CHAPTER 21

Model checking

Edmund M. Clarke
Bernd-Holger Schlingloff

Contents

1 Introduction ... 1369
2 Logical Languages, Expressiveness 1373
 2.1 Propositional and First Order Logic 1374
 2.2 Multimodal and Temporal Logic 1376
 2.3 Expressive Completeness of Temporal Logic 1380
3 Second Order Languages .. 1386
 3.1 Linear and Branching Time Logics 1386
 3.2 Propositionally Quantified Logics 1388
 3.3 ω-automata and ω-languages 1397
 3.4 Automata and Logics 1400
4 Model Transformations and Properties 1402
 4.1 Models, Automata and Transition Systems 1403
 4.2 Safety and Liveness Properties 1405
 4.3 Simulation Relations 1408
5 Equivalence reductions ... 1413
 5.1 Bisimulations (ρ-morphisms) 1414
 5.2 Distinguishing Power and Ehrenfeucht-Fraïssé Games 1417
 5.3 Auto-bisimulations and the Paige/Tarjan Algorithm 1419
6 Completeness ... 1421
 6.1 Deductions in Multimodal Logic 1423
 6.2 Transitive Closure Operators 1427
7 Decision Procedures ... 1432
 7.1 Deciding Branching Time Logics 1432
 7.2 Satisfiability Algorithms for Natural Models 1436
8 Basic Model Checking Algorithms 1443
 8.1 Global Branching Time Model Checking 1445
 8.2 Local Linear Time Model Checking 1448
 8.3 Model Checking for Propositional μ-Calculus 1452
9 Modelling of Reactive Systems 1456
 9.1 Parallel Programming Paradigms 1456
 9.2 Some Concrete Formalisms for Finite State Systems 1458
 9.3 Example Applications 1459
10 Symbolic Model Checking .. 1467
 10.1 Binary Decision Diagrams 1468

Handbook of Automated Reasoning
Edited by Alan Robinson and Andrei Voronkov
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2</td>
<td>Symbolic Model Checking for CTL</td>
<td>1476</td>
</tr>
<tr>
<td>10.3</td>
<td>Relational μ-Calcula ns</td>
<td>1478</td>
</tr>
<tr>
<td>11</td>
<td>Partial Order Techniques</td>
<td>1483</td>
</tr>
<tr>
<td>11.1</td>
<td>Stuttering Invariance</td>
<td>1484</td>
</tr>
<tr>
<td>11.2</td>
<td>Partial Order Analysis of Elementary Nets</td>
<td>1486</td>
</tr>
<tr>
<td>12</td>
<td>Bounded Model Checking</td>
<td>1487</td>
</tr>
<tr>
<td>12.1</td>
<td>An Example</td>
<td>1488</td>
</tr>
<tr>
<td>12.2</td>
<td>Translation into Propositional Logic</td>
<td>1489</td>
</tr>
<tr>
<td>13</td>
<td>Abstractions</td>
<td>1491</td>
</tr>
<tr>
<td>13.1</td>
<td>Abstraction functions</td>
<td>1491</td>
</tr>
<tr>
<td>13.2</td>
<td>Symmetry Reductions</td>
<td>1494</td>
</tr>
<tr>
<td>13.3</td>
<td>Parameterized Systems</td>
<td>1495</td>
</tr>
<tr>
<td>14</td>
<td>Compositionality and Modular Verification</td>
<td>1496</td>
</tr>
<tr>
<td>14.1</td>
<td>Model Checking and Theorem Proving</td>
<td>1497</td>
</tr>
<tr>
<td>14.2</td>
<td>Compositional Assume-Guarantee Reasoning</td>
<td>1498</td>
</tr>
<tr>
<td>15</td>
<td>Further Topics</td>
<td>1499</td>
</tr>
<tr>
<td>15.1</td>
<td>Combination of Heuristics</td>
<td>1500</td>
</tr>
<tr>
<td>15.2</td>
<td>Real-Time Systems</td>
<td>1501</td>
</tr>
<tr>
<td>15.3</td>
<td>Probabilistic Model Checking</td>
<td>1502</td>
</tr>
<tr>
<td>15.4</td>
<td>Model Checking for Security Protocols</td>
<td>1503</td>
</tr>
<tr>
<td>Bibliography</td>
<td>1506</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>1520</td>
<td></td>
</tr>
</tbody>
</table>
1. Introduction

Model checking is an automatic technique for verifying correctness properties of safety-critical reactive systems. This method has been successfully applied to find subtle errors in complex industrial designs such as sequential circuits, communication protocols and digital controllers [Browne, Clarke and Dill 1985, Clarke, Emerson and Sistla 1986, Clarke, Long and McMillan 1991, Burch, Clarke, Dill, Long and McMillan 1994]. It is expected that besides classical quality assurance measures such as static analysis and testing, model checking will become a standard procedure in the design of reactive systems.

A reactive system [Harel and Pnueli 1985, Manna and Pnueli 1992, Manna and Pnueli 1995] consists of several components which are designed to interact with one another and with the system’s environment. In contrast to functional (or transformational) systems, in which the semantics is given as a function from input to output values, a reactive system is specified by its temporal properties. A (temporal) property is a set of desired behaviors in time; the system satisfies the property if each execution of the system belongs to this set. From a logical viewpoint, the system is described by a semantical (Kripke-)model, and a property is described by a logical formula. Arguing about system correctness, therefore, amounts to determining the truth of formulas in models.

In order to be able to perform such a verification, one needs a modelling language in which the system can be described, a specification language for the formulation of properties, and a deductive calculus or algorithm for the verification process. Usually, the system to be verified is modeled as a (finite) state transition graph, and the properties are formulated in an appropriate propositional temporal logic. An efficient search procedure is then used to determine whether or not the state transition graph satisfies the temporal formulas. When model checking was first developed in 1981 [Clarke and Emerson 1981, Emerson and Clarke 1982, Quelle and Sifakis 1981], it was only possible to handle concurrent systems with a few thousand states. In the last few years, however, the size of the concurrent systems that can be handled has increased dramatically. By using sophisticated data structures and heuristic search procedures, it is now possible to check systems many orders of magnitude larger [Burch, Clarke, McMillan, Dill and Hwang 1992].

Much of the success of model checking is due to the fact that it is a fully automatic verification method. Interactive methods are more general but harder to use; automatic methods have a limited range but are more likely to be accepted. In interactive verification, the user provides the overall proof strategy; the machine augments this by

- checking the correctness of each step,
- maintaining a list of assumptions and subgoals,
- applying the rules and substitutions which the user indicates, and by
- searching for applicable transformation rules and assumptions.

