 3.1.2) allow variables that range
not only over tuples as in SQL, but also over database names, relation names and attribute
names. The concrete values are read at run time from a data dictionary. Lakshmanan et al. call
such languages “syntactically higher order, but semantically first order” [LSS93] since they,

160

6. Methodology

on a first view, range over predicates; but they can be reduced to first-order queries, respec-
tively relational queries, since they always address a given and finite schema.

We use the three schemas given in Table 7 as examples for the discussion of schematic
heterogeneity. All three schemas store data about the research areas of faculty members.

Schemas: Instances:
S : faculty(name,research_area); 1 faculty(Smith,DBIS);

faculty(Smith,LP);
faculty(Kim,RDBS);
faculty(Kim,LP);
faculty(Wayne,SE);

S : research(area,smith,kim,wayne); 2 research(DBIS,yes,no,no);
research(LP,yes,yes,no);
research(RDBS,no,yes,no);
research(dbis,no,no,yes);

S : smith(research_area); 3

 kim(research_area);
 wayne(research_area);

smith(DBIS);
smith(LP);
kim(RDBS);
kim(LP);
wayne(SE);

Table 7: Three schemas that all store the same information but are schematically conflicting.

In the three schemas, the concept “faculty member” (represented by its last name) is mod-
elled with different elements of the relational model:

• in S it is the value of the attribute name, 1

• in S2 it is the name of the attributes smith, kim and wayne, and
• in S it is the name of the relations smith, kim and wayne. 3

Imagine that all relations of Table 7 exist in a local database. Furthermore, suppose we want
to define a view interest that merges the research areas of all faculty members in any of
the three representations. In SQL, this requires the union of seven subqueries In DATALOG,
it requires the following rules:
interest(n,r) ← faculty(n,r);
interest(n,r) ← research(r,s,-,-),s=’yes’,n=’Smith’;
interest(n,r) ← research(r,-,s,-),s=’yes’,n=’Kim’;
interest(n,r) ← research(r,-,-,s),s=’yes’,n=’Wayne’;
interest(n,r) ← smith(r),n=’Smith’;
interest(n,r) ← kim(r),n=’Kim’;
interest(n,r) ← wayne(r),n=’Wayne’;

The problem is that the query is data-dependent with respect to the schemas of S and S : the
query must change if the data in the database content changes, not only if the schema changes.
In a heterogeneous environment with independently created schemas this occurs frequently,
since for all real-life schemas there exists queries that are data-dependent .

2 3

19

Between any two schemas S and T there exist six different schematic conflicts:

• S models a concept as relation, T as attribute name.
• S models a concept as relation, T as attribute value.
• S models a concept as attribute name, T as relation

161

19 The “canonical schema” [Vassalos, 1997 #474] consisting out of the two relations attrib-
ute(rel_name,att_name) and tuple(rel_name,tup_id,att_name,value) has no data-
dependent queries.

6. Methodology

• S models a concept as attribute name, T as attribute value.
• S models a concept as attribute value, T as relation.
• S models a concept as attribute value, T as attribute name.

We describe each of these six possibilities through QCAs by taking at a time one of the three
schemas S - S as S and the other two as wrapper schemas. 1 3

1. S=S : 1

a) Integrating S : 2

faculty(n,r),n=’Smith’ ← W .v (r) ← research(r,s,-,-) s=’yes’; 2 1

faculty(n,r),n=’Kim’ ← W .v (r) ← research(r,-,s,-) s=’yes’; 2 2

faculty(n,r),n=’Wayne’ ← W .v (r) ← research(r,-,-,s), s=’yes’; 2 3

We need as many QCAs as there are tuples in faculty that have a corresponding value
in S . Furthermore, we must know all the tuples in advance. 2

b) Integrating S : 3

faculty(n,r),n=’Smith’ ← W .v (r) ← smith(r); 3 1

faculty(n,r),n=’Kim’ ← W .v (r) ← kim(r); 3 2

faculty(n,r),n=’Wayne’ ← W .v (r) ← wayne(r); 3 3

As in the previous case, we need to know the tuples of W in advance. Note that in neither
of the two cases we have to add QCAs if only the values in the sources change; adding a
new faculty requires a schema change in both W and W .

3

2 3

2. S=S : 2

a) Integrating S1:
research(r,s,-,-), s=’yes’ ← W .v (r) ← faculty(n,r), n=’Smith’; 1 1

research(r,-,s,-), s=’yes’ ← W .v (r) ← faculty(n,r), n=’Kim’; 1 2

research(r,-,-,s), s=’yes’ ← W .v (r) ← faculty(n,r), n=’Wayne’; 1 3

The situation here is reverse to case 1a). All problems mentioned there apply here as well.

b) Integrating S : 3

research(r,s,-,-), s=’yes’ ← W .v (r) ← smith(r); 3 1

research(r,-,s,-), s=’yes’ ← W3.v (r) ← kim(r); 2

research(r,-,-,s), s=’yes’ ← W3.v3(r) ← wayne(r);

The same problem as for 2a) occur.

3. S=S : 3

a) Integrating S : 1

smith(r) ← W .v (r) ← faculty(n,r), n=’Smith’; 1 1

kim(r) ← W .v (r) ← faculty(n,r), n=’Kim’; 1 2

wayne(r) ← W .v (r) ← faculty(n,r), n=’Wayne’; 1 3

Here, we need as many QCAs as there are relations in the mediator schema. We do not
depend on the number of tuples in a source. If we assume that the mediator designer had
good reasons to break up its schema into one relation per person, then this situation would
probably not be considered as a problem. Anyway, one can imagine more comfortable
ways to express it, especially if the number of different persons is high.

b) Integrating S : 2

smith(r) ← W .v (r) ← research(r,s,-,-),s=’yes’; 2 1

kim(r) ← W .v (r) ← research(r,-,s,-),s=’yes’; 2 2

wayne(r) ← W .v (r) ← research(r,-,-,s),s=’yes’; 2 3

The same thoughts hold as in case 3a).
162

6. Methodology

Using QCAs in the presence of schematic conflicts can be cumbersome. First, we get large
sets of almost identical QCAs. Second, in some cases we can specify QCAs only if we know
the extension of a wrapper in advance. These problems can be partly removed by introducing
schema variables into QCAs, i.e., variables in the place of relations or attribute names.
Schema variables are used in many multidatabase query languages [KLK91; LSS96].

Even if appropriate QCAs are specified, user queries may still be complicated. Suppose the
mediator has schema S and a user asking for the names and research areas of all faculty
members. This request cannot be formulated in a single query, but requires three separate que-
ries – the request is data-dependent:

2

interest(‘Smith’,r) ← research(r,s,-,-), s=’yes’;
interest(‘Kim’,r) ← research(r,-,s,-), s=’yes’;
interest(‘Wayne’,r) ← research(r,-,-,s), s=’yes’;

6.3 MBIS in the Presence of Change

A MBIS connects existing and independent subsystems. As such, MBIS have to cope with
evolution in those subsystems: Data sources may undergo schema revisions, new sources
have to be added, requirements to the MBIS itself may change, etc. MBIS are especially
prone to changes due to the high autonomy of the integrated data sources [Les98b]. For in-
stance, WBIS are often integrated into MBIS without being notified. Consequently, those
sources do respect the requirements of the MBIS. If the WBIS changes, the MBIS is not noti-
fied.

For these reasons, MBIS must pay special attention to their ability to cope with continuous
change [KS99] during their deployment phase. In Section 3.2 we discussed two development
strategies for FIS, bottom-up and top-down, and argued that top-down developed systems are
more flexible and better support maintenance. In the following we underpin this chaim by
discussing different scenarios of change.

We consider data sources as completely autonomous. Furthermore, we assume that struc-
tural changes are not handled inside a wrapper. Note that in other contexts, wrappers are actu-
ally introduced to shield “upper” layers from changes in the underlying system. For instance,
the main idea of CORBA standards is to keep the interface stable even if the underlying in-
formation system experiences heavy restructuring. In contrast, we assume thin wrappers (see
Section 6.1), which implies that wrappers reflect, and not compensate, most changes in the
underlying sources. The only components of the MBIS we can influence are the mediator and
the set of QCAs.

We distinguish three classes of change wrt. the reaction they provoke (see Figure 36):

•

•

•

Changes that can only be counteracted through changes in the mediator schema. We call
such changes schema affecting. Schema affecting changes are highly undesirable. Stable
mediator schemas are important to (1) protect applications (or other mediators) that use
those schemas, and to (2) prevent the necessity to change QCAs describing different
wrappers.
Changes that can be counteracted by adding, deleting or modifying QCAs. Changing
QCAs is inexpensive compared to changing schemas. It is the general idea of declarative
specification methods, such as QCAs, to move as much knowledge as possible into rules
since it is easier to change rules than to change programs.
Changes that can be ignored, for instance because they can easily be treated inside the
wrapper. An example is a layout change in a WBIS.

163

6. Methodology

Schema affecting
changes

Not schema
ffectina g changes

Ignorable changes

QCAs

Mediator Applications

SQL

Data

Wrapper

Wrapper
QCAs

QCAs

Mediator Applications

SQL

Data

Wrapper

Wrapper
QCAs

QCAs

Mediator Applications

SQL

Data

Wrapper

Wrapper
QCAs

Figure 36. Three classes of change in MBIS.
Shaded areas are undergoing change.

Note that the ability to distinguish between the first two classes of change discerns top-down
from bottom-up approaches: Since bottom-up approaches define the scope of the mediator
schema as the “union” of the scopes of its data sources, virtually all changes in sources are
schema affecting.

Changing wrapper schemas.
Structural or semantic changes in an underlying data source provokes changes in the export
schema of a thin wrapper. For instance, schema evolution in a RDB leads to changes in the
wrapper schema. If the data source is a WBIS, changes in the site structure or the set of avail-
able forms will have the same effect.

Possible changes in an export schema are:

•

•

•

Deleting or adding attributes or relations. Adding or deleting export schema elements
with an intension that is not present in the mediator schema is not schema affecting. Add-
ing or deleting schema elements that have a semantic counterpart in the mediator schema
can be offset by changing or adding/deleting QCAs. A special case is the deletion of a
schema element that stands for a concept that is not present in any other wrapper schema.
If the mediator administrator chooses to only delete the appropriate rule, any user queries
involving this concept becomes unanswerable. If the concept is also present in another
wrapper, only the extension of the query changes. To avoid unanswerable queries, the de-
veloper might chose to also modify the mediator schema, making the initial change
schema affecting.

Altering the intension of schema element. Altering the intension of a schema element may
be considered as first deleting that element and then adding an element with the new in-
tension. This type of change is hence subsumed by the previous discussion.

