Algorithms and Data Structures

Graphs 4: Minimal Spanning Trees

Marius Kloft
Die Energiewende

- Electricity is created in many more places than before
- Electricity is consumed in many places
- Places of production are not evenly distributed across the country
- Many say we need to build new electricity highways

Source: http://www.deutsche-mittelgebirge.de/
Die Energiewende

- How can we do this as cheap as possible?
- Not all connections are possible
 - Mountains, rivers, ...
- Different connections have different costs
Die Energiewende

- Requirement for a solution: Every city and every plant must be connected to the network
Abstraction

- Given an undirected, positively weighted, connected \(G=(V,E) \)
- Find a subset \(E' \subseteq E \) such that cost(\(E' \)) is minimal and \(G'=(V, E') \) is connected
 - cost(\(E' \)): Sum of the edge weights
- \(E' \) (or \(G' \)) is called a minimum spanning tree (MST) for \(G \)
Example 1

• Cost = 62
Example 2

- Cost = 61
First Algorithm

- Let’s try greedy
 - Sort edges by weight
 - Add edges to E' whenever it connects a new node to something

- Hmm
Second Algorithm

- Let’s try greedy – another way
 - Sort edges by weight
 - Add cheapest edge to E'
 - Add edges to E' in ascending order such that every new edge connects a new node with the graph induced by E'
 - Repeat until all nodes are connected

- Cost = 42
 - Is this optimal?
 - Does this always work?
 - How can we implement this algorithm efficiently?
Overview

- First algorithms for computing MST date back to the 1920s
- Algorithms are not very difficult; much research went into efficient implementations
- Actually, MSTs can be computed in a greedy manner
- Algorithms need not grow only one component; in general, we may have “connected islands” that all get connected to one component in the end
- In each step, one needs to decide which edge to add next to which island (or which edges not to add)
- What are criteria for adding / not adding edges?
Content of this Lecture

• Minimal Spanning Trees
• Basic Properties
 – Tree
 – Cuts
 – Cycles
• Algorithms
• Implementation
Minimal Spanning Tree

- **Lemma**

 $G = (V, E)$ and let $E' \subseteq E$ be the subset of E with minimal cost such that G', the graph induced by E', is connected. Then G' is a tree (called “minimal spanning tree”, MST).

- **Proof**

 - Recall: A (undirected) tree is a undirected, connected acyclic graph
 - By definition, G' is connected and undirected
 - Need to show that G' contains no cycle
Proof: MST is a Tree

- Imagine G' had a cycle. Then G' cannot have minimal cost
 - because removing any of the edges of the cycle from E' would create a subset E'' that has less cost (since we assumed all edge weights to be positive), and the induced subgraph would still be connected
- Contradiction

- Remark: If all edge weights are distinct, the MST is unique
Cuts & Crossing Bridges

- Definition
 Let $G=(V, E)$. A cut is a binary partition of V into sets V_1, V_2 such that $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$.
Cuts & Crossing Bridges

- Definition
 Let $G=(V, E)$. A cut is a binary partition of V into sets V_1, V_2 such that $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$.

- Definition
 Let $G=(V, E)$ and V_1, V_2 be a cut of V. Any edge connecting a node in V_1 to a node in V_2 is called crossing bridge. We denote the set of all crossing bridges by F.
Cut Property on Minimal Crossing Bridges

• Lemma (Cut Property)
 Let $G=(V, E)$, let V_1, V_2 be a cut of V with crossing bridges F. Let F' be those edges of F with minimal weight. Then:
 1) Any MST G' of G must contain at least one $f' \in F'$
 2) Every $f' \in F'$ is contained in at least one MST of G

• Remarks
 – This holds for arbitrary cuts – a very powerful statement
Proof, 1a)