Sophisticated tools are also able to prove certain lemmas automatically, usually by applying a heuristic search. Although there has been considerable research on the
use of theorem provers, term rewriting systems and proof checkers for verification, these techniques are time consuming and often require a great deal of manual intervention. Moreover, since most interactive provers are designed for undecidable languages (e.g., first or higher order logic), the proof process can never be completely automatic. User interaction is required, e.g., to find loop invariants or inductive hypotheses, and only an experienced user can perform a nontrivial proof.

On the other hand, with model checking all the user has to provide is a model of the system and a formulation of the property to be proven. The verification tool will either terminate with an answer indicating that the model satisfies the formula or show why the formula fails to hold in the model. These counterexamples are particularly helpful in locating errors in the model or system.

With the completely automatic approach it may be necessary for the model checking algorithm to traverse all reachable states of the system. This is only possible if the state space is finite. Whereas other automated deduction methods may be able to handle some infinite-state problems, model checking usually is constrained to a finite abstraction. In fact, model checking algorithms can be regarded as decision procedures for temporal properties of finite-state reactive systems. However, many interesting systems like sequential circuits or network protocols are finite state. Moreover, in the design of safety critical systems it is often possible to separate the (finite state) control structure from the (infinite state) data structure of a given module. Finally, in many cases it is possible to abstract an infinite domain into an appropriate finite one, such that “interesting” properties are preserved. In an ‘a posteriori’ verification, some efforts may be necessary to construct such an abstraction from a given program. In a structured software development process, however, the abstract system often arises naturally during an early design phase.

A main impediment of the fully automatic approach is the state explosion: if any state of the system is uniquely described by \(n \) state bits, then there are \(2^n \) possible states the system can be in. At the present time, the number of states that can be represented explicitly (e.g., by lists or hash tables) is approximately \(10^9 \). In [Burch, Clarke, McMillan, Dill and Hwang 1992, McMillan 1993], binary decision diagrams (BDDs) were used to represent state spaces symbolically. With this technique, models with several hundred state bits and more than \(10^{100} \) reachable states can be checked. Because of this and other technical advances in the available tools it is now possible to verify reactive systems of realistic industrial complexity, and a number of major companies including Intel, Motorola, ATT, Fujitsu and Siemens have started using symbolic model checkers to verify actual designs.

We now describe a concrete example of a nontrivial application, where model checking has been used to improve a proposed international standard. Consider the cache coherence protocol described in the draft IEEE Futurebus+ standard [IEEE 1994]. This protocol is required to insure coherence: consistency of data in hierarchical systems composed of many processors and caches interconnected by multiple bus segments. Such protocols are notoriously complex and, therefore, quite difficult to debug. The Futurebus+ protocol maintains coherence by having the individual caches observe all bus transactions. In order to increase performance, the
protocol allows transactions to be split. That is, the completion of a transaction may be delayed and the bus freed. Then, it is possible to service local requests while the remote request is being processed. At some later time, an explicit response is issued to complete the transaction. Consider a sample configuration with two processors P_1 and P_2 accessing data from a common memory via a single bus (see Fig. 1 on page 1372). Initially, neither processor has a copy of the data in its cache; they are said to be in the invalid state. Processor P_1 issues a read shared request to obtain a readable copy of the data from memory. P_2 may observe this transaction and also obtain a readable copy, such that at the end of the transaction, both caches contain a shared unmodified copy of the data. Next, if P_1 decides to modify the data, the copy held by P_2 must be eliminated in order to maintain coherence. Therefore, P_1 issues an invalidate transaction on the bus. When P_2 notices this transaction, it purges the data from its cache. After executing the invalidate transaction, P_1 now has an exclusive copy of the data.

The standard specifies the possible states of the cache data within each processor and how this state is updated during each possible transaction. It consists of roughly 300 so-called attributes, which are essentially boolean variables together with some rules for setting and clearing them. In the automated verification of the Futurebus+ protocol described in [Clarke, Grumberg, Hiraishi, Jia, Long, McMillan and Ness 1993], these attributes were transformed into the input language of the SMV model checker [McMillan 1993]. For example, the following SMV code fragment indicates how the cache state is updated when the cache issues a read shared transaction:

```plaintext
next(state) :=
  case CMD=read_shared:
    case state=invalid:
      case !SR & !TF: exclusive_unmodified;
      !SR : shared_unmodified;
      1 : invalid;
    esac;
    ...
  esac;
```

If the transaction is not split (!SR), then the data will be supplied to the cache. Either no other caches will read the data (!TF), in which case the cache obtains an exclusive unmodified copy, or some other cache also obtains the data, and everyone obtains shared unmodified copies. If the transaction is split, the cache data remains in the invalid state.

The model for the cache coherence protocol consists of approximately 2300 lines of SMV code (not counting comments). The model is highly nondeterministic, both to reduce the complexity of verification by hiding details, and to cover allowed design choices. This model is compiled into an internal BDD representation by the SMV program. Correctness properties are formulated in the temporal logic CTL. For example, cache consistency is described by requiring that if two caches have
copies of a cache line, then they agree on the data in that line:
AG (P1.readable & P2.readable -> P1.data = P2.data)
This formula is evaluated automatically on the BDD representation of the model.
SMV finds that it is not valid and exhibits a scenario which could lead to the error:
initially, both caches are invalid. Processor P1 obtains an exclusive_unmodified
copy of the data (say, data1) as described above and the data of P2 is invalid (see
Fig. 1). Then, P2 issues a read_modified, which P1 splits for invalidation. That is,
the memory supplies a copy of the data to P2, and P1 postpones the invalidation of
the cache data until local actions are completed. Still having an exclusive_unmodified
copy of data1, P1 now modifies the data (say, into data2) and transitions to
exclusive_modified. At this point, P1 and P2 are inconsistent. This bug can be
fixed by requiring P1 to go to the shared_unmodified state when it splits the
read_modified transaction for invalidation.

Figure 1: Error scenario in the Futurebus+ protocol

Given a formal model of a system to be verified, and a formulation of the prop-
ties the system should satisfy, there are three possible results which an automated
model checker can produce:
1. either it finds a proof for the formula in the model and outputs “verified”, or
2. it constructs a refutation, i.e., an execution of the (model of the) system which
dissatisfies the (formulation of the) property, or
3. the complexity of the verification procedure exceeds the given memory limit or
time bound.
If there is not sufficient space or time, in some cases it is possible to use bigger and
faster machines for verification. Alternatively, one can use a coarser abstraction of
the system and its properties. The third possibility is to employ heuristics which
improve the performance of the verifier. Some of these heuristics are discussed in
Sections 10 and 11.
In some sense it is more interesting to get a refutation than to get a proof. With
a refutation, one can decide whether it is due to the modelling and formulation, or
whether this undesired sequence of events could indeed happen in reality. In the
former case, the unrealistic behavior can be eliminated by additional assumptions
on the model or formula. In the latter case, one has found a bug, and the system
and model can be changed appropriately. One of the major advantages of the fully
automatic approach is that there is almost no additional overhead for the new
verification of the changed system.

