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ABSTRACT
Anomaly detection for network intrusion detection is usu-
ally considered an unsupervised task. Prominent techniques,
such as one-class support vector machines, learn a hyper-
sphere enclosing network data, mapped to a vector space,
such that points outside of the ball are considered anoma-
lous. However, this setup ignores relevant information such
as expert and background knowledge. In this paper, we
rephrase anomaly detection as an active learning task. We
propose an effective active learning strategy to query low-
confidence observations and to expand the data basis with
minimal labeling effort. Our empirical evaluation on net-
work intrusion detection shows that our approach consis-
tently outperforms existing methods in relevant scenarios.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Gen-
eral—Security and protection; I.2.6 [Artificial Intelli-
gence]: Learning—Parameter learning ; I.5.2 [Pattern
Recognition]: Design Methodology—Classifier design and
evaluation

General Terms
Algorithms, Experimentation, Security

Keywords
Machine learning, anomaly detection, support vector data
description, active learning, intrusion detection, network se-
curity

1. INTRODUCTION
Computer systems linked to the Internet are exposed to

a plethora of network attacks and malicious code. Several
threats, ranging from zero-day exploits to Internet worms,
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target network hosts every day; networked systems are gen-
erally at risk to be remotely compromised and misused for
illegal purposes. While early attacks have been developed
rather for fun than for profit, proliferation of current net-
work attacks is driven by a criminal underground economy.
Compromised systems are often misused for monetary gains
including the distribution of spam messages and theft of
confidential data. The success of these illegal businesses
poses a severe threat to the security of network infrastruc-
tures. Alarming reports on an expanding dissemination of
advanced attacks render sophisticated security systems in-
dispensible, e.g. [13, 27].

Conventional defenses against such network threats rest
on the concept of misuse detection. That is, attacks are
identified in network traffic using known patterns of mis-
use, so-called attack signatures. While misuse detection ef-
fectively protects from known threats, it increasingly fails
to cope with the amount and diversity of attacks. The
time span required for crafting a signature from a newly
discovered attack is insufficient for protecting from rapidly
propagating malicious code, e.g. [14, 24]. Moreover, poly-
morphism employed in recent attacks obstructs modelling
accurate signatures [25], such that there is a demand for
alternative techniques for detection of attacks during their
initial propagation.

Anomaly detection methods provide means for identifying
unknown and novel attacks in network traffic and thereby
complement regular security defenses, e.g. [11, 10, 8, 19,
6, 21]. Anomaly detection methods proceed by learning
a model of normal network data and identifying unusual
contents and potential attacks as deviations thereof – ir-
respective of the employed intrusion techniques. Although
anomaly detection methods enable tracking novel threats,
their practical deployment poses a dilemma to the security
practitioner. On the one hand, recent attacks and network
traffic are required to properly calibrate and validate a learn-
ing method during operation. On the other hand, providing
labels for network traces on a regular basis renders appli-
cation of learning methods intractable in practice. Unfor-
tunately, calibrating a method using unlabeled data only is
not an option either, as the learned model of normality may
be easily foiled by adversarial traffic [17, 7].

In this paper, we consider payload-based anomaly detec-
tion methods, such as PAYL [32], Anagram [31] and Mc-
PAD [16], which model normality by mapping network pay-
loads to a vector space and enclosing the resulting vectors
in a hypersphere. In contrast to previous approaches, how-
ever, we phrase anomaly detection as an active learning task.



Figure 1: Left: An exemplary solution of the SVDD. Right: Illustration of ActiveSVDD that incorporates
unlabeled (green) as well as labeled data of the normal class (red) and attacks (blue).

That is, we present a learning method that processes unla-
beled data but actively queries labels for particular network
payloads. The selection process is designed to find unlabeled
examples in the data which – once labeled – lead to the max-
imal improvement of the learned hypersphere; the labeling
effort for the practitioner is hereby significantly reduced.