1) Every MST G' contains at least one $f' \in F'$
 - Assume the contrary (G' has no such f') and let $f' \in F'$
 - Still, G' is connected, so it must contain at least one of the crossing edges from F
 (a) Assume G' contains only one $f \in F$
 • f must have a higher weight than f' because – by assumption – $f \notin F'$
 • Furthermore, because – by assumption – f is the only crossing edge, V_1 and V_2 must be connected in themselves
 • Thus, removing f and adding some $f' \in F'$ creates a cheaper MST, so G' cannot be minimal – contradiction.
Proof, 1b)

1) Every MST G' contains at least one $f' \in F'$

(b) The proof is similar if G' contains multiple $f_i \in F$

- Write $f' = (v, v')$
- Since G' is connected there exists a path p in G' from v to v'
- Since f' is a crossing bridge, v and v' must lie on opposite sides of the cut
 - So the path p contains a crossing bridge $f_i \in F$
- Removing f_i from MST G' breaks G' into two components, and adding f' re-connects them
 - resulting in cheaper MST (since f' has smaller weight than f_i because $f_i \notin F'$)
 - Contradiction
Proof, 2)

(2) Every $f' \in F'$ is contained in at least one MST of G

- Imagine f' is not contained in any MST
- Let G' be such an MST
- Proof uses analogue argument as in (1):
 - Consider $f \in F$ connecting V_1 and V_2
 - Removing f_i from G' breaks G' into two components, and adding f' re-connects them, resulting in G'' with equal or cheaper cost as G'
 - Thus G'' is an MST - Contradiction
Beware

- For a cut V_1, V_2, an MST G' may (have to) contain more than one crossing edge (but one must have minimal weight)
Content of this Lecture

- Minimal Spanning Trees
- Basic Properties
 - Tree
 - Cuts
 - Cycles
- Algorithms
- Implementation
Cycles

• Lemma (cycle property)
 Let \(G = (V, E) \) and \(G' = (V, E') \) with \(E' = E \setminus e \) for some edge \(e \) such that \(G' \) still is connected. Let \(T' \) be an MST for \(G' \). When we add \(e \) to \(T' \) and remove the edge with the highest weight on the then introduced cycle in \(T' \), forming \(T \), then \(T \) is an MST for \(G \).

• Proof idea
 – Adding \(e \) must build a cycle because \(T' \) is MST over the same \(V \)
 – Removing any of the edges on the cycle still leaves a connected tree
 – Removing the most expensive one leaves the minimal tree
Cycle Property

Remove e

MST of G'

Add e

MST for G

Remove highest weight on cycle
Implications

• Note that T' is an MST for G without e
• Imagine we would enumerate edges by some order
• Taking into account a new e allows us to replace an edge in T' with a cheaper one, creating a “better” MST for G
 – If e is not the edge with the highest weight on the cycle
• This means that an edge with maximal weight on a cycle in G cannot be part of any MST of G
Content of this Lecture

- Minimal Spanning Trees
- Basic Properties
- **Algorithms**
 - Also Jarnik, Prim, Dijkstra: Jarník, 1930 – Prim, 1957 – Dijkstra, 1959
 - **Otakar Borůvka**: O jistém problému minimálním (Über ein gewisses Minimierungsproblem), 1926
 - [Wikipedia, OW93, Sed04, Cor03]
- Implementation
• Prim’s Algorithm

Start with an empty tree T. Continue adding the edge e with the **lowest cost to T** such that e connects T with a new node until all nodes of G are in T. Then T is an MST

• Proof

 – Consider, at each stage, nodes in T as one partition V_1 and all other nodes as the other partition V_2
 – By cut-property lemma, the cheapest crossing-edge between V_1 and V_2 must be in an MST of G
 – Since we only add those edges, T finally must be an MST

Greedy; we never make mistakes
Prim's Algorithm: Example
Prim’s Algorithm: Example
Kruskal’s Algorithm