If the model checker is able to prove all specified formulas for the given model,
then the verification is successfully completed. However, there can never be any
guarantee that a system which has been verified by a computer tool will function
correctly in reality. Even if we could assume that the verifier’s hard- and software
is correct (which we can not), there is a fundamental source of inaccuracy involved.
Verification proves theorems about models of systems and formulations of proper-
ties, not about physical systems and desired behavior; we can never know to what
extent our models and formulations reflect physical reality and intuitions. It is not
possible to guarantee that a physical system will behave correctly in unexpected
(i.e., unmodeled) situations. It would be unreasonable, however, to reject formal
methods because they cannot offer such guarantees. Civil engineering can never
prove that a certain building will not collapse. Nevertheless it uses mathematical
models to calculate loads and wall thicknesses and so on. Similarly, we can never
prove that our model adequately represents the reality. Therefore we can never
prove that a system will function as planned. Nevertheless, compared to current
practice, the use of formal methods can significantly decrease the amount of errors
in complex software systems. A temporal logic specification adds redundancy to the
design by restating an intended property in a (different) concise formalism. Com-
puter aided verification can help to locate errors and to increase reliability of these
systems. In the future, formal verification by model checking will augment classical
software design tools such as structured analysis, code review and testing.

In this survey, we give a tutorial on the theoretical foundations and techniques
used in model checking. Starting with elementary material on propositional tem-
poral logics and automata we derive basic model checking algorithms from com-
pleteness results and tableau decision procedures. Then we discuss applications and
techniques for efficient implementation of these algorithms. We extend the results
to more expressive logics and models. Finally, we discuss some open problems and
future research directions in the area. At the end of this chapter, the reader can
find a list of all symbols and notations and an index of topics.

2. Logical Languages, Expressiveness

One of the major concerns of philosophical logic is to find an appropriate language
for the formalization of natural language reasoning. The first and probably most
successful of these languages is first order logic. Almost all mathematical state-
ments and proofs can be formulated in this language. However, certain concepts
important for computer science like well-foundedness and transitive closure require
more expressive languages.

Temporal logic was invented to formalize natural language sentences about events
in time, which use temporal adverbs like “eventually” and “constantly”. Temporal
logics have proved to be useful for specifying concurrent systems, because they can
describe the ordering of events without introducing time explicitly. There have been
many variants of temporal logic proposed in the literature. Temporal logics can be classified as

- state- or transition- (interval-) based, depending on whether the formulated properties involve one or more reference points,
- linear or branching time, depending on the intuition of time as a sequence or as a tree of events,
- star-free or regular, depending on the formal languages which can be defined by formulas of the logic, and
- propositional or first-order, depending on the cardinality of the non-temporal domains.

In principle, these classifications are orthogonal; in practice, however, only certain combinations are widely used. In this survey, we concentrate on propositional modal logic, linear temporal logic, computation tree logic, and fixpoint calculus. Restrictions and extensions of these logics are introduced whenever appropriate.

2.1. Propositional and First Order Logic

We assume a set $\mathcal{P} = \{p, q, p_1, \ldots\}$ of (atomic) propositions which can be either true or false. For example, the proposition stack.is.empty denotes the fact that “the stack is empty”. The propositional logic PL is built from \mathcal{P} with the following syntax:

$$\text{PL} ::= \mathcal{P} \mid \bot \mid (\text{PL} \rightarrow \text{PL})$$

That is,

- Every $p \in \mathcal{P}$ is a well-formed formula of propositional logic,
- \bot is a well-formed formula (“the falsum”),
- if φ and ψ are well-formed formulae, then so is $(\varphi \rightarrow \psi)$, and
- nothing else is a formula.

\mathcal{P} is a parameter of the logic; the special case $\mathcal{P} = \{\}$ is allowed. Other connectives can be defined as usual: $\neg \varphi \triangleq (\varphi \rightarrow \bot)$, $\top \triangleq \neg \bot$, $(\varphi \lor \psi) \triangleq (\neg \varphi \rightarrow \psi)$, $(\varphi \land \psi) \triangleq (\neg (\neg \varphi \lor \neg \psi))$, and $(\varphi \leftrightarrow \psi) \triangleq ((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$. The precedence of these operators is fixed by $\neg, \land, \lor, \rightarrow, \leftrightarrow$, and parentheses are omitted in formulas whenever appropriate. Atomic propositions and negated propositions are called literals.

An interpretation I for the propositions is a function assigning a truth value from $\{\text{true, false}\}$ to every proposition. (For example, the proposition stack.is.empty is interpreted differently on a farm, in a library, or in front of a computer terminal.) A propositional model $\mathcal{M} \triangleq (U, I)$ consists of the fixed binary domain $U \triangleq \{\text{true, false}\}$ and an interpretation for \mathcal{P}. (Later on, we will consider logics

1A list of syntactic categories and other symbols is given in the appendix.
over arbitrary nonbinary domains.) The most basic semantical notion is the validation relation \models between a model \mathcal{M} and a formula φ. It is defined by the following clauses:

- $\mathcal{M} \models p$ iff $I(p) = \text{true}$,
- $\mathcal{M} \not\models \bot$, and
- $\mathcal{M} \models (\varphi \rightarrow \psi)$ iff $\mathcal{M} \models \varphi$ implies $\mathcal{M} \models \psi$.

That is, $\mathcal{M} \models (\varphi \rightarrow \psi)$ iff $\mathcal{M} \models \varphi$ or $\mathcal{M} \models \psi$. If $\mathcal{M} \models \varphi$, then we say that \mathcal{M} validates φ, or, equivalently, φ is valid in \mathcal{M}.

Propositional logic is not well-suited to formalize statements about events in time. Even though the interpretation of a statement can be fixed, its truth value may vary in time. This cannot be expressed directly in PL.

To express such temporal dependencies, first order logic can be used. The set \mathcal{P} is redefined to be a set of monadic predicates. That is, each $p \in \mathcal{P}$ is augmented with an additional parameter denoting time, for example, stack_is_empty(t).