We first present an effective active learning strategy to
query network events of low confidence. The strategy cali-
brates the threshold of the hypersphere-based learner. Sec-
ondly, we extend hypersphere-based approaches to so-called
semi-supervised models that enable processing unlabeled as
well as labeled examples. Our method is initially trained
on unlabeled examples and then subsequently refined by in-
corporating labeled data that have been queried by active
learning rules. The training process can be terminated at
any time, for instance when the desired predictive perfor-
mance is obtained. The devised method contains unsuper-
vised approaches such as centroids [32, 16, 21], as a special
case that is obtained when no label information is used.

Empirical results on network intrusion detection demon-
strate the benefit of combining anomaly detection and active
learning. The active learning strategy significantly reduces
the manual labeling effort for the practitioner. By labeling
only a fraction of 1.5%, the detection rate was improved
from 64% to 96% at a false-positive rate below 0.0015%.
This demonstrates the merits of active learning in practice.

Our paper is structured as follows. Section 2 introduces
hypersphere-based anomaly detection and presentes our ex-
tension using semi-supervised and active learning strategies.
Section 3 reports on empirical results of our approach us-
ing real network traffic and attacks. Finally, Section 4 con-
cludes.

2. METHODOLOGY
In this section, we present our methodology. Firstly, we

describe how we derive numerical features from network pay-
load data. Then, we review the classical hypersphere-based
approach to anomaly detection. We discuss how anomaly
detection can be equipped with an active learning strategy
to adjust an anomaly threshold. Finally, we propose an in-
tegrated method to compute hyperspheres and thresholds
simultaneously.

2.1 From Network Payload to Feature Spaces
The detection of unknown and novel attacks requires an

expressive representation of network contents, accessible to
means of intrusion detection and machine learning. To this
end, we apply a technique for embedding of network pay-
loads in vector spaces derived from concepts of information
retrieval [22] and recently applied in the realms of intrusion
detection [19]. A network payload x (the data contained in
a network packet or connection) is mapped to a vector space
using a set of strings S and an embedding function φ. For
each string s ∈ S the function φs(x) returns 1 if s is con-
tained in the payload x and 0 otherwise. By applying φs(x)
for all elements of S we obtain the following map

φ : X → R|S|, φ : x 7→ (φs(x))s∈S , (1)

where X is the domain of all network payloads. Defining
a set S of relevant strings a priori is difficult in advance,
as typical patterns of novel attacks are not available prior
to their disclosure. As an alternative, we define the set S
implicitly and associate S with all strings of length n. The
resulting set of strings is often referred to as n-grams.

As a consequence of using n-grams, the network payloads
are mapped to a vector space with 256n dimensions, which
apparently contradicts with efficient detection of intrusions.
Fortunately, a payload of length T comprises at most (T −
n − 1) different n-grams and, consequently, the map φ is
sparse, that is, the vast majority of dimensions is zero. This
sparsity can be exploited to derive linear-time algorithms
for extraction and comparison of embedded vectors. Instead
of operating with full vectors, only non-zero dimensions are
considered, where the extracted strings associated with each
dimension can be maintained in efficient data structures,
such as hash tables [3], Bloom filters [31] or Tries [19].

2.2 Hypersphere-based Anomaly Detection
In this section, we briefly review anomaly detection using

one-class support vector machines. In particular we study a
variant proposed by Tax and Duin [28] referred to as support
vector domain description (SVDD). Several approaches to
anomaly detection for network intrusion detection, e.g. [20,
32, 31], can be shown to resemble special cases of the SVDD,
given that an appropriate embedding of network events into
some vector space as described in the previous section is per-
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Figure 2: The differentiable Huber loss `∆=1,ε=0.5.

formed. Further discussion and comparison of hypersphere-
based anomaly detection is provided in [23, 29].

The goal of the SVDD is to find a concise description of
the normal data such that anomalous data can be easily
identified as outliers. In the underlying one-class scenario,
this translates to finding a minimal enclosing hypersphere
(i.e., center c and radius R) that contains the normal input
data [28], see Figure 1 (left). Given the function

f(x) = ‖φ(x)− c‖2 −R2,

the boundary of the hypersphere is described by the set {x :
f(x) = 0 ∧ x ∈ X}. That is, the parameters of f are to be
chosen such that f(x) ≤ 0 for normal data and f(x) > 0
for anomalous points. The center c and the radius R can be
computed accordingly by solving the following optimization
problem [28]

min
R,c,ξ

R2 + η

n∑
i=1

ξi

s.t. ∀ni=1 : ‖φ(xi)− c‖2 ≤ R2 + ξi (2)

∀ni=1 : ξi ≥ 0.