- **Start with an empty forest F.** Continue “adding” edges e to F in order of increasing cost until F becomes a tree. Adding an edge e=(v, w) to F proceeds as follows:
 - **Case 1:** If F already contains a tree containing both v and w, then e is dropped.
 - **Case 2:** If no tree in F contains either v or w, then a new tree formed by e is added to F.
 - **Case 3:** If F contains a tree T containing either v or w and neither T nor any other tree in F contains the other node, then e is added to T.
 - **Case 4:** If F contains a tree T containing either v or w and a tree T’ containing the other node, then T, T’ and e are merged into one tree.
Kruskal’s Algorithm: Example
Proof by Induction (Only Central Idea)

- We show that each of the trees in F is an MST of a subgraph of G
- Claim is true at the beginning (F empty)
- Assume claim holds before we consider next edge e=(v, w)
- Case 1: Claim holds, because e would introduce a cycle, and e has the highest cost on this cycle (all cheaper edges were considered before). Thus, e cannot be in an MST of G
- Case 2: Claim holds because e is the cheapest edge connecting v and w, and thus the new tree is an MST (for subgraph induced by {v,w})
- Case 3: Claim holds because e is the cheapest edge connecting v (or w) and T, and thus the new tree is an MST
- Case 4: Claim holds because e is the cheapest edge connecting T and T’, and thus the new tree is an MST
Boruvka’s Algorithm

- Boruvka’s Algorithm

 Start with an empty forest F. Add all edges (at once) that connect a node with its “cheapest” neighbor (edge with least cost) – taking care of not introducing cycles. Then consider each pair of trees in F and add cheapest crossing-edge until F becomes a unique tree.

- Proof (and details) omitted; see [Sed04]
Boruvka’s Algorithm: Example
Communalities

- All three algorithms iteratively choose an edge by the cut property or reject an edge by the cycle property
 - Prim: Growing T is one partition, all other nodes the other (isolated nodes)
 - Kruskal: Each T that grows is one partition, all other nodes the other (islands of mini-MSTs)
 - Boruvka: Each T that grows is one partition, all other nodes the other (islands of mini-MSTs)

- Difference is the order in which edges are chosen – there are always many candidates

- Differences are the data structures that these algorithms need to maintain
Content of this Lecture

- Minimal Spanning Trees
- Basic Properties
- Algorithms
- Implementation
 - Prim’s, Kruskal’s
Implementing Prim’s Algorithm

- **ChooseCheapest**: Choose cheapest edge connecting a node in T to a node not yet in T
- **Brute force**: Search all such edges in every step
- **More clever**
 - Maintain a PQ of nodes reachable by one edge from T sorted by cost
 - When adding a new node to T, look at its neighbors and add them to the PQ (if not reachable before) or update costs (if now there is a cheaper edge reaching them)

```
G := (V, E);
T := ∅;
R := E;
for i = 1 to |V|-1 do
  e := chooseCheapest( T, R);
  T := T ∪ e;
  R := R \ e;
end for;
```
Example

- \(T = \{A, F, E, B, G\} \)
- \(PQ = \{(D, 6), (I, 6), (C, 7)\} \)
- Choose (A-D, 6)
Example

- $T = \{A, F, E, B, G\}$
- $PQ = \{(D,6), (I, 6), (C, 7)\}$
- Choose (A-D, 6)
- New T: \{A, F, E, B, G, D\}
- $PQ = \{(C,4), (I, 6), (H, 18)\}$
Complexity

- $n = |V|$, $m = |E|$

- Prim’ algorithm runs in $O((n+m) \cdot \log(n))$
 - n times through the loop, performing altogether at most m PQ-operations in $\log(n)$
Implementing Kruskal’s Algorithm

- **ChooseCheapest**: Simply choose cheapest edge in E
 - I.e., sort E at the beginning
- **UNION-FIND** data structure
 - Maintains a set of sets (all trees T)
 - Needs a method for quickly finding the set containing a given element (find)
 - Needs a method for quickly merging two sets (union)
- Can be implemented in $O(m\times\log(n))$