For sake of simplicity, we do not include function symbols (or constants) in the first-order language. Assume in addition to the set \mathcal{P} of unary predicates a fixed set $\mathcal{R} \triangleq \{R, a, b, \ldots\}$ of accessibility relations, and let $\mathcal{R}^+ \triangleq \mathcal{R} \cup \{\prec, \preceq, =\}$. Furthermore, let \mathcal{T} be a set of first-order variables $T \triangleq \{t, t_0, \ldots\}$ for points in time (which is assumed to be infinite unless stated otherwise).

$$\text{FOL} :\!:= \mathcal{P}(T) \mid \bot \mid (\text{FOL} \rightarrow \text{FOL}) \mid \mathcal{R}^+(T, T) \mid \exists T \text{ FOL}$$

When writing formulas, we often use infix notation for relational terms: $t_1 R t_2 \triangleq R(t_1, t_2)$. The notation $\forall t \varphi$ is an abbreviation for $\neg \exists t \neg \varphi$, the string $x > y$ stands for $y < x$, and $x \leq y$ for $(x < y \lor x = y)$, etc.

To assign a truth value to a formula containing (free) variables, we assume that we are given a nonempty universe U of points in time, and that the interpretation I assigns to every proposition $p \in \mathcal{P}$ a subset of points $I(p) \subseteq U$, and to every relation symbol $R \in \mathcal{R}$ a binary relation $I(R) \subseteq U \times U$. For the special relation signs $=, \preceq$, and $<$ we require that $I(=) \triangleq \{(w, w) \mid w \in U\}$ is the equality relation, $I(\preceq) \triangleq \bigcup\{I(R) \mid R \in \mathcal{R}\}$ is the transition relation, and $I(<)$ is the transitive closure of $I(\preceq)$, the reachability relation. A variable valuation v assigns to any variable $t \in T$ a point $w \in U$. A first-order model $\mathcal{M} \triangleq (U, I, v)$ consists of a universe U, an interpretation I, and a variable valuation v. As in the propositional case, we define when a formula holds in a model:

- $\mathcal{M} \models p(t)$ iff $v(t) \in I(p)$;
- $\mathcal{M} \not\models \bot$, and
- $\mathcal{M} \models (\varphi \rightarrow \psi)$ iff $\mathcal{M} \models \varphi$ implies $\mathcal{M} \models \psi$;
- $\mathcal{M} \models R(t_0, t_1)$ iff $(v(t_0), v(t_1)) \in I(R)$;
- $\mathcal{M} \models \exists t \varphi$ iff $(U, I, v') \models \varphi$ for some v' which differs from v at most in t.

This language is rather expressive: consider the following example formulas.
(1) \((\text{stack is empty}(t_0) \rightarrow \exists t_1 (\text{put}(t_0, t_1) \land \neg \text{stack is empty}(t_1))) \)

If \(\text{stack is empty} \), then it is possible to perform a \text{put} such that not \(\text{stack is empty} \) holds.

(2) \(\forall t_1 ((t_0 \leq t_1 \land \text{req}(t_1)) \rightarrow \exists t_2 (t_1 < t_2 \land \text{ack}(t_2))) \)

Every request is eventually acknowledged.

(3) \(\forall t_1 ((t_0 \leq t_1 \land \text{req}(t_1)) \rightarrow \exists t_2 ((t_1 < t_2 \land \text{ack}(t_2)) \land
\forall t_3 ((t_1 < t_3 \land t_3 < t_2) \rightarrow \text{req}(t_3))) \)

No request is withdrawn before it is acknowledged.

2.2. Multimodal and Temporal Logic

First order logic has been criticized by theoretical linguists for not being intuitive. Except from text in mathematical books, one can hardly find English sentences which explicitly use variables to refer to objects. Natural language statements use modal adverbs like “possibly” and “necessarily” to refer to an alternative state of affairs. Temporal phrases in natural language use the adverbs “eventually” and “constantly” (or “sometime” and “always”) to refer to future points in time. Modal logic was invented to formalize these modal and temporal adverbs [Lewis 1912, Prior 1957, Prior 1967]. The idea is to suppress first-order variables \(t \in T \); propositions \(p \in P \) are nullary again. In modal logics, the meaning of a proposition like \(\text{stack is empty} \) is intended to be “the stack is empty now”. Thus, in a temporal interpretation, every formula describes a certain state of affairs at a given point.

To be able to describe properties depending on the relations between points, in multimodal logic for every \(R \in R \) a new operator \((R) \phi \) is introduced. The meaning of \((R) \phi \) is “possibly \(\phi \)”, i.e., “there exists some \(t \) accessible via \(R \) such that \(\phi \) holds at \(t \)”. Dually, \([R] \phi \triangleq \neg (R) \neg \phi \) means “necessarily \(\phi \)”; “for all \(t \) accessible via \(R \), it is the case that \(\phi \) holds at \(t \).

\[
\text{ML} \ ::= \ P \mid \bot \mid (\text{ML} \rightarrow \text{ML}) \mid (R)\text{ML}.
\]

Intuitively, the above example (1) could be written

\[
(\text{stack is empty} \rightarrow (\text{put}) \neg \text{stack is empty}).
\]

Assume again that \(U \) is a nonempty set of points in time (or “possible worlds”). An interpretation \(T \) for multimodal logic assigns to every \(p \in P \) and \(R \in R \) a subset \(T(p) \subseteq U \) and a relation \(T(R) \subseteq U \times U \), respectively. The tuple \(F \triangleq (U, T) \) is called a frame for \(P \) and \(R \). A (Kripke-) model (introduced in [Kripke 1963, Kripke 1975]) \(M \triangleq (U, T, w_0) \) for multimodal logic consists of a frame \((U, T) \) and a current point \(w_0 \in U \). If \(M = (U, T, w_0) \), we say that \(M \) is based on the frame \(F = (U, T) \). Thus, a Kripke model for multimodal logic is similar to a first order model, where the variable valuation \(v \) is replaced by a single designated point \(w_0 \).

Note that our notion of frame and model is somewhat different from the traditional use of these terms, where a frame denotes the tuple \((U, \{ T(R) \mid R \in R \}) \),
and a model is the triple \((U, \{\mathcal{I}(R) \mid R \in \mathcal{R}\}, \{\mathcal{I}(p) \mid p \in \mathcal{P}\})\). Historically, atomic propositions have been regarded as being “variable” in a formula, thus \(\{\mathcal{I}(p) \mid p \in \mathcal{P}\}\) is a separate valuation for these variables. In this paper, a proposition denotes a fixed predicate, hence its meaning is given by the interpretation. In a later section we introduce a separate syntactic category of proposition variables, which can be evaluated differently in each context.