The trade-off parameter η adjusts point-wise violations of
the hypersphere. That is, a concise description of the data
might benefit from omitting some data points in the com-
putation of the solution. Discarded data points induce slack
that is absorbed by variables ξi. Thus, in the limit η →∞,
the hypersphere will contain all input data, while η → 0 im-
plies R → 0 and the center c reduces to the centroid of the
data.

Some actions to the SVDD have been proposed to incor-
porate labeled data in the learning process, e.g. [5, 9, 30,
29], the resulting optimization problems are no longer con-
vex and the proposed optimization in dual space might suffer
from duality gaps. Techniques for actively guiding the learn-
ing of the SVDD have been not considered so far although
active learning for anomaly detection has been studied by
[26, 15, 1]. [1] take a max-margin approach and propose to
query points that lie close to the decision hyperplane and
violate the margin criterion in order to minimize the error
rate. By contrast, the approach by [15] aims at detecting
rejection categories in the data using as few queries as possi-
ble. Finally, the approach taken in [26] combines the former
two active learning strategies to find interesting regions in
feature space and to decrease the error-rate simultaneously.

In this section we devise an efficient strategy to query net-
work events which lie in low-confidence regions of the feature
space, hence guiding the security expert in the labeling pro-
cess. This active learning strategy selects an instance of the
unlabeled data pool and presents it to the security expert.
The selection process is designed to yield the maximal im-
provement of the actual model.

Our strategy takes unlabeled as well as already labeled
examples into account. Without loss of generality, we denote
the unlabeled examples by x1, . . . ,xn and the labeled ones
by xn+1, . . . ,xn+m, where n � m. Every labeled example
xi is annotated with a label yi ∈ {+1,−1}, depending on
whether it is classified as benign (yi = +1) or malicous (yi =
−1) data.

We begin with a commonly used active learning strat-
egy which simply queries borderline points. The strategy is
sometimes called margin strategy and can be expressed by
asking the user to label the point x′ that is closest to the
decision hypersphere [1, 33]

x′ = argmin
xi∈{x1,...,xn}

λ1(xi) (3)

:= argmin
xi∈{x1,...,xn}

|R2 − ‖φ(xi)− c‖2|
Ω

,

where Ω is a normalization constant and given by Ω =
maxi |R2 − ‖φ(xi)− c‖2|.

However, when dealing with many non-stationary outlier
and/or attack categories, it is beneficial to identify novel at-
tacks as soon as possible. We translate this into an active
learning strategy as follows. Let A = (ast)s,t=1,...,n+m be
an adjacency matrix, for instance obtained by a k-nearest-
neighbor approach, where aij = 1 if xi is among the k-
nearest neighbors of xj and 0 otherwise. Equation (4) im-
plements the above idea and returns the unlabeled instance
according to

x′ = argmin
xt∈{x1,...,xn}

λ2(xt) (4)

:= argmin
xt∈{x1,...,xn}

∑n
i=1 ait +

∑n+m
j=n+1 yjajt

2k
.

The above strategy explores unknown regions in feature
space and subsequently deepens the learned knowledge by
querying clusters of potentially similar objects to allow for
good generalizations.

Nevertheless, using Equation (4) alone may result in
querying points lying close to the center of the hypersphere
or far from its boundary. These points will hardly contribute
to an improvement of the hypersphere. In other words, only
a combination of both strategies (3) and (4) guarantees the
active learning to query points of interest. Our final active
learning strategy is therefore given by

x′ = argmin
xt∈{x1,...,xn}

τλ1(xt) + (1− τ)λ2(xt) (5)

for τ ∈ [0, 1]. The combined strategy queries instances that
are close to the boundary of the hypersphere and lie in po-
tentially anomalous clusters with respect to the k-nearest
neighbor graph. Depending on the actual value of τ , the
strategy jumps from cluster to cluster and thus helps to
identify interesting regions in feature space. For the special
case of no labeled points our combined strategy reduces to
the margin strategy.