Altering attribute types. Changes in the types of attributes is rarely schema affecting be-
cause usually type transformations can be included in enhanced QCAs. An example for a
change that could become schema affecting is the following: Consider a mediator attribute
storing school grades in the range 1-10 and an equivalent wrapper attribute. If the wrapper
changes to a range of 1-6, no “fair” mapping can be specified. The mediator administrator
can either change the mediator schema or use an “unfair” mapping.

164

6. Methodology

Many cases can be handled without changing the mediator schema. Nevertheless, a mediator
administrator is free to change a mediator schema deliberately if, for instance, important new
and previously unavailable data is becoming available through a change in a data source.

Adding wrappers.
MBIS are systems that fulfil a domain-specific information requirement. Since in many do-
mains new data providers are constantly appearing, MBIS should be able to integrate them
rapidly in order to maintain a comprehensive view on its domain.

Integrating new data sources requires the implementation of an appropriate wrapper and
the specification of its export schema. As discussed in Section 6.1, this can mean everything
from simply loading a new schema from the data dictionary of a RDBMS to implementing
complicated rules to parse flat-files or web pages. In some cases existing wrapper functional-
ity can be reused.

Once the export schema is fixed, we can essentially deal with every element of that schema
as if it were a new schema element of an existing wrapper. Since a QCA is a correspondence
between the mediator and one single wrapper, introducing a new wrapper does not affect
QCAs describing other wrappers.

If we consider the mediator schema as fixed – because it completely covers the information
need it serves – then new sources will always only add new extensions – more data – but not
new intension. Adding a new data source then only requires adding new QCAs. It is not
schema affecting.

Deleting wrappers.
In the same way as new sources appear, existing sources may cease to exist. Another reason
for the removal of a wrapper from a MBIS can be the appearance of a “better” data source –
one that stores a superset of the data that the old source stores. For instance, in the area of
molecular biology there are numerous integrated databases that completely contain the con-
tent of other data sources. Integrating the new source renders other sources superfluous. Also
think of mirrors: A MBIS will probably only integrate one of a set of mirror sites – usually the
nearest one . 20

Deleting wrappers is semantically equivalent to deleting all its schema elements. In most
cases, deleting a wrapper simply requires to remove all QCAs describing that wrapper. Delet-
ing QCAs is not schema affecting.

Unavailability of sources.
Sources may become temporarily unavailable due to network failures or server crashes. For
the time that a source is absent, query plans involving queries against this source cannot be
executed. All other query plans remain unaffected.

Unavailability of source will first be detected by its wrapper(s) who will notify the media-
tor. The mediator could react by flagging the appropriate QCAs as unusable for query plan-
ning, or simply by ignoring the problem. The former method has the advantage that query
planning is accelerated, but also requires additional functionality in the implementation of the
mediator.

Temporal unavailability of a wrapper is not schema affecting.

Changing requirements.
Not only data sources can change during the lifetime of a MBIS. Also the requirements to the
MBIS can change, which will be reflected in modifications of the mediator schema.

165

20 It might be reasonable to integrate more then one of a set of mirrored sources to flexibly react on system and
network failures.

6. Methodology

Such a change will naturally be schema affecting, and has the same impact on the MBIS as
a database schema evolution on applications using that database. Formerly missing concepts
must be covered through QCAs, which triggers the search for and addition of new data
sources. Removed concepts can lead to the removal of QCAs, and to the removal of now un-
necessary data sources. Essentially, the entire set of QCAs needs to be revised.

6.4 Summary and Related Work

In this section we focussed on three important problems during the lifetime of a MBIS: The
creation of wrappers for new data sources, the semantic description of wrapper schemas wrt.
the mediator schema in the presence of heterogeneity, and the effects of change on a running
MBIS.

We discussed each of these problems by identifying a set of typical scenarios and describ-
ing their treatment. For the creation of wrappers we considered the three most important types
of data sources: relational databases, CORBA based information systems and web based in-
formation systems. We consider those types as representatives for many more types of data
sources, because

•

•

•

many of the ideas for RDBMS carry over to other types of database systems, such as ob-
ject-oriented or hierarchical databases,
techniques for the integration of CBIS also apply to other types of object-oriented middle-
ware such as DCOM,
the integration of flat-files or file collections can use exactly the methods we described for
WBIS.

One result of this analysis was the emphasis of the tight coupling between the export schema
of a wrapper and its set of executable queries. Based on this coupling we showed that in some
cases it is sufficient to only consider export schemas for the characterisation of wrappers.

In Section 6.2 we described the power of QCAs in bridging heterogeneity. Therefore, we
classified types of heterogeneity in relational schemas and gave examples for the three impor-
tant classes: semantic, structural and schematic conflicts. We showed that QCAs are indeed a
powerful method to describe the correspondences between schemas carrying semantic and
structural conflicts.

Finally, we investigated the ability of MBIS based on QCAs to react on five different types
of change that a real-life MBIS will presumably face all to often. We saw that most changes
in data sources can be counteracted by only changing QCAs, leaving the mediator schema
unaffected.

Related work.

Wrapping RDB.
Wrapping relational databases is common technology supported by numerous products. A
comparison of three different database middleware products can be found in [FRH98]. De
Ferreira & Hergula therein consider criteria such as performance, transaction management,
and language independence. The relationship between MBIS and database middleware is dis-
cussed by Mattos et al. [MKTZ99]. They argue that database middleware technology is cur-
rently moving towards MBIS by integrating more and more of the necessary functionality.

166

6. Methodology

This is certainly true, although no product has yet tried to attack the problem of query rewrit-
ing, which is necessary for the provision of true schema transparency.

In contrast to Mattos et al., Leyman argues that the emerging technology for federated da-
tabases, and hence also for MBIS, is message-orientation [Ley99], not database middleware.
In his view, a message oriented federation of databases is not based on the mediation of que-
ries, but uses a publish-subscribe schema: Any database joining the federation has to sub-
scribe to updates of other members, and also provide the possibility to notify other members
from internal updates. Thus, copies of selected information are distributed and automatically
kept consistent using a message broker with persistent message queues as middleware. Note
that the problem of heterogeneity is not solved by the broker. A broker merely works in a
store-and-forward mode, while coping with heterogeneity requires to translate and interpret
messages.

Wrapping CBIS.
As for RDB, there are many publications discussing the construction of CORBA servers. Two
that especially focus on the construction of wrappers for databases are [Bak96] and [DDO98].
Different possibilities to represent a relational database in an IDL interface are discussed in
detail in [LTB98]. In [JL99], Jungfer & Leser present a semi-automatic method for the gen-
eration of CORBA wrappers based on a declarative mapping language between relational
schemas and IDL.

The integration of CBIS into MBIS is especially interesting because of the existence and
expected proliferation of CORBA domain standards. If such standards were commonly used,
the treatment of heterogeneity would actually be moved to the data providers, making the
construction of data integration systems much simpler [ML99]. Similar movements are un-
derway in other middleware technologies, such as STEP and EXPRESS [HST99].

Wrapping WBIS.
Renown projects that aim at facilitating the construction of web wrappers are the “World
Wide Web Wrapper Factory” (W4F, [SA99]) and JEDI ([HFAN98]). Both are based on the
definition of a powerful language. In contrast to WWScript, they do not export structured data
but semistructured data. They can therefore not be easily used in a structured MBIS. Fur-
thermore, both are developed completely independent of any mediator systems, leading to
deficiencies in the formulation of a clean interface. Several projects in this field, including
JEDI and W4F, are compared in detail in [Hol99].

Maintenance of MBIS.
Maintaining MBIS has not been considered much in the the literature, probably because most
projects are only short–termed and, to the best of our knowledge, until to date no commer-
cially used system has emerged.

Maintaining integrated schemas in the presence of evolution of source schemas is consid-
ered in [Kol99]. The results indicate that it is rarely possible to keep the integrated schema
stable, which underlines our claim that independent schemas, and hence top-down developed
MBIS, are more flexible than tightly-coupled schemas, and hence FDBS.

167

7. Discussion

7. DISCUSSION

We give a summary of the main contributions of this thesis in Section 7.1. Future research
directions, both including possible improvements on the methods presented in this work and
directions in data integration in general, are described in Section 7.2. Finally, Section 7.3
draws conclusions gained from the research reported in this work.

7.1 Summary

In this work we presented a solution to the problem of answering queries in tightly integrated,
structured federated information systems.

In Chapter 2 we paved the technical ground by introducing the relational data model and
conjunctive, relational queries. We presented the fundamental concept of query planning, i.e.,
query containment, and discussed algorithms for query containment. The main findings of this
chapter are the detailed complexity analysis for these algorithms. In particular, we gave the
first average case analysis for query containment, proving that the problem, although expo-
nential in nature, is efficiently solvable in the average case.

In Chapter 3 we characterised mediator based information systems and compared them
with other approaches to data integration. MBIS provide access to a collection of heterogene-
ous information systems through a central, homogeneous schema. They have two key compo-
nents: Mediators manage the central schema and are responsible for answering queries against
this schema. Data sources are encapsulated by wrappers, which shield the mediator from
technical and data model heterogeneity. The main task of the mediator is the translation of
queries formulated against one schema (the mediator schema) into queries against other
schemas (the wrapper schemas).

The main problem in query translation is the heterogeneity between different schemas. The
essential idea to the treatment of this heterogeneity is the encoding of knowledge about con-
flicts in rules that connect corresponding queries. In Chapter 4 we introduced query corre-
spondence assertions as a powerful language for such rules. We also defined the semantics of
a user query in MBIS that are based on QCAs.

The main contribution of Chapter 4 are QCAs, which are more powerful than previous ap-
proaches to the specification of schema correspondences. Furthermore, this is the first work to
give a satisfying, declarative semantics for the type of correspondences we are considering.
This semantics allows us to prove properties of query answering algorithms in Chapter 5.

Algorithms that find all and only correct answers to a user query were presented in Chapter
5. The algorithms are based on the generation of query plans. A query plan is a combination
of executable queries against wrappers. After defining a correctness and a minimality criterion

168

7. Discussion

on query plans, we formally proved that (a) there exists only a finite number of correct and
minimal query plans for each user query, and that (b) algorithms finding all correct and mini-
mal query plans are sound and complete wrt. the previously defined semantics. We then de-
scribed and analysed two concrete query planning algorithms: the generate & test algorithm
(GTA) and the improved bucket algorithm (IBA). Furthermore, we considered possible op-
timisations to the set of all correct plans by investigating different forms of redundancy in and
in between query plans.

Chapter 5 contains the main technical contributions of this thesis. We showed that the IBA
has considerable better complexity than previously published algorithms for the types of que-
ries we consider. Furthermore, redundancy in query plans for information integration was to
our best knowledge not analysed adequately before.