Validity of a modal formula in a Kripke model \(\mathcal{M} \triangleq (U, \mathcal{I}, w_0)\) is defined as follows:

- \(\mathcal{M} \models p\) iff \(w_0 \in \mathcal{I}(p)\);
- \(\mathcal{M} \not\models \bot\), and
- \(\mathcal{M} \models (\varphi \rightarrow \psi)\) iff \(\mathcal{M} \models \varphi\) implies \(\mathcal{M} \models \psi\).
- \(\mathcal{M} \models \langle R \rangle \varphi\) iff there exists \(w_1 \in U\) with \((w_0, w_1) \in \mathcal{I}(R)\) and \((U, \mathcal{I}, w_1) \models \varphi\).

We write \(w \models \varphi\) instead of \((U, \mathcal{I}, w) \models \varphi\) whenever the frame \((U, \mathcal{I})\) is given. A formula \(\varphi\) is universally valid (or frame-valid) in \((U, \mathcal{I})\), if for all \(w \in U\) it holds that \(w \models \varphi\).

As defined above, \(\prec\) is interpreted as the transition relation, i.e., the union of all accessibility relations, \(\prec\) is interpreted as the transitive closure of \(\prec\), and \(\leq\) as the reflexive transitive closure (the reachability relation). For these special relations \(\sim \in \{\prec, \leq, \prec, \leq\}\), we henceforth simply write \(v \sim w\) instead of \((v, w) \in \mathcal{I}(\sim)\). We introduce the special operators \(X, F^+\) and \(F^*\):

- \(w_0 \models X \varphi\) iff there exists \(w_1 \in U\) such that \(w_0 \prec w_1\) and \(w_1 \models \varphi\),
- \(w_0 \models F^+ \varphi\) iff there exists \(w_1 \in U\) such that \(w_0 \prec w_1\) and \(w_1 \models \varphi\), and
- \(w_0 \models F^* \varphi\) iff there exists \(w_1 \in U\) such that \(w_0 \leq w_1\) and \(w_1 \models \varphi\).

For the dual operators, we use the symbols \(K\varphi \triangleq \neg X \neg \varphi\), and \(G^+ \varphi \triangleq \neg F^+ \neg \varphi\), and \(G^* \varphi \triangleq \neg F^* \neg \varphi\). Traditionally, \(X, F,\) and \(G\) have been used to indicate next time, Future and Global operators\(^2\). Alternatively, \(F^+\) and \(G^+\) are called sometime-and always-operators. \(K\) is referred to as weak next-operator.

Here are some historical remarks on the use of these operators. In the 1950’s and 1960’s, proof theory and model theory of modal logic was developed ([Rescher and Urquhart 1971, Hughes and Cresswell 1977] are historical, and [Blackburn, de Rijke and Venema 2001] is a modern textbook on this topic). Its applicability to computer science was discovered in the 1970’s: [Burstall 1974] suggested a modal logic built upon \(F^+\) and \(G^+\) to describe program properties. [Krüger 1978] suggested to use both \(X\) and \(F^+\) for program verification. [Pnueli 1977] used a similar system for parallel programs. [Gabbay, Pnueli, Shelah and Stavi 1980] extended temporal logic for program specification by the binary connective \(\textit{until}\) (explained below). The framework was further elaborated in [Pnueli 1981, Manna and Pnueli 1981, Manna and Pnueli 1982b, Manna and Pnueli 1982a, Pnueli 1984, Harel and Pnueli 1985,\(^3\)]

\(^3\)A note on notation: with the above convention, the \(X, \&\& F^+, F^*, G^+\) and \(G^*\) operators could be written as \(\langle<\rangle\), \(\langle<\rangle\), \(\langle<\rangle\), \(\langle<\rangle\) and \(\langle<\rangle\) respectively. In the literature, some authors use the symbols \(\odot, \odot, 3, 2\) and \(\odot\). An index of the notations used in this chapter is given in the appendix.
Manna and Pnueli 1987, Manna and Pnueli 1989]. The combination of \(\langle R \rangle \)- and \(\mathbf{F}^+ \)-
operators originates from dynamic logic [Salwicki 1970, Pratt 1976] (for an overview
on dynamic logics, see [Harel 1984, Kozen and Tiuryn 1990]).

Intuitively, \(\mathbf{X} \varphi \) indicates that \(\varphi \) holds at some point accessible via a single transi-
tion, \(\mathbf{F}^+ \varphi \) specifies that \(\varphi \) must hold in some point which can be reached by a
nonempty sequence of transitions, and \(\mathbf{F}^* \varphi \) means that \(\varphi \) holds at some reachable
point (possibly now). Dually, \(\square \varphi \) holds if all successors satisfy \(\varphi \), and \(\mathbf{G}^* \varphi \) and
\(\mathbf{G}^+ \varphi \) determine that all reachable points (except maybe the current point) must
validate \(\varphi \). With these operators, example (2) could be written

\[
\mathbf{G}'(\text{req} \rightarrow \mathbf{F}^* \text{ack}).
\]

From the definition, \(w_0 \models \square \varphi \) iff \(w_1 \models \varphi \) for all \(w_1 \in U \) such that \(w_0 < w_1 \).
Similarly, \(w_0 \models \mathbf{G}^* \varphi \) iff \(w_1 \models \varphi \) for all \(w_1 \in U \) such that \(w_0 < w_1 \). A point
\(w \in U \) is called terminal, if \(\{ w' \mid w < w' \} = \{ \} \). A terminal point represents a final
state of a terminating computation. Terminal points satisfy all \(\square \cdot \) - and \(\mathbf{G}^* \cdot \)-formulas
vacuously: if \(w_0 \) has no accessible successors, then \(w_0 \models \square \varphi \) and \(w_0 \models \mathbf{G}^* \varphi \) for
any formula \(\varphi \).

The difference between \(\mathbf{F}^+ \) and \(\mathbf{F}^* \) is that in the latter “the future includes the
present”. Using the \(\mathbf{X} \) operator, \(\mathbf{F}^+ \) and \(\mathbf{F}^* \) can be mutually defined: clearly, the
formula \((\mathbf{F}^+ \varphi \leftrightarrow \varphi \lor \mathbf{F}^* \varphi) \) is valid. Therefore, the \(\mathbf{F}^+ \)-operator can be expressed
by \(\mathbf{F}^* \). Using the equivalence \((\mathbf{F}^+ \varphi \leftrightarrow \mathbf{X} \mathbf{F}^* \varphi) \), each occurrence of the operator \(\mathbf{F}^+ \)
in a formula can be replaced by \(\mathbf{F}^* \) and \(\mathbf{X} \), with only a linear increase in formula
length. It is not possible to define the \(\mathbf{F}^+ \)-operator by \(\mathbf{F}^* \) alone (without \(\mathbf{X} \)).