2.3 An integrated approach: ActiveSVDD
The active learning strategy from the previous section

queries low-confidence points to improve the current hypoth-
esis. The idea is, that the model can be re-trained after
quering some points, using the unlabeled as well as the the
newly labeled data. Unfortunately, the vanilla SVDD can-
not make use of labeled data. In this section, we extend the
SVDD to support active learning and propose the integrated
method ActiveSVDD which determines a hypersphere and
a radius simultaneously.

As in Section 2.2, we aim at finding a model f(x) =
||φ(x)−c||2−R2 that generalizes well on unseen data, how-
ever, the model is now devised on the basis of labeled and
unlabeled data. A straight-forward extension of the SVDD
in Equation (2) using both, labeled and unlabeled examples,
is given by

min
R,γ,c,ξ

R2 − κγ + ηu

n∑
i=1

ξi + ηl

n+m∑
j=n+1

ξj

s.t. ∀ni=1 : ‖φ(xi)− c‖2 ≤ R2 + ξi

∀n+m
j=n+1 : yj

(
‖φ(xj)− c‖2 −R2) ≤ −γ + ξj (6)

∀ni=1 : ξi ≥ 0,

∀n+m
j=n+1 : ξj ≥ 0.

The optimization problem has additional constraints for the
labeled examples that have to fulfill the margin criterion
with margin γ. Trade-off parameters κ, ηu, and ηl balance
margin-maximization and the impact of unlabeled and la-
beled examples, respectively. To avoid cluttering the no-
tation unnecessarily, we omit the obvious generalization of
allowing different trade-offs η+

l and η−l for positively and
negatively labeled instances, respectively. The additional
slack variables ξj are bound to labeled examples and allow
for point-wise relaxations of margin violations by labeled ex-
amples. The solution of the above optimization problem is
illustrated in Figure 1 (right).

The inclusion of negatively labeled data turns the above
optimization problem non-convex and optimization in the
dual is prohibitive. As a remedy, we translate Equation (6)
into an unconstrained problem [2, 34] as follows,

min
R,γ,c

R2 − κγ + ηu

n∑
i=1

`
(
R2 − ||φ(xi)− c||2

)
(7)

+ ηl

n+m∑
j=n+1

`
(
yj
(
R2 − ||φ(xj)− c||2

)
− γ
)
.

where `(t) = max{−t, 0} is the common hinge loss. Note
that the optimization problems in Equations (6) and (7)
are equivalent so far. Nevertheless, the non-smoothness of
the objective prohibits an efficient optimization. Hence,
we substitute the Huber loss for the hinge loss to obtain
a smooth and differentiable function that can be optimized
with gradient-based techniques. The Huber loss `∆,ε is dis-
played in Figure 2 and given by

`∆,ε(t) =


∆− t : t ≤ ∆− ε

(∆+ε−t)2
4ε

: ∆− ε ≤ t ≤ ∆ + ε
0 : otherwise.
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Figure 3: Results for normal vs. malicious.

For our purposes ∆ = 0 suffices and the final objective
function can be stated as,

min
R,γ,c

R2 − κγ + ηu

n∑
i=1

`0,ε
(
R2 − ||φ(xi)− c||2

)
(8)

+ ηl

n+m∑
j=n+1

`0,ε
(
yj
(
R2 − ||φ(xj)− c||2

)
− γ
)
.

Notice that by rephrasing the problem as an unconstrained,
smooth optimization problem, its intrinsic complexity has
not changed. However, the local minima of Optimization
Problem (8) can now easily be found with gradient-based
techniques such as conjugate gradient descent, see Appendix
A for details. Note that, in general, unconstrained optimiza-
tion is also easier to implement than constrained optimiza-
tion. We will observe the benefit of this approach in the
following.