In Chapter 6 we focussed on methodological issues. We discussed three steps in the life
cycle of a MBIS. First, we discussed the construction of wrappers for different types of data
sources. Wrappers make data sources accessible through an export schema and a set of execu-
table queries. To integrate a wrapper into a MBIS, those queries must be described wrt. the
mediator schema through QCAs. QCAs therein have to bridge schema heterogeneity, and we
showed the power of QCAs by examples that handle structural, semantic and schematic con-
flicts. Finally, we investigated the flexibility of a MBIS wrt. the ability to cope with change.
Analysing five different change scenarios, we demonstrated that MBIS using QCAs can han-
dle many types of change by changing rules, while schemas and applications remain unaf-
fected. This is achieved through the high degree of independence between schemas in MBIS,
which in turn is only possibly through the high expressiveness of QCAs.

7.2 Future Research Directions

The method and algorithms presented in this thesis form a powerful basis for MBIS. How-
ever, many problems that are important for the success of MBIS have not been addressed. We
shortly highlight some of those issues as potential starting points for future research.

Tool support.
The design and implementation of MBIS should be supported by tools, such as QCA editors.
Furthermore, it is important to facilitate the finding of QCAs through automatically derived
suggestions, for instance by using a domain-specific thesaurus for the detection of correspon-
dences between schema elements. First steps towards this goal are described in [Koe99].

Another important tool should test the sufficiency of a set of QCAs for a given mediator
schema. The query planning algorithms only work successfully if appropriate QCAs are
available. If, for instance, a user query contains a relation that is not present in any QCA, then
no plan can be found. Avoiding such frustrating failures requires to test whether the set of
QCAs at hand can provide answers to any query against the mediator schema. This test is not
trivial, given the many ways how mediator queries can be incompatible to each other.

Query capabilities.
The expressiveness of QCAs regarding the modelling of query capabilities of sources can be
improved. For instance, our current query planner cannot decide whether or not a selection
can be pushed to a wrapper because this knowledge is simply not expressible in QCAs. Fur-
thermore, binding patterns were frequently mentioned in this work but not considered in the
planning algorithms.

169

7. Discussion

However, we are faithful that such extensions do not pose conceptual problems. Various
approaches have been published [VP97; CGM99] and could be incorporated into the IBA.

Design rules for QCAs.
In many cases, especially if the data source is a RDB, the mediator developer has considerable
freedom in the design of QCAs. In general, QCAs should be as tight as possible to avoid un-
necessary query plans. For instance, if it can be observed that a data source has a restricted
range of values for a certain attribute, this range should be incorporated into all mediator que-
ries using this attribute. Queries selecting values outside this range will then avoid this data
source.

An interesting question is whether mediator queries of QCAs should be kept small, i.e.,
contain only one or a few literals, or should be generally large. The promise of large mediator
queries is that they build large subplans in one step. However, this promise does not hold
since the planning algorithm will break up every mediator query into single literals anyway.
Therefore, short mediator queries are probably preferable. However, a detailed analysis is still
lacking.

Result presentation.
We have not discussed issues of the presentation of results. For instance, users often want to
be source-aware, i.e., want to know the source of the information they receive [LBM98]. The
biggest problem however is probably the semantic integration of results from different query
plans because it requires the identification of real-life objects in the absence of globally valid
keys. This infamous problem, called “object fusion” [PAG96] or “record linkage” [Nei99], is
extremely complex and has even been called “the breakdown of the information model in
multi-database systems” [Ken91]. Identity is a application dependent concept: For instance, a
gene present in different organisms will be considered as identical for an application trying to
predict its protein structure, but different for an application analysing gene expression pro-
files.

Approaches to the solution of the object identification problem either use statistical meth-
ods or identity functions for the construction of global keys out of other object properties.

Mediators that use mediators.
For simplicity, we restricted ourselves in this work to MBIS with a single mediator. However,
MBIS integrating data from a complex domain are certainly better manageable if they use
specialised mediators, each responsible for a different sub-domain.

Such networks of mediators raise interesting challenges. For instance, we cannot simply
consider a subordinated MBIS as a RDB, being capable of answering any query against its
schema, since some queries might have no plan. Furthermore, the same information could be
reported to a superordinate mediator through two different subordinate mediators accessing
the same source. Removing such artificial duplicates is one problem; avoiding the redundant
execution of the same query in different mediators is another.

Yernerni et al. report an interesting step into this direction [YGMU99]. They describe al-
gorithms that automatically derive the query capabilities of a mediator given the capabilities
of the wrappers it uses. These algorithms can equally be applied to mediators that use other
mediators.

170

7. Discussion

7.3 Conclusions

The focus of research in information integration is currently changing. Previous approaches
concentrated on the integration of a given set of well-structured databases with the purpose of
having an integrated access to exactly those databases. In contrast, information integration in
the Internet age is about providing a certain type of information to a user, independently of
which information sources are used. Examples of the new type of integration services are
companies that sell information integrated from autonomous web sites, interfaces that provide
researcher with experimental results produced and managed in hundreds of laboratories, and
bargain finders that harvest hundreds of web sites to find the cheapest offer for a certain good.

Common properties of these scenarios are:

•

•

•

Integration is provided by a third party. A service for the location of cheap flight tickets
on the Internet will not be offered by a ticket selling agents.
The task of integration is to satisfy a source-independent information requirement. A cus-
tomer of the ticket finder service does not care which original data sources are searched;
he or she is interested in a cheap ticket.
The data sources remain completely autonomous and evolve independently of the integra-
tion. Ticket issuing agents typically do not ally with bargain finders.

Despite the growing importance of this new wave in information integration, few successful
solutions are known that are not ad-hoc, hard-coded ‘hacks’. We believe that this has two rea-
sons: First, information integration is difficult. The main source of difficulty is heterogeneity
and independent evolution, which both are consequences of autonomy. Second, virtual infor-
mation integration is prone to bad performance. It is inherently inefficient compared to homo-
geneous, monolithic systems because it involves the execution of remote methods or queries.
Therefore, virtual integration is almost defenceless to bandwidth limitations.

This thesis contributes solutions to the challenges posed to information integration by un-
satisfying performance, heterogeneity, and change. We presented a formalism for the seman-
tic description of data sources that bridges heterogeneity. We described an algorithm that effi-
ciently operates on this formalism to answer queries. We showed how query answering can be
achieved with a minimal set of remote query executions. Finally, we demonstrated that this
approach allows for stable interfaces in a world of continuously changing data sources.

Although we carefully tailored our algorithms towards high performance, virtual integra-
tion of distributed data sources remains time-consuming. Compared to a central database,
virtual integration suffers from two problems: First, query planning is more complex. Second,
execution of remote queries is more costly than accesses to local disks.

However, our results are not only helpful for those types of systems. First, query planning
need not necessarily be carried out at query-time. Frequent user queries can be precompiled,
which renders the cost of query planning almost irrelevant. Precompilation may also include a
manual post-optimisation of a computed set of query plans using knowledge that cannot be
specified in a declarative fashion. The final set of query plans is stored and can be executed
immediately if the appropriate query is issued.

Second, using declarative schema correspondences and flexible query planning algorithms
also pays off if data is stored locally. For instance, one might periodically replicate heteroge-
neous data sources on local disks. Integrating the data in a homogeneous database might be
prohibitive because rebuilds are extremely costly but continuously necessary because of fre-
quently changing data and schemas. In such a case, we may use QCAs and query planning to
provide integrated access without building a central database – and without remote query exe-
cutions.

171

References

REFERENCES

[AD98] Abiteboul, S. and O. M. Duschka (1998). Complexity of Answering Queries using Mate-
rialized Views. 17th ACM Symposium on Principles of Database Systems, pp. 254-263,
Seattle, WA.

[AHK+95] Arens, Y., R. Hull, R. King, et. al. (1995). Reference Architecture for the Intelligent Inte-
gration of Information; Version 2.0 (DRAFT). DARPA - Defence Advanced Research
project Agency; Program on Intelligent Integration of Information (I3), Report.

[AHK96] Arens, Y., C.-N. Hsu and C. A. Knoblock (1996). Query Processing in the SIMS Infor-
mation Mediator. In Advanced Planning Technology. A. Tate, pp. 61-69, AAAI Press,
Menlo Park, California.

[AHV95] Abiteboul, S., R. Hull and V. Vianu (1995). Foundations of Databases. Addison-Wesley
Publishing Company, Reading, Massachusetts.

[AMM97] Atzeni, P., G. Mecca and P. Merialdo (1997). Semistructured and Structured Data in the
Web: going back and forth. SIGMOD Record, 26(4): 16-23.

[AR94] Alsabbagh, J. R. and V. V. Raghavan (1994). Analysis of Common Subexpression Ex-
ploitation Models in Multiple-Query Processing. 10th Int. Conference on Data Engineer-
ing, pp. 488-497, Houston, Texas.

[ASU79a] Aho, A. V., Y. Sagiv and J. D. Ullman (1979). Efficient Optimisation of a Class of Rela-
tional Expressions. ACM Transactions on Database Systems, 4(4): 435-454.

[ASU79b] Aho, A. V., Y. Sagiv and J. D. Ullman (1979). Equivalence among Relational Expres-
sions. SIAM Journal of Computing, 8(2): 218-246.

[Bak96] Baker, S. (1996). CORBA and Databases - Do you really need both ? Object Expert, May
1996.

[BBE98] Bouguettaya, A., B. Benatallah and A. K. Elmagarmid (1998). Interconnecting Heteroge-
neous Information Systems. Kluwer Academic Publishers, Boston, Dordrecht, London.

[BDD+98] Bello, R. G., K. Dia, A. Downing, J. Feenen Jr, W. D. Norcott, H. Sun, A. Witkowski and
M. Ziauddin (1998). Materialized Views in ORACLE. 24th Conference on Very Large
Database Systems, pp. 659-664, New York.

[BE95] Bukhres, O. and A. K. Elmagarmid, Eds. (1995). Object-Oriented Multidatabase Systems:
A Solution for Advanced Applications. Prentice Hall.

[BKLW99] Busse, S., R.-D. Kutsche, U. Leser and H. Weber (1999). Federated Information Systems:
Concepts, Terminology and Architectures. Technische Universität Berlin, Forschungs-
berichte des Fachbereichs Informatik 99-9.

[BLL+99] Barillot, E., U. Leser, P. Lijnzaad, C. Cussat-Blanc, K. Jungfer, F. Guyon, G. Vaysseix,
C. Helgesen and P. Rodriguez-Tome (1999). A Proposal for a Standard CORBA Interface
for Genome Maps. Bioinformatics, 15(2): 157-169.

172

References

[BLN86] Batini, C., M. Lenzerini and S. B. Navathe (1986). A Comparative Analysis of Method-
ologies for Database Schema Integration. ACM Computing Surveys, 18(4): 323-364.