2.1. Lemma. Without \(\mathbf{X} \), the operator \(\mathbf{F}^+ \) is strictly more expressive than \(\mathbf{F}^* \).

Proof: Consider two models \(M_1 \) and \(M_2 \), where \(U_1 \equiv U_2 \equiv \{ w \} \), \(I_1(\prec) \equiv \{ \} \), \(I_2(\prec) \equiv \{ \langle w , w \rangle \} \) and \(I_1(p) = I_2(p) \) for all \(p \in \mathcal{P} \). Then \(M_1 \models \mathbf{F}^* \top \) and
\(M_2 \models \mathbf{F}^+ \top \). However, \(w \models \mathbf{F}^+ \varphi \) iff \(w \models \varphi \) in both \(M_1 \) and \(M_2 \). Therefore, for
all formulas \(\varphi \) which involve only propositions, boolean operators and \(\mathbf{F}^* \) it holds that
\(M_1 \models \varphi \) iff \(M_2 \models \varphi \). (The formal proof of this statement is omitted: it is a
straightforward induction on the construction of such formulas.) Hence, there is
no formula \(\varphi \) consisting only of propositions, boolean operators and \(\mathbf{F}^* \) such that
for all models \(M \) it holds that \(M \models \varphi \) iff \(M \models \mathbf{F}^* \top \). In other words, \(\mathbf{F}^+ \top \) is not
expressible in this language.

A similar proof shows that modal operators cannot express statements about
intervals. For example, there is no formula equivalent to example (3) of the above.
To remedy this lack of expressiveness, [Kamp 1968] introduced a binary operator
(\(\varphi \mathbf{U}^+ \psi \)) meaning “\(\varphi \) holds until \(\psi \) holds”. We use the term temporal logic to refer
to any modal logic which contains some sort of until-operator. In computer science,
this operator was first used by [Gabbay et al. 1980] to classify important properties
of concurrent programs. The semantics of \(\mathbf{U}^+ \) is defined as follows:

- \(w_0 \models (\varphi \mathbf{U}^+ \psi) \) iff there exists \(w_1 \in U \) with \(w_0 < w_1 \) and \(w_1 \models \psi \), and for all
 \(w_2 \in U \) with \(w_0 < w_2 \) and \(w_2 < w_1 \), we have \(w_2 \models \varphi \).
This situation is illustrated by the following picture.

\[\varphi \rightarrow \varphi \rightarrow \varphi \rightarrow \psi \rightarrow \varphi \rightarrow \cdots \]

As an example, the above formula (3) can be expressed with an until-operator as

\[G'(\text{req} \rightarrow (\text{req U}^+ \text{ack})). \]

Various other operators can be defined via U^+. Sometime-operator and nexttime operators (for discrete \(\prec \)) are obtained as follows:

- \(X\varphi \leftrightarrow (\bot U^+ \varphi) \)
- \(F^\varphi \leftrightarrow (\top U^+ \varphi) \)

The proof of these equivalences is immediate from the definition: \(w_0 \models (\bot U^+ \varphi) \) iff there exists \(w_1 \in U \) with \(w_0 < w_1 \) and \(w_1 \models \varphi \), and for all \(w_2 \in U \) with \(w_0 < w_2 < w_1 \) it holds that \(w_2 \models \bot \), which is impossible. In other words, \(w_0 < w_1 \), but there is no \(w_2 \) that satisfies \(w_0 < w_2 \) and \(w_2 < w_1 \). Therefore \(w_1 \) must be an immediate successor of \(w_0 \), i.e., \(w_0 \prec w_1 \). Consequently, \(w_0 \models X\varphi \). The second equivalence is obtained in a similar way.

The reflexive until-operator is defined as \((\varphi U^+ \psi) \equiv (\psi \lor \varphi \land (\varphi U^+ \psi)) \).

\[\varphi \rightarrow \varphi \rightarrow \varphi \rightarrow \varphi \rightarrow \psi \rightarrow \varphi \rightarrow \cdots \]

As above, \(F^\varphi \leftrightarrow (\top U^+ \varphi) \) and \((\varphi U^+ \psi) \leftrightarrow X(\varphi U^+ \psi) \). Without \(X \) it is not possible to define \(U^+ \) or \(F^\varphi \) from \(U^+ \). Hence, \(X \) cannot be defined by \(U^+ \).

The unless or weak until-operator is defined as

\[(\varphi W^+ \psi) \equiv \neg(\neg \psi U^+ (\varphi \lor \psi)). \]

Whereas \((\varphi U^+ \psi) \) requires that \(\psi \) eventually holds, \((\varphi W^+ \psi) \) is also true if \(\psi \) is never and \(\varphi \) always true. Intuitively, \((\varphi W^+ \psi) \) says that \(\varphi \) holds at least up to the next point where \(\psi \) holds. This can be seen as follows: assume that \(w_0 \models \neg(\neg \psi U^+ (\varphi \lor \psi)) \). By definition, it is not the case that for some \(w_1 > w_0 \) both \(w_1 \models \neg(\varphi \lor \psi) \) and \(w_2 \models \neg \psi \) for all \(w_0 < w_2 < w_1 \). Thus, for all \(w_1 > w_0 \) it holds that \(w_1 \models (\varphi \lor \psi) \), or \(w_2 \models \psi \) for some \(w_0 < w_2 < w_1 \). In other words, if \(w_1 > w_0 \) then either \(w_1 \models \varphi \) or there is some \(w_0 < w_2 \leq w_1 \) such that \(w_2 \models \psi \). Therefore, if \(w_2 \not\models \psi \) for all \(w_0 < w_2 \leq w_1 \), i.e., if \(w_1 \) is before the next point where \(\psi \) holds, then \(w_1 \models \varphi \).