3. EMPIRICAL EVALUATION
We proceed to present an empirical evaluation of our novel

method ActiveSVDD for intrusion detection using real net-
work traffic. In particular, we are interested in studying
the performance gain attained by our active learning strat-
egy in comparison to the unsupervised formulation of the
SVDD [29]. Several approaches to learning-based intrusion
detection constitute special cases of the SVDD, e.g. [32, 21,
16], and hence are implicitly reflected in our experiments.
The ActiveSVDD is trained by solving Equation (8) using
conjugate gradient descent, where the optimization problem
underlying the SVDD is solved using SMO [18]. Parameters
of the active learning strategy are set to k = 10, α = 0.1 for
simplicity.

3.1 Data Corpus
For our experiments, we consider HTTP traffic recorded

within 10 days at Fraunhofer Institute FIRST. The data
set comprises 145,069 unmodified connections with an av-
erage length of 489 bytes. The incoming byte stream of
each connection is mapped to a vector space using 3-grams
as detailed in Section 2.1. We refer to the FIRST data as
the normal pool. The malicious pool contains 27 real attack
classes generated using the Metasploit framework [12]. It
covers 15 buffer overflows, 8 code injections and 4 other at-
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Figure 4: Results for normal vs. cloaked. Left: Random samling. Right: Active learning.

tacks including HTTP tunnels and cross-site scripting. Ev-
ery attack is recorded in 2–6 different variants using virtual
network environments and decoy HTTP servers, where the
attack payload is adapted to match characteristics of the
normal data pool.

To study the robustness of our approach in a more realistic
scenario, we also consider techniques to obfuscate malicious
content by adapting attack payloads to mimic benign traffic
in feature space [4]. As a consequence, the extracted features
deviate less from normality and the classifier is likely to be
fooled by the attack. For our purposes, it already suffices
to study a simple cloaking technique by adding common
HTTP headers to the payload while the malicious body of
the attack remains unaltered. We apply this technique to
the malicious pool and refer to the obfuscated set of attacks
as cloaked pool.

3.2 Active Learning Experiment
In our first experiment we focus on two scenarios: nor-

mal vs. malicious and normal vs. cloaked data. For both
settings, we randomly draw 966 training examples from the
normal pool and 34 attacks either from the malicious or the
cloaked pool, depending on the scenario. Holdout and test
sets are also drawn at random and consist of 795 normal con-
nections and 27 attacks, each. We make sure that attacks
of the same attack class occur either in the training, or in
the test set but not in both. Note that all attacks in the
training data are unknown to the learning methods, unless
an active labeling strategy is performed. We report on 10
repetitions with distinct training, holdout, and test sets and
measure the performance by the area under the ROC curve
in the false-positive interval [0, 0.01] (AUC0.01).

Figure 3 shows the results for normal vs. malicious data
pools, where the x-axis depicts the percentage of labeled in-
stances which are selected using random sampling. Irrespec-
tively of the amount of labeled data, the malicious traffic is
detected by all methods equally well, as the intrinsic nature
of the attacks is sufficiently captured by the representation
of 3-grams. There is no significant difference between the
detectors. However, our next experiment shows the fragility
of these results in the presence of simple cloaking techniques.
Simply obfuscating the attacks by copying normal headers
into the malicious payload leads to dramatically different
results.

Figure 4 (left) displays the results for normal vs. cloaked
data, where network connections to be labeled for the Ac-
tiveSVDD are chosen randomly. First of all, the perfor-
mance of the unsupervised SVDD drops to only 70%, as the
cloaked attacks successfully foil the detection process. By
contrast, the ActiveSVDD benefits from labeled data and
clearly shows a reasonable accuracy. For only 2% labeled
data, the ActiveSVDD easily outperforms the vanilla SVDD
and for labeling 5% of the available data it separates almost
perfectly between normal and cloaked malicious traffic.

Nevertheless, labeling 30% of the data is not realistic for
practical applications. We thus explore the benefit of ac-
tive learning for inquiring label information of borderline
and low-confidence points. Figure 4 (right) shows the re-
sults for normal vs. cloaked data where the labeled data
for ActiveSVDD is chosen according to the active learning
strategy in Equation (5). The unsupervised SVDD does not
make use of label information and remains at an AUC0.01 of
70%. Compared to the results for a random labeling strat-
egy (Figure 4, left), the performance of the ActiveSVDD
clearly improves for active learning. Using active learning,
we need to label only 3% of the data for attaining an almost
perfect separation, compared to 30% for a random labeling
strategy. Our active learning strategy effectively boosts the
performance and reduces the manual labeling effort signifi-
cantly.