[Bor95] Borgida, A. (1995). Description Logic in Data Management. IEEE Transactions on
Knowledge and Data Engineering, 7(5): 671-682.

[BP98] Blakeley, J. A. and M. J. Pizzo (1998). Microsoft Universal Data Access Platform. ACM
SIGMOD Int. Conference on Management of Data 1998, pp. 502-503, Seattle, Washing-
ton.

[BS95] Brodie, M. L. and M. Stonebraker (1995). Migrating Legacy Systems: Gateways, Inter-
faces and the Incremental Approach. Morgan Kaufmann Publishers, Inc., San Francisco.

[Bun97] Buneman, P. (1997). Semistructured Data. 16th ACM Symposium on Principles of Data-
base Systems, pp. 117-121, Tuscon, Arizona.

[Bus99] Busse, S. (1999). A Specification Language for Model Correspondence Assertions. Tech-
nische Universität Berlin, Forschungsberichte des Fachbereichs Informatik 99-8.

[CD98] Chen, A. F.-C. F. and A. M. H. Dunham (1998). Common Subexpression Processing in
Multiple-Query Processing. IEEE Transactions on Knowledge and Data Engineering,
10(3): 493-499.

[CGM99] Chang, C.-C. K. and H. Garcia-Molina (1999). Mind your Vocabulary: Query Mapping
across Heterogeneous Information Sources. ACM SIGMOD Int. Conference on Manage-
ment of Data 1999, pp. 335-346, Philadelphia.

[Cha98] Chaudhuri, S. (1998). An Overview of Query Optimisation in Relational Systems. 17th
ACM Symposium on Principles of Database Systems, pp. 34-43, Seattle, Washington.

[CHKR98] Carey, M. J., L. M. Haas, J. Kleewein and B. Reinwald (1998). Data Access Interopera-
bility in the IBM Database Family. IEEE Quarterly Bulletin on Data Engineering; Spe-
cial Issue on Interoperability, 21(3): 4-11.

[CKPS95] Chaudhuri, S., R. Krishnamurthy, S. Potamianos and K. Shim (1995). Optimizing Que-
ries with Materialized Views. 11th Int. Conference on Data Engineering, pp. 190-200,
Los Alamitos, CA.

[CL93] Catarci, T. and M. Lenzerini (1993). Representing and Using Interschema Knowledge in
Cooperative Information Systems. Journal for Intelligent and Cooperative Information
Systems, 2(4): 375-399.

[CM77] Chandra, A. K. and P. M. Merlin (1977). Optimal Implementation of Conjunctive Queries
in Relational Databases. 9th ACM Symposium on Theory of Computing, pp. 77-90.

[CNS99] Cohen, S., W. Nutt and A. Serebrenik (1999). Rewriting Aggregate Queries using Views.
18th ACM Symposium on Principles of Database Systems, pp. 155-166, Philadelphia.

[Con97] Conrad, S. (1997). Föderierte Datenbanksysteme: Konzepte der Datenintegration.
Springer Verlag, Berlin, Heidelberg, New York.

[CPL97] Cadoli, M., L. Palopoli and M. Lenzerini (1997). Datalog and Description Logics: Ex-
pressive Power. 6th Workshop on Database Programming Languages, pp. 281-298, Estes
Park, Colorado.

[CR97] Chekuri, C. and A. Rajaraman (1997). Conjunctive Query Containment Revisited. 6th Int.
Conference on Database Theory; LNCS 1186, pp. 56-70, Delphi, Greece.

[CV92] Chaudhuri, S. and M. Y. Vardi (1992). On the Equivalence of Datalog Programs. 11th
ACM Symposium on Principles of Database Systems, pp. 55-66, San Diego, CA.

[DBBV00] Discala, C., X. Benigni, E. Barillot and G. Vaysseix (2000). DBcat: a catalog of 500 bio-
logical databases. Nucleic Acids Research, 28(1): 8-9.

[DD99] Domenig, R. and K. R. Dittrich (1999). An Overview and Classification of Mediated
Query Systems. SIGMOD Record, 28(3).

173

References

[DDJ+98] De Michelis, G., E. Dubois, M. Jarke, F. Matthes, J. Mylopoulos, M. P. Papazoglou, K.
Pohl, J. Schmidt, C. Woo and E. Yu (1998). Cooperative Information Systems: a Mani-
festo. In Cooperative Information Systems. M. P. Papazoglou and G. Schlageter, pp. 315-
363, Academic Press, San Diego.

[DDO98] Dogac, A., C. Dengi and M. T. Özsu (1998). Distributed Object Management Platforms.
Communications of the ACM, 41(9): 95-103.

[DFJ+96] Dar, S., M. Franklin, B. Jonsson, D. Srivastava and M. Tan (1996). Semantic Data Cach-
ing and Replacement. 22nd Conference on Very Large Databases, pp. 330-341, Bombay,
India.

[DG97] Duschka, O. M. and M. R. Genesereth (1997). Answering recursive queries using views.
16th ACM Symposium on Principles of Database Systems, pp. 109-116, Tuscon, Arizona.

[DK97] Davidson, S. and A. S. Kosky (1997). WOL: A Language for Database Transformations
and Constraints. 13th Int. Conference on Data Engineering, pp. 55-65, Birmingham, UK.

[DKE94] Davidson, S., A. S. Kosky and B. Eckman (1994). Facilitating Transformations in a Hu-
man Genome Project Database. 3rd International Conference on Information and Knowl-
edge Management, pp. 423-432, Gaithersburg, Maryland.

[DL97] Duschka, O. M. and A. Y. Levy (1997). Recursive Plans for Information Gathering. 15th
International Joint Conference on Artificial Intelligence, pp. 778-784, Nagoya, Japan.

[DOTW97] Davidson, S., G. C. Overton, V. Tannen and L. Wong (1997). BioKleisli: a digital library
for biomedical researchers. Int. Journal on Digital Libraries, 1(1): 36-53.

[EL94] Elmasri, R. and S. B. Navathe (1994). Fundamentals of Database Systems. Benjamin /
Cummings Publishing Company Inc., Redwood City, CA.

[EP90] Elmagarmid, A. K. and C. Pu (1990). Special Issue on Heterogeneous Databases (edi-
tors). ACM Computing Surveys, 22(2).

[Fau00] Faulstich, L. (2000). The HyperView Approach to the Integration of Semistructured Data.
Freie Universität Berlin. Ph.D. Thesis.

[FGL+98] Fankhauser, P., G. Gardarin, M. Lopez, J. Munoz and A. Tomasic (1998). Experiences in
Federated Databases: From IRO-DB to MIRO-Web. 24th Conference on Very Large Da-
tabase Systems, pp. 655-658, New York.

[FLL+97] Fasman, K. H., S. Letovsky, P. W. D. Li, R. W. Cottingham and D. Kingsbury (1997).
The GDB Human Genome Database Anno 1997. Nucleic Acids Research, 25(1): 72-80.

[FLMS99] Florescu, D., A. Y. Levy, I. Manolescu and D. Sucia (1999). Query Optimisation in the
Presence of Limited Access Patterns. ACM SIGMOD Int. Conference on Management of
Data 1999, pp. 311-322, Philadelphia, USA.

[Fre91] Frenkel, K. A. (1991). The Human Genome Project and Informatics. Communications of
the ACM, 34(11): 40-51.

[FRH98] de Ferreira Rezende, F. and K. Hergula (1998). The Heterogeneity Problem and Middle-
ware Technology: Experiences with and Performance of Database Gateways. 24th Con-
ference on Very Large Database Systems, pp. 146-157, New York.

[FS98] Faulstich, L. and M. Spiliopoulou (1998). Building HyperNavigation Wrappers for Pub-
lisher Web-Sides. 2nd European Conf. on Digital Libraries; LNCS 1513, pp. 115-134,
Heraklion, Krete.

[FTU98] Farre, C., E. Teniente and T. Urpi (1998). Query Containment Checking as a View Up-
dating Problem. 9th Int. Conf. on Database and Expert Systems Applications, pp. 310-
321, Vienna, Austria.

174

References

[FW97] Friedman, M. and D. S. Weld (1997). Efficiently Executing Information-Gathering Plans.
15th International Joint Conference on Artificial Intelligence, pp. 785-791, Nagoya, Ja-
pan.

[GG95] Guarino, N. and P. Giaretta (1995). Ontologies and Knowledge Bases: Towards a Termi-
nological Clarification. In Towards Very Large Knowledge Bases. N. J. I. Mars, pp. 25-
32, IOS Press, Amsterdam.

[GKD97] Genesereth, M. R., A. M. Keller and O. M. Duschka (1997). Infomaster: An Information
Integration System. ACM SIGMOD Int. Conference on Management of Data 1997, pp.
539-542, Tuscon, Arizona.

[GM95] Gupta, A. and I. S. Mumick (1995). Maintenance of Materialized Views: Problems,
Techniques and Applications. IEEE Quarterly Bulletin on Data Engineering; Special Is-
sue on Materialized Views and Data Warehousing, 18(2): 3-18.

[GM99] Grahne, G. and A. O. Mendelzon (1999). Tableau Techniques for Querying Information
Sources through Global Schemas. 7th Int. Conference on Database Theory, pp. 332-347,
Jerusalem, Israel.

[GMP+97] Garcia-Molina, H., Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. D. Ull-
man, V. Vassalos and J. Widom (1997). The TSIMMIS Approach to Mediation: Data
Models and Languages. Journal of Intelligent Information Systems, 8(2): 117-132.

[GMS94] Goh, C. H., M. E. Madnick and M. D. Siegel (1994). Context Interchange: Overcoming
the Challenges of Large-Scale Interoperable Database Systems in Dynamic Environ-
ments. 3rd International Conference on Information and Knowledge Management, pp.
337-346, Gaithersburg, Maryland.

[GMY99] Garcia-Molina, H. and R. Yerneni (1999). Coping with Limited Capabilities of Sources.
8th GI Fachtagung: Datenbanksysteme in Büro, Technik und Wissenschaft, pp. 1-19,
Freiburg, Germany.

[Gru93] Gruber, T. R. (1993). A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 5(2): 199-220.

[Gry98] Gryz, J. (1998). Query Folding with Inclusion Dependencies. 14th Int. Conference on
Data Engineering, pp. 126-133, Orlando, Florida.

[HFAN98] Huck, G., P. Fankhauser, K. Aberer and E. Neuhold (1998). JEDI: Extracting and Synthe-
sizing Information from the Web. 6th Int. Conf. on Cooperative Information Systems, pp.
32-43, New York.

[HGM95] Hammer, J., H. Garcia-Molina, J. Widom, W. Labio and Y. Zhuge (1995). The Stanford
Data Warehousing Project. IEEE Quarterly Bulletin on Data Engineering; Special Issue
on Materialized Views and Data Warehousing, 18(2): 41-48.