Note that by definition \((\varphi W^+ \bot) = \neg(\top U^+ \neg \varphi) = G^\top \varphi \). Some texts define the unless operator by \(((\varphi U^+ \psi) \lor G^\top \varphi) \). In natural models, which consist of a sequence of points, these two definitions are equivalent:

2.2. Lemma. For natural models, \((\varphi W^+ \psi) \leftrightarrow ((\varphi U^+ \psi) \lor G^\top \varphi) \).

Proof: We must show that for all models \(M \) which are sequences, the following holds: (i) \(M \models ((\varphi W^+ \psi) \rightarrow ((\varphi U^+ \psi) \lor G^\top \varphi)) \), (ii) \(M \models (G^\top \varphi \rightarrow (\varphi W^+ \psi)) \)
and (iii) $M \models (\varphi U^+ \psi) \rightarrow (\varphi W^+ \psi))$. For (i), assume that $w_0 \models (\varphi W^+ \psi)$ and $w_0 \not\models \Gamma \varphi$. Then $w_1 \not\models \varphi$ for some $w_1 > w_0$. According to above, there is some $w_0 < w_2 < w_1$ such that $w_2 \models \psi$. Since the model is assumed to be a sequence, it is well-founded. Therefore there must be a smallest w_2 with this property; i.e. $w_0 < w_2 < w_1$, $w_2 \models \psi$, and $w_3 \not\models \psi$ for all $w_0 < w_3 < w_2$. Again, according to the above, if $w_0 < w_3 < w_2$ then $w_3 \models \varphi$. Therefore $w_0 \models (\varphi U^+ \psi)$. Formula (ii) follows immediately from the definition: if $w_0 \models \Gamma \varphi$, then $w_1 \models \varphi$ for all $w_1 > w_0$. Therefore, it is not the case that some $w_1 > w_0$ exists which satisfies $w_1 \models \neg(\varphi \land \psi)$. This implies $w_0 \not\models \neg(\varphi U^+ \neg(\varphi \land \psi))$, i.e., $w_0 \models (\varphi W^+ \psi)$. For implication (iii), we need the property that the model is linear: if $w_0 \models (\varphi U^+ \psi)$, then there exists $w_1 > w_0$ such that $w_1 \models \psi$ and $w_2 \models \varphi$ for all $w_0 < w_2 < w_1$. Assume any point $w > w_0$. Then $w < w_1$ or $w \geq w_1$. In the first case, $w \models \varphi$. In the second case, there exists $w' = w_1$ such that $w' \models \psi$. Thus, for all $w > w_0$ it holds that $w \models \varphi$, or there exists $w_0 < w' \leq w$ such that $w' \models \psi$. This shows that $w_0 \models (\varphi W^+ \psi)$.

This equivalence does not hold for dense time; for example, if (U, \prec) is isomorphic to the rationals and $T(\psi) \triangleq \{1/n \mid n \in N\}$, then $\forall t_1 > 0 \exists t_2 > 0 \ (t_2 < t_1 \land \psi(t_2))$, hence $0 \models (\bot \land \varphi)$. Moreover, $0 \not\models \top \land \varphi$ and $0 \models F^+ \top$, hence $0 \not\models ((\bot \land \varphi) \lor G^+ \bot)$. For more information on other models of time, see [van Benthem 1991, Gabbay, Hodkinson and Reynolds 1994]. An immediate consequence of Lemma 2.2 is that in natural models the operator U^+ is definable by W^+ and F^+:

$$(\varphi U^+ \psi) \leftrightarrow ((\varphi W^+ \psi) \land F^+ \psi).$$

With first order logic, it is possible to use reverse relations: $x > y$ iff $y < x$. In [Lichtenstein, Pnueli and Zuck 1985], the authors argue that the ability to refer to the past can facilitate program specifications. The temporal past or since- operator U^- is defined with the following semantics:

- $w_0 \models (\varphi U^- \psi)$ iff there exists $w_1 \in U$ with $w_1 < w_0$ and $w_1 \models \psi$, and for all $w_2 \in U$ with $w_1 < w_2$ and $w_2 < w_0$, we have $w_2 \models \varphi$.

The syntax of linear temporal logic (LTL) is defined as follows:

$$\text{LTL} ::= \mathcal{P} \mid \bot \mid (\text{LTL} \rightarrow \text{LTL}) \mid (\text{LTL} U^+ \text{LTL}) \mid (\text{LTL} U^- \text{LTL}).$$

We write $F^+ \varphi$ and $G^+ \varphi$ for $(\top U^+ \varphi)$ and $\neg F^- \neg \varphi$, respectively. Intuitively, these operators refer to “sometime in the past” and “always in the past”. Moreover, $F^+ \varphi$ and $G^+ \varphi$ are abbreviations for $(F^+ \varphi \lor \varphi \lor F^+ \varphi)$ and $\neg F^- \neg \varphi$, respectively.

2.3. Expressive Completeness of Temporal Logic

How can first order and temporal logic be compared? Temporal logic can be regarded as a certain fragment of first order logic; this is explained more formally below. In contrast to modal or temporal logics, FOL formulas can mention several
reference points (free variables). To be able to compare the expressiveness of both

type of logics, we restrict FOL to formulas with at most one free variable.

The above semantics induces a translation “FOL” from modal or temporal to

first order logic, where FOL(φ) has exactly one free variable t0.

• FOL(p) ≜ p(t0)
• FOL(⊥) ≜ (t0 ≠ t0)
• FOL((φ → ψ)) ≜ (FOL(φ) → FOL(ψ))
• FOL(⟨R⟩φ) ≜ ∃t′(t0Rt′ ∧ FOL(φ){t0 := t′})
• FOL(Xφ) ≜ ∃t′(t0 < t′ ∧ FOL(φ){t0 := t′})
• FOL(Ft φ) ≜ ∃t′(t0 < t′ ∧ FOL(φ){t0 := t′})
• FOL(Ft φ) ≜ ∃t′(t0 ≤ t′ ∧ FOL(φ){t0 := t′})

• FOL((φU+ψ))

 ≜ ∃t′(t0 < t′ ∧ FOL(ψ){t0 := t′}) ∧ ∀t″(t0 < t″ < t′ → FOL(φ){t0 := t″})).

• FOL((φU−ψ)) ≜ ∃t′(t′ < t0 ∧ FOL(ψ){t0 := t′}) ∧ ∀t″(t′ < t″ < t0 → FOL(φ){t0 := t″})).

This translation is sometimes called the standard translation [Blackburn et al. 2000].

In the translation of ⟨R⟩φ, ..., (φU+ψ), the symbols t′ and t″ denote arbitrary

variables which do not occur in FOL(φ) or FOL(ψ). The formula FOL(ψ){t0 := t′}

denotes the formula FOL(ψ), where every (free) occurrence of the variable t0 is

replaced by the variable which is denoted by t′. The following example demonstrates

the standard translation.

FOL(((¬ack U req)U+ack))

 = ∃t1(t0 < t1 ∧ ack(t1) ∧ ∀t2(t0 < t2 < t1 → FOL((¬ack U req){t0 := t2})))

 = ∃t1(t0 < t1 ∧ ack(t1) ∧ ∀t2(t0 < t2 < t1 →

 ∃t3(t0 < t3 ∧ req(t3) ∧ ∀t4(t3 < t4 < t2 → ¬ack(t4))))).