Figure 5 details the impact of our active learning strat-
egy in Equation (5). We compare the number of outliers
detected by the combined strategy with the margin-based
strategy in Equation (3) (see also [1, 26]) and by randomly
drawing instances from the unlabeled pool. As a sanity
check, we also included the theoretical outcome for ran-
dom sampling. The results show that the combined strat-
egy effectively detects malicious traffic much faster than the
margin-based strategy.

3.3 Online Application
When employing network intrusion detectors in practice,

one faces a steadily increasing amount of unlabeled network
data. Holding all instances in memory gets infeasible over
time such that means for learning online become a crucial
requirement. The next experiment aims at investigating
our method ActiveSVDD in an online learning scenario, i.e.
when the normal data pool steadily increases. To this end,
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Figure 6: Online application of ActiveSVDD over different chunks. Left: Progress over chunks. Right: ROC
curve for all chunks.
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Figure 5: Number of attacks found by different ac-
tive learning strategies.

we draw a sample of 3,750 network events from the normal
pool, where 1,250 connections are used as test set and the
remaining data is decomposed into five chunks of equal size
for online application. Cloaked attacks are mixed into all
samples and we take care that the same attack classes are
not present in the training and test data. The ActiveSVDD
is then trained on an increasing number of chunks, starting
from the first and finally using all five chunks. For each
chunk we adjust the active learning strategy such that in
average only 10 data points need to be labeled.1

Figure 3.2 shows the change in accuracy of the Ac-
tiveSVDD over the different chunks. Results are averaged
over 10 random draws of data splits. One can see that with
increasing amount of network data the active learning strat-
egy steadily drives the learner to high accuracy predictions
while the random strategy is too slow to adapt. The vanilla
SVDD performs worse since it doesn’t profit from the labels.
Figure 3.2 shows a ROC curve for the ActiveSVDD and the
regular SVDD obtained after learning on all five chunks. By

1We feel that such a small amount of data labelings is re-
alistic in the light of massive incoming traffic and the high
costs of a human experts.

only labeling a fraction of 1.5% the ActiveSVDD enables
detecting 96% of the cloaked attacks at a false-positive rate
at 0.0015%. By contrast, the vanilla SVDD identifies only
64% attacks at the same false-positive rate.

3.4 Threshold Adaption
The previous experiments demonstrate the advantages of

active learning for network intrusion detection. So far, all
results have been obtained using our method ActiveSVDD,
however, the active learning techniques devised in Section 2
are also applicable for calibrating other learning-based meth-
ods. We herein focus on the vanilla SVDD with param-
eter ν = 1, which corresponds to classical centroid-based
anomaly detection, such that results directly transfer to
anomaly detectors as Anagram and PAYL.

We again draw a set of 3,750 network connections form
the pool of normal data and split the resulting set into a
training set of 2,500 connections and a test partition of 1,250
events. Both sets are mixed with cloaked attack instances.
The SVDD is then trained on the normal training set. For
application of the learned hypersphere to the test set, we
evaluate different strategies for determining a radius using
random sampling and active learning. In both cases, the
selected connections are labeled and a threshold is obtained
by computing the mean of all labeled instances.

Figure 7 shows for various levels of labeled data the ROC
curve of the SVDD and the computed thresholds that have
been derived from the radius outputed by the SVDD. Re-
sults have been averaged over 10 random draws of working
sets. One can see that even for small amounts of labeled
data the active learning strategy finds a reasonable radius
while the random strategy and the vanilla SVDD completely
fail with false-positive rate of 0.5 and 1 respectively. This
result demonstrates that active learning strategies enable
calibrating anomaly detection with significantly reduced ef-
fort in comparison to random sampling and hence provide
a valuable instrument when deploying learning methods in
practice.