[HKU99] Haas, L. M., D. Kossmann and I. Ursu (1999). Loading a Cache with Query Results. 25th
Conference on Very Large Database Systems, pp. 351-362, Edinburgh, UK.

[HKWY97] Haas, L. M., D. Kossmann, E. L. Wimmers and J. Yang (1997). Optimizing Queries
across Diverse Data Sources. 23rd Conference on Very Large Database Systems, pp. 276-
285, Athens, Greece.

[HL93] Habermann, H.-J. and F. Leymann (1993). Repository. R. Oldenbourg, München, Wien.

[HM85] Heimbigner, D. and D. McLeod (1985). A Federated Architecture for Information Man-
agement. ACM Transactions on Office Information Systems, 3(3): 253-278.

[Hol99] Holzheuer, C. (1999). Wrappergenerierung für WWW Datenquellen. Technische Univer-
sität Berlin. Diploma Thesis.

[HST99] Härder, T., G. Sauter and J. Thomas (1999). The intrinsic problems of structural hetero-
geneity and an approach to their solution. The VLDB Journal, 8(1): 25-43.

175

References

[Hull97] Hull, R. (1997). Managing Semantic Heterogeneity in Databases: A Theoretical Perspec-
tive. 16th ACM Symposium on Principles of Database Systems, pp. 51-61, Tuscon, Ari-
zona.

[ISO90] ISO and IEC (1990). Information Technology - Information Resource Dictionary System
(IRDS). International Standard, ISO/IEC 10027.

[Jar85] Jarke, M. (1985). Common Subexpression Isolation in Multiple Query Optimization. In
Query Processing in Database Systems. W. Kim, D. S. Reiner and D. S. Batory, pp. 191-
205, Springer Verlag, Berlin, Heidelberg, New York, Tokyo.

[JL99] Jungfer, K., U. Leser and P. Rodriguez-Tome (1999). Constructing IDL Views on Rela-
tional Databases. 11th Conference on Advanced Information Systems Engineering; LNCS
1626, pp. 255-269, Heidelberg, Germany.

[Joh98] Johansson, J. M. (1998). Towards a More Accurate Network Response Time Model for
Distributed Systems Design. 8th Workshop on Information Technology and Systems, pp.
177-186, Helsinki, Finland.

[JP99] Jeusfeld, M. A. and M. P. Papazoglou (1999). Information Brokering. In Information
System Interoperability. B. Krämer, M. P. Papazoglou and H.-W. Schmidt, pp. 265-302,
John Wiley, New York.

[Karp94] Karp, P. D. (1994). Report of the Workshop on Interconnection of Molecular Biology
Databases. SRI International Artificial Intelligence Center, Stanford, California. Techni-
cal Report, SRI-AIC-549.

[Karp95c] Karp, P. D., Ed. (1995). 2nd Meeting on Interconnection of Molecular Biology Data-
bases. Electronic Proceedings, available at http://www.ai.sri.com/people/pkarp/
mimdb.html, Cambridge, UK.

[KB94] Keller, A. M. and J. Basu (1994). A Predicate-Based Caching Scheme for Client-Server
Database Architectures. The VLDB Journal, 5(1): 35 - 47.

[KB98] Klusch, M. and W. Benn (1998). Intelligente Informationsagenten im Internet. Künstliche
Intelligenz, 3/98: 8-17.

[KCGS95] Kim, W., I. Choi, S. Gala and M. Scheevel (1995). On Resolving Schematic Heterogene-
ity in Multidatabase Systems. In Modern Database Systems. W. Kim, pp. 521-550, ACM
Press, Addison-Wesley Publishing Company, New York.

[Ken91] Kent, W. (1991). The Breakdown of the Information Model in Multi-Database Systems.
SIGMOD Record, 20(4): 10-15.

[Kim95] Kim, W., Ed. (1995). Modern Database Systems. The Object Model, Interoperability and
Beyond. ACM Press, Addison Wesley Publishing Company, New York.

[Kin99] Kinne, O. (1999). Multiple Query Optimisation in verteilten, heterogenen Informa-
tionssystemen. Technische Universität Berlin. Diploma Thesis.

[KLK91] Krishnamurthy, R., W. Litwin and W. Kent (1991). Language Features for Interoperabil-
ity of Databases with Schematic Discrepancies. ACM SIGMOD Int. Conference on Man-
agement of Data 1991, pp. 40-49, Denver, Colorado.

[Klu88] Klug, A. (1988). On Conjunctive Queries Containing Inequalities. Journal of the ACM,
35(1): 146-160.

[Koe99] König-Ries, B. (1999). Ein Verfahren zur Semi-Automatischen Generierung von Media-
torspezifikationen. INFIX Verlag.

[Kol99] Kolmschlag, S. (1999). Schemaevolution in föderierten Datenbanksystemen. Shaker Ver-
lag, Aachen. Ph.D. Thesis.

[KPS99] Krämer, B., M. P. Papazoglou and H.-W. Schmidt, Eds. (1999). Information System In-
teroperability. John Wiley, New York.

176

References

[KS96] Kashyap, V. and A. Sheth (1996). Semantic and Schematic Similarities between Database
Objects: A Context-Based Approach. The VLDB Journal, 5(4): 276-304.

[KS98] Kashyap, V. and A. Sheth (1998). Semantic Heterogeneity in Global Information Sys-
tems: The Role of Metadata, Context and Ontologies. In Cooperative Information Sys-
tems. M. P. Papazoglou and G. Schlageter, pp. 139-178, Academic Press, San Diego.

[KS99] Kutsche, R.-D. and A. Sünbül (1999). A Meta-Data Based Development Strategy for
Heterogeneous, Distributed Information Systems. 3rd IEEE Metadata Conference, Be-
thesda, Maryland.

[KTV97] Kapitskaja, O., A. Tomasic and P. Valduriez (1997). Dealing with Discrepancies in
Wrapper Functionality. INRIA: Institute National de Recherche en Informatique et en
Automatique. Technical Report, 3138.

[KW96] Kwok, C. T. and D. S. Weld (1996). Planning to Gather Information. University of Wash-
ington, Department of Computer Science & Engineering. Technical Report, UW-CSE-96-
01-04.

[LBM98] Lee, T., S. Bressan and S. Madnick (1998). Source Attribution for Querying Against
Semistructured Documents. 1st Workshop on Web Information and Data Management, in
conjunction with CIKM'98, Washington, D.C.

[Les98a] Leser, U. (1998). Combining Heterogeneous Data Sources through Query Correspon-
dence Assertions. Workshop on Web Information and Data Management, in conjunction
with CIKM'98, pp. 29-32, Washington, D.C.

[Les98b] Leser, U. (1998). Maintenance and Mediation in Federated Databases. 8th Workshop on
Information Technology and Systems, pp. 187-196, Helsinki, Finland.

[Ley99] Leymann, F. (1999). A Practitioners Approach to Database Federation. 4. Workshop
Föderierte Datenbanken, Berlin, Germany.

[LLRC98] Leser, U., H. Lehrach and H. Roest Crollius (1998). Issues in Developing Integrated Ge-
nomic Databases and Application to the Human X Chromosome. Bioinformatics, 14(7):
583-590.

[LMR90] Litwin, W., L. Mark and N. Roussolpoulos (1990). Interoperability of Multiple Autono-
mous Databases. ACM Computing Survey, 22(3): 267-293.

[LMSS95] Levy, A. Y., A. O. Mendelzon, Y. Sagiv and D. Srivastava (1995). Answering Queries
Using Views. 14th ACM Symposium on Principles of Database Systems, pp. 95-104, San
Jose, CA.

[LR96] Levy, A. Y. and M.-C. Rousset (1996). CARIN: A Representation Language Combining
Horn Rules and Description Logics. 12th European Conference on Artificial Intelligence,
pp. 323-327, Budapest, Hungary.

[LRO96a] Levy, A. Y., A. Rajaraman and J. J. Ordille (1996). Querying Heterogeneous Information
Sources Using Source Descriptions. 22nd Conference on Very Large Databases, pp. 251-
262, Bombay, India.

[LRO96b] Levy, A. Y., A. Rajaraman and J. J. Ordille (1996). Query-Answering Algorithms for
Information Agents. 13th AAAI National Conf. on Artificial Intelligence, pp. 40-47, Port-
land, Oregon.

[LRTL93] Lee, A. J., E. A. Rundensteiner, S. W. Thomas and S. Lafortune (1993). An Information
Model for Genome Map Representation and Assembly. 2nd International Conference on
Information and Knowledge Management, pp. 75-84, New York.

[LRU96] Levy, A. Y., A. Rajaraman and J. D. Ullman (1996). Answering Queries Using Limited
External Processors. 15th ACM Symposium on Principles of Database Systems, pp. 227-
237, Montreal, Canada.

177

References

[LS93] Levy, A. Y. and Y. Sagiv (1993). Queries Independent of Updates. 19th Conference on
Very Large Databases, pp. 171-181, Dublin, Ireland.

[LS97] Levy, A. Y. and D. Suciu (1997). Deciding Containment for Queries with Complex Ob-
jects and Aggregations. 16th ACM Symposium on Principles of Database Systems, pp.
20-31, Tuscon, Arizona.

[LSR97] LSRDTF (1997). Mission, Working Groups and Documents of the Life Science Research
Domain Task Force. WWW Page, http://www.omg.org/lsr.

[LSS93] Lakshmanan, L. V. S., F. Sadri and I. N. Subramanian (1993). On the Logical Foundation
of Schema Integration and Evolution in Heterogeneous Database Systems. 2nd Int. Conf.
on Deductive and Object-Oriented Databases, pp. 81-100, Phoenix, Arizona.

[LSS96] Lakshmanan, L. V. S., F. Sadri and I. N. Subramanian (1996). SchemaSQL: A Language
for Interoperability in Relational Multidatabase Systems. 22nd Conference on Very Large
Databases, pp. 239-250, Bombay, India.

[LTB98] Leser, U., S. Tai and S. Busse (1998). Design Issues of Database Access in a CORBA
Environment. Workshop on Integration of Heterogeneous Software Systems, pp. 74-87,
Magdeburg, Germany.

[LWG+98] Leser, U., R. Wagner, A. Grigoriev, H. Lehrach and H. Roest Crollius (1998). IXDB, an
X Chromosome Integrated Database. Nucleic Acids Research, 26(1): 108-111.

[MG98] Meltzer, B. and R. J. Glushko (1998). XML and Electronic Commerce: Enabling the
Network Economy. SIGMOD Record, 27(4): 21-24.

[Mic98] Microsoft Cooperation (1998). OLE DB/ADO: Making Universal Data Access a Reality.
White Paper.