4. CONCLUSION
In this paper, we proposed to view anomaly detection as

an active learning problem to allow for the inclusion of prior
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and expert knowledge. To reduce the labeling effort for the
practitioner, we devised an active learning strategy to query
instances that are not only close to the boundary of the
hypersphere but also likely members of novel rejection cat-
egories. To use labeled as well as unlabeled instances in the
training process, we proposed ActiveSVDDs as a general-
ization of SVDDs. The resulting unconstraint, smooth opti-
mization problem can be optimized with efficient gradient-
based techniques.

Empirically, we showed for network intrusion detection,
that rephrasing the unsupervised problem setting as an ac-
tive learning task is worth the effort. ActiveSVDDs prove
robust in scenarios where the performance of baseline ap-
proaches deteriorate due to obfuscation techniques. More-
over, we observe the effectiveness of our active learning
strategy which significantly improves the quality of the Ac-
tiveSVDD and spares practitioners from labeling unneces-
sarily many data points. For experiments on sequentially
arriving data chunks, the ActiveSVDDs achieve a perfect
separation of normal and attack data and outperform its
unsupervised counterpart significantly.
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APPENDIX
A. GRADIENT COMPUTATION

In this section, we compute the gradient of ActiveSVDD.
For problem (6), the slacks can be expressed as

ξi = `
(
R2 − ||φ(xi)− c||2

)
ξj = `

(
yj
(
R2 − ||φ(xj)− c||2

)
− γ
)
,

respectively. Furthermore the derivative of the Huber loss
`∆,ε is given by

`′∆,ε(t) =

 −1 : t ≤ ∆− ε
− 1

2
( ∆−t

ε
+ 1) : ∆− ε ≤ t ≤ ∆ + ε

0 : otherwise .

For notational convenience, we focus on the Huber loss for
`∆=0,ε(t). Using the Huber loss `0,ε, computing the gradients
of the slack variables ξi associated with unlabeled examples
with respect to the primal variables R and c yields

∂ξi
∂R

= 2R`′ε(R
2 − ||φ(xi)− c||2)

∂ξi
∂c

= 2(φ(xi)− c)`′ε(R
2 − ||φ(xi)− c||2).

The derivatives of their counterparts ξj for the labeled ex-
amples with respect to R, γ, and c are given by

∂ξj
∂R

= 2yjR`
′
ε

(
yj
(
R2 − ||φ(xj)− c||2

)
− γ
)

∂ξj
∂γ

= −`′ε
(
yj
(
R2 − ||φ(xj)− c||2

)
− γ
)

∂ξj
∂c

= 2yj(φ(xj)− c)`′ε
(
yj
(
R2 − ||φ(xj)− c||2

)
− γ
)
.

Substituting the partial gradients, we resolve the gradient
of Equation (7) with respect to the primal variables:

∂EQ7

∂R
= 2R+ ηu

n∑
i=1

∂ξi
∂R

+ ηl

n+m∑
j=n+1

∂ξj
∂R

, (9)

∂EQ7

∂γ
= −κ+ ηl

n+m∑
j=n+1

∂ξj
∂γ

, (10)

∂EQ7

∂c
= ηu

n∑
i=1

∂ξi
∂c

+ ηl

n+m∑
j=n+1

∂ξj
∂c

. (11)

The above equations can be plugged directly into off-the-
shelf gradient-based optimization tools to optimize Equation
(7) in the input space for the identity φ(x) = x. However,
predictive power is often related to (possibly) non-linear
mappings φ of the input data into some high-dimensional
feature space. In the following, we extend our approach to
allow for the use of non-linear feature embeddings. An ap-
plication of the representer theorem shows that the center c
can be expanded as

c =
∑
i

αiφ(xi) +
∑
j

αjyjφ(xj). (12)

According to the chain rule, the gradient of Equation (7)
with respect to the αi/j is given by

∂EQ7

∂αi/j
=
∂EQ7

∂c

∂c

∂αi/j
.

Using Equation (12), the partial derivatives ∂c
∂αi/j

resolve to

∂c

∂αi
= φ(xi) and

∂c

∂αj
= yjφ(xj), (13)

respectively. Applying the chain-rule to Equations
(9),(10),(11), and (13) gives the gradients of Equation (7)
with respect to the αi/j .