[Mil98] Miller, R. J. (1998). Using Schematically Heterogeneous Structures. ACM SIGMOD Int.
Conference on Management of Data 1998, pp. 189-200, Seattle, Washington.

[MKSI96] Mena, E., V. Kashyap, A. Sheth and A. Illarramendi (1996). OBSERVER: An Approach
for Query Processing in Global Information Systems based on Interoperation across Pre-
existing Ontologies. 4th Int. Conf. on Cooperative Information Systems, pp. 14-25,
Bruessels, Belgium.

[MKTZ99] Mattos, N. M., J. Kleewein, M. Tork Roth and K. Zeidenstein (1999). From Object-
Relational to Federated Databases. 8th GI Fachtagung: Datenbanksysteme in Büro,
Technik und Wissenschaft, pp. 185-209, Freiburg, Germany.

[ML99] Müller, H. and U. Leser (1999). Integration durch Standards: Erfahrungen mit CORBA in
Life Science Research. 4. Workshop Föderierte Datenbanken, pp. 89-102, Berlin, Ger-
many.

[Mot95] Motro, A. (1995). Multiplex: A Formal Model for Multidatabases and Its Implementa-
tion. George Mason University. Technical report, ISSE-TR-95-103.

[Mot98] Motz, R. (1998). Propagation of Structural Modifications to an Integrated Schema. 2nd
East European Symposium on Advances in Databases and Information Systems; LNCS
1475, pp. 163-174, Poznan, Poland.

[Muel99] Müller, H. (1999). Realisierung eines einheitlichen Zugriffs auf molekularbiologische
Genomkarten unter Verwendung von CORBA. Technische Universität Berlin. Diplomo
Thesis.

[Nei99] Neiling, M. (1999). Datenintegration durch Objekt-Identifikation. 4. Workshop Föderi-
erte Datenbanken, pp. 117-143, Berlin, Germany.

[NEL86] Navathe, S. B., R. ElMasri and J. A. Larson (1986). Integrating User Views in Database
Design. IEEE Computer, 9(1): 50 - 62.

178

References

[NLF99b] Naumann, F., U. Leser and J. C. Freytag (1999). Quality-driven Integration of Heteroge-
neous Information Systems. 25th Conference on Very Large Database Systems, pp. 447-
458, Edinburgh, UK.

[NS96] Navathe, S. B. and A. Savasere (1996). A Schema Integration Facility using a Object-
Oriented Data Model. In Object-Oriented Multidatabase Systems - A Solution for Ad-
vanced Applications. O. Bukhres and A. K. Elmagarmid, pp. 105-128, Prentice Hall, Ea-
glewoods Cliffs.

[OHE97] Orfali, R., D. Harkey and J. Edwards (1997). Instant CORBA. Wiley Computer Publish-
ing, John Wiley and Sons Inc.

[OV99] Oezsu, M. T. and P. Valduriez (1999). Principles of Distributed Database Systems. Pren-
tice Hall, Inc., New Jersey.

[PAG96] Papakonstantinou, Y., S. Abiteboul and H. Garcia-Molina (1996). Object Fusion in Me-
diator Systems. 22nd Conference on Very Large Data Bases, pp. 413-424, Bombay, In-
dia.

[Pap94] Papadimitriou, C. H. (1994). Computational Complexity. Addison-Wesley, USA.

[PBE95] Pitoura, E., O. Bukresh and A. K. Elmagarmid (1995). Object Orientation in Multidata-
base Systems. ACM Computing Survey, 27(2): 141-195.

[PGMU96] Papakonstantinou, Y., H. Garcia-Molina and J. D. Ullman (1996). Medmaker: A Media-
tion System Based on Declarative Specifications. 12th Int. Conference on Data Engineer-
ing, pp. 132 - 141, New Orleans, Louisiana.

[PK98] Patterson, D. A. and K. K. Keeton (1998). Hardware Technology Trends and Database
Opportunities. ACM SIGMOD Int. Conference on Management of Data 1998, Seattle,
Washington.

[Pri96] Primrose, S. B. (1996). Genomanalyse. Spectrum; Akademischer Verlag, Heidelberg.

[PS98] Papazoglou, M. P. and G. Schlageter, Eds. (1998). Cooperative Information Systems -
Trends and Directions. Academic Press, San Diego.

[Qia96] Qian, X. (1996). Query Folding. 12th Int. Conference on Data Engineering, pp. 48-55,
New Orleans, Louisiana.

[Rob92] Robbins, R. J. (1992). Challenges in the Human Genome Project: Progress Hinges on
Resolving Database and Computational Factors. IEEE Engineering in Medicine and Biol-
ogy, March 1992: 25-34.

[Rob95] Robbins, R. J. (1995). Information Infrastructure for the Human Genome Project. IEEE
Engineering in Medicine and Biology, 14(6): 746-759.

[RSU95] Rajaraman, A., Y. Sagiv and J. D. Ullman (1995). Answering Queries using Templates
with Binding Patterns. 14th ACM Symposium on Principles of Database Systems, pp.
105-112, San Jose, CA.

[RSUV89] Ramakrishnan, R., Y. Sagiv, J. D. Ullman and M. Y. Vardi (1989). Proof-Tree Transfor-
mation Theorems and their Applications. 8th ACM Symposium on Principles of Database
Systems, pp. 172 - 181, Philadelphia.

[RU93] Ramakrishnan, R. and J. D. Ullman (1993). A Survey of Research on Deductive Database
Systems. Journal of Logic Programming, 23(2): 125 - 149.

[SA99] Sahuguet, A. and F. Azavant (1999). Building Light-Weight Wrappers for Legacy Web
Data-Sources using W4F. 25th Conference on Very Large Database Systems, pp. 738-
741, Edingurgh, UK.

[SAC+79] Selinger, P. G., M. M. Astrahan, D. D. Chamberlin, R. A. Lorie and T. G. Price (1979).
Access Path Selection in a Relational Database Management System. ACM SIGMOD Int.
Conference on Management of Data 1979, pp. 23-34, Boston, MA.

179

References

[Sag88] Sagiv, Y. (1988). Optimising DATALOG Programs. In Foundations of Deductive Data-
bases and Logic Programming. J. Minker, pp. 659-698, Morgan Kaufmann, Los Altos.

[Sau98] Sauter, G. (1998). Interoperabilität von Datenbanksystemen bei struktureller Hetero-
genität. Infix, Sankt Augustin.

[SCGS91] Saltor, F., M. Castellanos and M. Garca-Solaco (1991). Suitability of Data Models as
Canonical Models for Federated Databases. ACM SIGMOD Record, 20(4): 44-48.

[Sch98] Schmitt, I. (1998). Schemaintegration für den Entwurf föderierter Datenbanken. Infix
Verlag, Sankt Augustin.

[SG90] Sellis, T. K. and S. Ghosh (1990). On the Multiple-Query Optimization Problem. IEEE
Transactions on Knowledge and Data Engineering, 2(2): 262-266.

[Shm93] Shmueli, O. (1993). Equivalence of DATALOG Queries is Undecidable. Journal of Logic
Programming, 15: 231-241.

[SK93] Sheth, A. and V. Kashyap (1993). So Far (Schematically) Yet So Near (Semantically).
Proc. IFIP TC2.6 DS-5 Conference on Semantics of Interoperable Databases, pp. 283-
312, Lorne, Victoria, Australia.

[SL90] Sheth, A. and J. A. Larson (1990). Federated Database Systems for Managing Distrib-
uted, Heterogeneous and Autonomous Databases. ACM Computing Survey, 22(3): 183-
236.

[SM98] Sellentin, J. and B. Mitschang (1998). Data-Intensive Intra- & Internet Applications -
Experiences Using JAVA and CORBA in the World Wide Web. 14th Int. Conference on
Data Engineering, pp. 302-311, Orlando, Florida.

[SPD92] Spaccapietra, S., C. Parent and Y. Dupont (1992). Model Independent Assertions for
Integration of Heterogeneous Schemas. The VLDB Journal, 1(1): 81-126.

[SSN94] Shim, K., T. K. Sellis and D. Nau (1994). Improvements on a Heuristic Algorithm for
Multiple-Query Optimization. Data and Knowledge Engineering, 12(2): 197-222.

[ST96] Staudt, M. and K. v. Thadden (1996). A Generic Subsumption Testing Toolkit for
Knowledge Base Queries. 7th Int. Conf. on Database and Expert Systems Applications;
LNCS 1134, pp. 834-844, Zurich, Switzerland.

[SY80] Sagiv, Y. and M. Yannakakis (1980). Equivalence among Relational Expressions with the
Union and Difference Operators. Journal of the ACM, 27(4): 633-655.

[TRS97] Tork Roth, M. and P. M. Schwarz (1997). Don't scrap it, wrap it! A Wrapper Architecture
for Legacy Data Sources. 23rd Conference on Very Large Database Systems, pp. 266-
275, Athens, Greece.

[TRV96] Tomasic, A., L. Raschid and P. Valduriez (1996). Scaling Heterogeneous Databases and
the Design of DISCO. 16th Int. Conference on Distributed Computing Systems, pp. 449-
457, Hong Kong.

[TSI94] Tsatalos, O. G., M. H. Solomon and Y. E. Ioannidis (1994). The GMAP: A Versatile
Tool for Physical Data Independence. 20th Conference on Very Large Databases, pp.
367-378, Santiago de Chile, Chile.

[Ull89] Ullman, J. D. (1989). Principles of Database Systems and Knowledge-Based Systems.
Volume II: The New Technologies. Computer Science Press, Rockville.

[Ull97] Ullman, J. D. (1997). Information Integration using Logical Views. 6th Int. Conference
on Database Theory; LNCS 1186, pp. 19-40, Delphi, Greece.

[vdM92] van der Meyden, R. (1992). The complexity of Querying Indefinite Data about Linearly
Ordered domains. 11th ACM Symposium on Principles of Database Systems, pp. 331-
345, San Diego, CA.

180

References

[VJB+97] Visser, P. R. S., D. M. Jones, T. J. M. Bench-Capon and M. J. R. Shave (1997). An
Analysis of Ontological Mismatches: Heterogeneity versus Interoperability. AAAI 1997
Spring Symposium on Ontological Engineering, Stanford, USA.

[VP97] Vassalos, V. and Y. Papakonstantinou (1997). Describing and Using Query Capabilities
of Heterogeneous Sources. 23rd Conference on Very Large Database Systems, pp. 256-
265, Athens, Greece.

[Web82] Weber, H. (1982). On the Unambiguous Use of Names in Data Base Design. 2nd Int.
Conf. on Data and Knowledge Bases, pp. 358-403, Jerusalem, Israel.

[Wid95] Widom, J. (1995). Research Problems in Data Warehousing. 4th International Confer-
ence on Information and Knowledge Management, pp. 25-30, Baltimore, Maryland.

[Wie92] Wiederhold, G. (1992). Mediators in the Architecture of Future Information Systems.
IEEE Computer, 25(3): 38-49.

[Wie94] Wiederhold, G. (1994). Interoperation, Mediation and Ontologies. Int. Symposium on 5th
Generation Computer Systems; Workshop on Heterogeneous Cooperative Knowledge-
Bases, pp. 33-48, Tokyo, Japan.

[WT94] Wells, D. L. and C. W. Thompson (1994). Evaluation of the Object Query Service Sub-
missions to the Object Management Group. IEEE Quarterly Bulletin on Data Engineer-
ing, 17(4): 36-45.

[YGMU99] Yerneni, R., H. Garcia-Molina and J. D. Ullman (1999). Computing Capabilities of Me-
diators. ACM SIGMOD Int. Conference on Management of Data 1999, pp. 443-545,
Philadelphia, USA.

[YM98] Yu, C. and W. Meng (1998). Principles of Database Query Processing for Advanced Ap-
plications. Morgan Kaufmann.

[YOL97] Yan, L. L., M. T. Oezsu and L. Liu (1997). Accessing Heterogeneous Data Through Ho-
mogenization and Integration Mediators. 5th Int. Conf. on Cooperative Information Sys-
tems, pp. 130-139, Kiawah Island, North Carolina.

[ZHK96] Zhou, G., R. Hull and R. King (1996). Generating Data Integration Mediators that Use
Materialization. Journal of Intelligent Information Systems, 6(2/3): 199-222.

[ZO93] Zhang, X. and M. Z. Oezsoyoglu (1993). On Efficient Reasoning with Implication Con-
straints. 2nd Conf. on Deductive and Object-Oriented Databases, pp. 236-252, Phoenix,
Arizona.

181

Appendix

APPENDIX

List of Figures

Figure 1. A mediator based information system. .. 2
Figure 2. A string of DNA having the famous double-helix structure... 4
Figure 3. Intensional overlap between data sources. ... 5
Figure 4. Architecture of a federated information system. ... 7
Figure 5. Answering a query using materialised views. ... 9
Figure 6. Entity-relationship diagram of a mediator schema. .. 18
Figure 7. Fraction of a physical map of the human X chromosome. .. 19
Figure 8. Decomposition of a set of conditions in seven subsets. ... 27
Figure 9. Search space for testing query containment.. 30
Figure 10. Search tree of height 3 with subtree used as upper bound. ... 36
Figure 11. DFA versus BFA. Values: k =[2,30], k =k /2, p =0.8, z=2. .. 38 1 2 1 com

Figure 12. DFA versus BFA. Values: k =8, k =4, p =[0.5,1], z=3.. 38 1 2 com

Figure 13. DFA versus BFA. Values: k =8, k =4, p =0.6, z=[2,7].. 38 1 2 com

Figure 14. Characterisation of different architecture for data integration. ... 47
Figure 15. Loosely coupled integration system with integrated views defined by the user. 48
Figure 16. The 5-layer architecture of federated database systems. .. 49
Figure 17. Design strategies in FIS. (a) Bottom-up. (b) Top down. ... 50
Figure 18. Mediator based information systems architecture. ... 52
Figure 19. Correspondence specification languages.. 58
Figure 20. Generating a MBIS using QCAs. .. 64
Figure 21. Graph induced by the result of the exemplary wrapper query. ... 72
Figure 22. The Multiplex framework. ... 83
Figure 23. Complete planning process. .. 85
Figure 24. Structure of proofs... 86
Figure 25. Relationship between QCAs, plan candidates, plans and query plans.. 91
Figure 26. Illustration for the proof of soundness of query planning. .. 93
Figure 27. The order of buckets influences the number of leaves... 109
Figure 28. Merge-union of two partial plans.. 114
Figure 29. GTA versus IBA. Values: k=4,n=[5-100],s =3,x=0.2, p =0.7. 125 avg com

Figure 30. GTA versus IBA. Values: k=[2-10],n=50,savg=3,x=0.2, p =0.7. 125 com

Figure 31. Multiple query optimisation. (a) In a central database. (b) In MBIS. ... 132
Figure 32. Difference between containment and replaceability. .. 136
Figure 33. Gateways in MBIS... 149
Figure 34. Architecture of a web wrapper. ... 152
Figure 35. Exemplary wrapper schema. ... 154
Figure 36. Three classes of change in MBIS. ... 164

182

Appendix

List of Definitions

Definition (D2.1)-(D2.2) (Schema, instance, database, relation). .. 13
Definition (D2.3)-(D2.6) (Conjunctive queries, simple and complex conditions)... 14
Definition (D2.7)-(D2.8) (Embedded and normal form of queries). ... 16
Definition (D2.9)-(D2.12) (Valuation, extension and intension of a query). .. 16
Definition (D2.13)-(D2.14) (Query equivalence and containment). ... 19
Definition (D2.15)-(D2.16) (Symbol mapping, containment mapping). ... 20
Definition (D2.17)-(D2.18) (Matching and covering literal).. 24
Definition (D2.19)-(D2.20) (Partial and complete containment mapping). ... 25
Definition (D2.21)-(D2.23) (Compatibility and union of PCMs).. 26
Definition (D3.1)-(D3.2) (Wrapper, executable wrapper query). ... 53
Definition (D3.3) (Mediator). ... 56
Definition (D4.1)-(D4.3) (Syntax of QCAs, enhanced and simple QCAs). ... 67
Definition (D4.4) (Normal and embedded form of QCAs). ... 68
Definition (D4.5) (Semantics of QCAs)... 68
Definition (D4.6) (Materialisation of QCAs). ... 70
Definition (D4.7) (Virtual mediator database). .. 73
Definition (D4.8)-(D4.9) (Fragments and induced views). ... 74
Definition (D4.10) (Admissible fragments). .. 74
Definition (D4.11) (Semantics of a user query in MBIS). ... 75
Definition (D4.12) (Soundness and completeness of query planning). ... 76
Definition (D4.13)-(D4.14) (Consistent QCAs). ... 78
Definition (D4.15)-(D4.16) (Variable renamings, query transformer)... 80
Definition (D4.17) (Executable mediator query). ... 80
Definition (D5.1)-(D5.4) (Plan candidate, plan, plan expansion). ... 87
Definition (D5.5)-(D5.7) (Executability and correctness of plans)... 88
Definition (D5.8)-(D5.10) (Query plan, result of a query plan). .. 90
Definition (D5.11) (Minimal query plans). ... 94
Definition (D5.12)-(D5.15) (Extended containment mappings).. 100
Definition (D5.16)-(D5.19) (Partial plan, singleton partial plan).. 112
Definition (D5.20)-(D5.22) (Regular partial plans, union, compatibility). .. 112
Definition (D5.23) (Redundant query plan). ... 127
Definition (D5.24) (Containment for query plans). .. 127
Definition (D5.25) (Replaceable QCAs). .. 136

List of Algorithms

Algorithm 1. Testing query containment. .. 28
Algorithm 2. Breadth-first implementation of Algorithm 1 (BFA). ... 32
Algorithm 3. Depth-first implementation of Algorithm 1 (DFA)... 33
Algorithm 4. Frozen Facts Algorithm. .. 39
Algorithm 5. Enumerating all plan candidates. .. 98
Algorithm 6. The generate & test algorithm (GTA). ... 101
Algorithm 7. Compatibility of partial ECMs... 104
Algorithm 8. The improved bucket algorithm (IBA).. 114
Algorithm 9. Computing the union of two partial plans.. 120
Algorithm 10. Implementation of the IBA. .. 121
Algorithm 11. Finding redundant query plans.. 129
Algorithm 12. Testing replaceability of query plans. .. 137

183

Appendix

List of Lemmas and Theorems

Theorem (T2.1) (Query equivalence versus query containment). ... 19
Theorem (T2.2)-(T2.5) (From containment mapping to query containment).. 20
Lemma (L2.6)-(L2.7) (Transitivity and monotony of query containment)... 22
Lemma (L2.8) (From covered literals to PCMs)... 25
Lemma (L2.9) (Connecting partial mappings).. 27
Lemma (L2.10)-(L2.11) (From partial to complete containment mappings). ... 27
Theorem (T2.12)-(T2.13) (Soundness and completeness of Algorithm 1)... 28
Theorem (T2.14)-(T2.16) (Analysis of the BFA). .. 31
Theorem (T2.17)-(T2.19) (Analysis of the DFA)... 34
Lemma (L2.20) (Query containment as logical implication). ... 39
Theorem (T5.1)-(T5.2) (Soundness and completeness of query planning).. 92
Lemma (L5.3) (Non-minimal query plans are redundant). ... 95
Lemma (L5.4) (Length bound on minimal query plans).. 95
Theorem (T5.5) (Length bound for query plans)... 96
Theorem (T5.6)-(T5.7) (Completeness and soundness of the GTA). ... 102
Theorem (T5.8)-(T5.10) (Analysis of the GTA). .. 106
Lemma (L5.11) (BFA worst-case analysis using buckets). ... 109
Theorem (T5.12)-(T5.13) (Completeness and soundness of the IBA). .. 114
Lemma (L5.14) (Complexity of the union of partial plans)... 119
Theorem (T5.15)-(T5.17) (Analysis of the IBA). ... 122
Lemma (L5.18) (Redundant query plans are pointless). ... 128

129Theorem (T5.19)-(T5.21) (Analysis of Algorithm 11). ..
Lemma (L5.22)-(L5.23) (Complexity of testing replaceability). ... 137

184

Appendix

List of Abbreviations

BA Bucket algorithm for query planning
BAC Bacterial artificial chromosome, type of clone
BFA Breadth-first algorithm for proving query containment
CGI Common gateway interface
CBIS CORBA based information system
CM Containment mapping
CSL Correspondence specification language
DFA Depth-first algorithm for proving query containment
ECM Extended containment mapping
FDBS Federated database system
FIS Federated information system
GaV Global-as-View correspondence specification language
GDM Generic data model
GTA Generate & test algorithm for query planning
HGP Human genome project
IBA Improved bucket algorithm for query planning
IDL Interface definition language
IRA Inverted rules algorithm for query planning
IM Information Manifold
IRDS Information Resource Dictionary Systems
KB Kilo bases = 1*103 base pairs
LaV Local-as-View correspondence specification language
MB Mega bases = 1*106 base pairs
MBIS Mediator based information system
MQO Multiple query optimiser
OMG Object management group
PCM Partial containment mapping
QCA Query correspondence assertion
QFA Query folding algorithm for query planning
RDB Relational database
RDBMS Relational database management system
WBIS Web based information system
WSL Wrapper specification language
YAC Yeast artificial chromosome (type of a clone).

185

Appendix

List of Symbols

Symbol Explanation First
occurrence

var Set of variable symbols.
const Set of constant symbols. 13 ff
relE Set of relation symbols.
att Set of attribute symbols.
Σ Schema.
rel Relation. 13
|Σ| Size of a schema Σ.
arity(rel) Arity of a relation rel.
IΣ Instance of a schema Σ.
D = {Σ,IΣ} Database with schema Σ and instance IΣ.
l Literal. 13 ff
IΣ|rel Extension of rel in D=(Σ,IΣ).
relQ Set of query symbols.
q Query.
|q| Size of q.
head(q) Head of q.
body(q) Body of q.
export(q) Exported variables of q.
sym(q) Symbols of q.
variables(q) Variables of q.
constants(q) Constants of q. 15 ff

∑
CCQ Queries with complex conditions against schema Σ. 15
∑
SCQ Queries with simple conditions against schema Σ. 15

cond(q) Conditions of query q.
cond(q,v) All conditions involving only variable v in query q.
v Valuation function. 16
q(D) Extension of query q in database D.
q1 ≡ q2 Query equivalence. 19
q1 ⊆ q2 Query containment; q1 is contained in q2. 19
h Symbol mapping or containment mapping.
org(h) Origin of mapping h.
img(h) Image of mapping h. 20 ff
l2 ≥ l1 Literal l2 covers literal l1.
h1 ∪ h2 Union of two reconcilable mappings.
h1 ~ h2 Containment mappings h1 and h2 are compatible.
W = (Σ,Ω,χ) Wrapper W, with Σ: wrapper schema; Ω: set of query

templates against Σ; χ: data source addressed by W.
M = (Σ,Ψ,Γ) Mediator M, with Σ: mediator schema; Ψ: set of

wrappers used by M; Γ: set of QCAs used by M.

13

13
13
13

13
13
13
13

14
14
14

15
15
15
15
15
15

15
15

17

20
20

24
26
26
53

56

 ff

 ff
 ff

 ff
 ff
 ff
 ff

 ff
 ff
 ff
 ff
 ff
 ff

 ff
 ff

 ff

186

Appendix

187

67

67

67
80
80

87

90

90

100

112

112

mq ← W.v(E) ← wq QCA describing wrapper query v(E) ← wq from
wrapper W through mediator query v(E) ← mq.

export(r) Exported variables of QCA r. 67 ff
origin(r) Wrapper of QCA r. ff
medq(r) Mediator query of QCA r. 67 ff
wrapq(r) Wrapper query of QCA r. ff
α Variable renaming.
σ = (α,C) Query transformer σ with variable renaming α and

set C of conditions.

π = {q1,...,qn} Plan candidate.
p = (π,α,C) Plan with plan candidate π and query transformer

(α,C) .
87

φ = (p,h) Query plan. p is correct and executable for user
query, h is containment mapping from user query
into p.

φ = (π,α,C,h) 2. notation for a query plan φ=(p,h) with p =
(π,σ), σ = (α,C).

ε = (h,α,C) Extended containment mapping with mapping h and
query transformer (α,C).

ϕ = (q,ε,π) Partial plan for subquery q of u with ECM ε and plan
candidate π.

ϕ = (q,h,α,C,π) 2. notation for partial plan.

	Abstract
	Zusammenfassung
	Acknowledgements
	Table of Contents
	1. INTRODUCTION
	1.1 Motivating Example: Data Integration in Molecular Biology
	1.2 Objective
	1.3 Context
	1.3.1 Information Integration
	Federated information systems.
	Distributed databases.
	Federated database systems.
	Mediator based information systems.

	1.3.2 Schema Correspondences
	1.3.3 Query Planning
	Query planning in RDBMS.
	Query planning in MBIS.
	Answering queries using views.

	1.4 Contributions
	
	QCAs.
	Improved bucket algorithm.
	Multiple query optimisation.

	1.5 Structure of the Thesis
	1.6 Notation and Terminology
	
	Terminology.
	Notation.
	Algorithms.

	2. QUERIES AND QUERY CONTAINMENT
	2.1 Conjunctive Queries
	
	Remark:
	Remarks:
	Remarks:
	Remark:
	Example 2.1.

	2.2 Query Containment and Query Equivalence
	
	Remarks:
	Proof:
	Example 2.2.
	Proof:
	Example 2.3.
	Example 2.4.
	Example 2.5.
	Example 2.6.

	2.3 Proving Query Containment
	2.3.1 Problem Decomposition
	Remarks:
	Example 2.7.
	Remarks:
	Example 2.8.
	Proof:
	Proof:
	Proof:

	2.3.2 The Search Space of Query Containment
	Example 2.9.

	2.3.3 Breadth-First Algorithm
	Proof:
	Remarks:

	2.3.4 Depth-First Algorithm
	Proof:

	2.3.5 Comparing BFA and DFA
	2.3.6 The “Frozen Facts” Algorithm
	Example 2.10.

	2.4 Summary and Related Work
	
	Related work.
	Queries with arithmetic comparisons.
	Recursion.
	Disjunction.
	Negation.
	Query containment as a view update problem.
	Different semantics.

	3. CONCEPTS OF MEDIATOR BASED INFORMATION SYSTEMS
	3.1 From Federated to Mediator Based Information Systems
	3.1.1 Classification Criteria
	3.1.2 Types of Federated Information Systems
	Distributed databases.
	Loosely coupled systems: multidatabase query languages.
	Federated database systems:
	Mediator based information systems.

	3.2 Development Strategies
	3.2.1 Top-Down
	3.2.2 Bottom-Up

	3.3 Architecture of a Mediator Based Information System
	3.3.1 Wrappers in MBIS
	Remarks:
	Example 3.1.

	3.3.2 Mediators in MBIS
	Remarks:

	3.4 Correspondence Specification Languages
	3.4.1 Global-as-View
	Example 3.2.

	3.4.2 Local-as-View
	Example 3.3.
	Example 3.4.

	3.4.3 Comparison

	3.5 Summary and Related Work
	
	Related work.
	Classification of FIS.
	Architecture and components of MBIS.
	Correspondence specification languages.

	4. QUERY CORRESPONDENCE ASSERTIONS
	4.1 Basic Idea
	
	Intensional aspect.
	Extensional aspect.

	4.2 Syntax and Semantics of QCAs
	
	Remark:
	Remark:
	Remark:

	4.3 Semantics of User Queries in MBIS using QCAs
	4.3.1 Materialising QCAs
	Remark:
	Example 4.1.
	Example 4.2.

	4.3.2 Answering Queries using Materialised QCAs
	Example 4.3.
	Remarks:
	Remarks:
	Example 4.4.

	4.3.3 Consistent Sets of QCAs
	Example 4.5.
	Example 4.6.

	4.4 Executable Mediator Queries
	
	Example 4.7.
	Remark:
	Example 4.8.

	4.5 Summary and Related Work
	
	Related work.
	Correspondence assertions.
	Restricted query capabilities.
	Relationship of QCAs to horn clauses.
	The Multiplex framework.
	Certain versus possible answers.

	5. QUERY PLANNING USING QCAS
	
	
	Remarks.

	5.1 Planning User Queries
	5.1.1 Plans and Query Plans
	Remarks:
	Remarks:
	Example 5.1.
	Example 5.2.
	Example 5.3.
	Remarks:
	Example 5.4.
	Proof:

	5.1.2 A Length Bound for Query Plans
	Example 5.5.
	Proof:
	Example 5.6.

	5.2 Generate & Test Algorithm
	5.2.1 Candidate Enumeration
	Example 5.7.

	5.2.2 Finding Query Transformers
	Example 5.8.
	Remark:
	Example 5.9.
	Remarks:
	Proof:
	Example 5.10.

	5.2.3 Implementation and Complexity of the GTA
	Example 5.11.
	Proof:
	Remarks:
	Example 5.12.

	5.2.4 Computing Buckets
	Proof:
	Remarks:

	5.3 Improved Bucket Algorithm
	5.3.1 Merging Candidate Generation and Test
	Example 5.13.
	Remarks:
	Proof:
	Remarks:
	Example 5.14.

	5.3.2 Implementing the IBA
	Example 5.15.
	Proof:

	5.3.3 Complexity of the IBA
	Proof:
	Remarks:

	5.3.4 Comparing GTA and IBA

	5.4 Redundancy in Query Plans
	5.4.1 Finding Redundant Query Plans
	Example 5.16.
	Example 5.17.
	Proof:
	Remark:
	Example 5.18.
	Proof:
	Remarks:
	Example 5.19.

	5.4.2 Multiple Query Optimisation in MBIS
	Example 5.20.
	5.4.2.1 Finding redundancy between identical QCAs.
	Example 5.21.
	Example 5.22.
	5.4.2.2 Finding redundancy between different QCAs.
	Example 5.23.
	Remark:
	Example 5.24.
	Proof:
	Remarks:
	5.4.2.3 Assessing the cost model.
	Example 5.25 (good).
	Example 5.26 (bad).

	5.5 Summary and Related Work
	
	Related Work.
	Information Manifold: The bucket algorithm.
	Query folding.
	Infomaster: the inverse rules algorithm.
	More query planning algorithms.
	Extending user queries.
	Binding patterns.
	Quality based query planning.
	Other extensions to query planning.
	Multiple query optimisation.

	6. METHODOLOGY
	6.1 Integrating Different Types of Data Sources
	6.1.1 Relational Databases
	6.1.2 CORBA Based Data Sources
	6.1.3 Web Based Data Sources

	6.2 Bridging Heterogeneity through QCAs
	6.2.1 Heterogeneity in MBIS
	6.2.2 Semantic Heterogeneity
	Synonyms.
	Homonyms.
	Overlapping meaning of relations.
	Context propagation.

	6.2.3 Structural Heterogeneity
	Missing or additional attributes in relations.
	Different Attribute units.
	Different attribute positions.
	Decomposed attribute values.

	6.2.4 Schematic Heterogeneity

	6.3 MBIS in the Presence of Change
	
	Changing wrapper schemas.
	Adding wrappers.
	Deleting wrappers.
	Unavailability of sources.
	Changing requirements.

	6.4 Summary and Related Work
	
	Related work.
	Wrapping RDB.
	Wrapping CBIS.
	Wrapping WBIS.
	Maintenance of MBIS.

	7. DISCUSSION
	7.1 Summary
	7.2 Future Research Directions
	
	Tool support.
	Query capabilities.
	Design rules for QCAs.
	Result presentation.
	Mediators that use mediators.

	7.3 Conclusions

	REFERENCES
	APPENDIX
	List of Figures
	List of Definitions
	List of Algorithms
	List of Lemmas and Theorems
	List of Abbreviations
	List of Symbols