The standard translation of a modal or temporal formula is a first-order for-

mula with exactly one free variable t0. Correctness of the standard translation can

formally be stated as follows:

2.3. FACT. For every φ ∈ ML or LTL there exists a first order formula FOL(φ)

 such that for every frame (U, I), point w0 ∈ U and valuation v for which v(t0) = w0

 it holds that (U, I, w0) ⊨ φ if (U, I, v) ⊨ FOL(φ).

Hence, FOL is at least as expressive as LTL. A logic is called expressively complete

(or definitionally complete), if there exists also a translation in the other direction:

given any first-order formula with exactly one free variable, does an equivalent

temporal formula exist?

For the translation of any given temporal formula into first order logic only three

variables (say, t0, t1, and t2) are really needed. Other variables can be reused; for

example, the above FOL(((¬ack U−req)U−ack)) is equivalent to

∃t1(t0 < t1 ∧ ack(t1) ∧ ∀t2(t0 < t2 < t1 →
\[\exists t_0(t_0 < t_2 \land \text{req}(t_0) \land \forall t_1(t_0 < t_1 < t_2 \to \neg \text{ack}(t_1))) \].

Similarly, modal logic can be translated into the so-called quantified fragment of first-order logic, which allows only two variables. In the first-order clause for \((\phi \mathcal{U} \psi)\), three variables are needed. This is the reason why the until-operator is not definable in modal logic. Likewise, LTL cannot express any property which “inherently” uses four variables. For example, the statement “there are three different connected points reachable from the current point” is not expressible in temporal logic.

\[\exists t_1, t_2, t_3(t_0 < t_1 \land t_0 < t_2 \land t_0 < t_3 \land t_1 < t_2 \land t_1 < t_3 \land t_2 < t_3) \]

If \(< \) is irreflexive, then a minimal model satisfying this formula is e.g. the following:

\[\begin{array}{c}
\text{In case that} \ < \ \text{is a linear order (antisymmetric and total)} \text{this is equivalent to} \\
\exists t_1(t_0 < t_1 \land \exists t_2(t_1 < t_2 \land \exists t_3(t_2 < t_3))) \\
\text{in which we can rename} \ t_3 \text{by} \ t_0 \text{to get the equivalent} \\
\exists t_1(t_0 < t_1 \land \exists t_2(t_1 < t_2 \land \exists t_0(t_2 < t_0)))
\end{array} \]

which in turn can be expressed temporally as \(F^+ F^+ F^+ \top \).

Therefore, attention is restricted to certain classes of structures, like complete linear orders, or finitely-branching trees, etc. A natural model consists of a finite or infinite sequence of points. Formally, a natural model \(\mathcal{M} \triangleq (U, I, u_0) \) is a Kripke-model with only one accessibility relation, such that \((U, \prec)\) is isomorphic to the natural numbers or an initial segment of the natural numbers\(^3\), where \(\prec \) is the usual successor relation.

2.4. Theorem (Kamp, Gabbay). Temporal logic is expressively complete for natural models.

The original proof of this theorem in [Kamp 1968, pp. 39–94] is extremely complicated. The proof given below follows [Gabbay 1989] and uses a certain property called separation. Call a temporal formula

\(^3\)Some textbooks restrict attention to infinite models. Terminating computations are then modelled with an idle loop. In this survey, we use both finite and infinite computation sequences.
- **pure future**, if it is of form \((\varphi \mathbf{U}^+ \psi)\), where in both \(\varphi\) and \(\psi\) no \(\mathbf{U}^−\)-operator occurs, and
- **pure past**, if it is of form \((\varphi \mathbf{U}^- \psi)\), where in both \(\varphi\) and \(\psi\) no \(\mathbf{U}^+\)-operator occurs, and
- **pure present**, if it contains no \(\mathbf{U}^\ast\) or \(\mathbf{U}^\ast\)-operators.

A **future formula** is a boolean combination of pure future and pure present formulas, i.e., one which does not contain any \(\mathbf{U}^\ast\)-operators. Similarly, a **past formula** does not contain any \(\mathbf{U}^\ast\). A formula is **separated** if it is a boolean combination of future and past formulas. A logic has the **separation property** (for a given class of models), if for every formula there exists a separated formula which is equivalent for all models under consideration.

2.5. Lemma

The separation property implies expressive completeness.

Proof: This lemma is proven by induction on the structure of \(\text{FOL}\)-formulas. For the proof, we assume that \(\text{LTL}\) has the separation property for natural models. That is, for each linear temporal formula there exists an equivalent formula which is separated. We show that any first order formula \(\varphi(t_0)\) which has exactly one free variable \(t_0\) can be translated into a temporal formula \(\text{LTL}(\varphi)\). It suffices to consider first order logic where \(R^\ast \triangleq \{<,=\}\): in natural models, there is a unique accessibility relation, and every atomic subformula \(t < t'\) can be equivalently replaced by \((t < t' \land \neg \exists t'' (t < t'' \land t'' < t'))\). Furthermore, the scope of quantification can be minimized such that no sub-formula \(\varphi \triangleq \exists t \psi\) contains a proposition \(p(t')\) where \(t'\) is free in \(\varphi\). For example, \(\exists t_1 (t_1 > t_0 \land \psi(t_0) \land \psi(t_1))\) can be rewritten as \(\psi(t_0) \land \exists t_1 (t_1 > t_0 \land \psi(t_1))\).

The translation of \(p(t_0)\) is \(p\). It is not necessary to give a translation for formulas \(p(t_1)\) or \(t_0 \sim t_1\), since they involve other free variables than \(t_0\). The translation of a boolean connective of sub-formulas is the boolean connective of the translation of the sub-formulas. The only remaining case are formulas \(\varphi \triangleq \exists t_1 \psi(t_0, t_1)\). Since the scope of the quantifier \(\exists t_1\) is minimal, \(\varphi\) does not contain any proposition \(p(t_0)\). That is, \(\psi(t_0, t_1)\) is a boolean combination of formulas \(p(t_1), t_0 \sim t_1,\) and \(\varphi' \triangleq \exists t_2 \psi'(t_0, t_1, t_2)\). Replace every sub-formula \(t_0 < t\) by a new unary proposition \(\text{future}(t)\), replace every sub-formula \(t_0 = t\) by a new unary \(\text{present}(t)\), and replace every \(t < t_0\) by \(\text{past}(t)\). That is, \(\varphi\) now does not contain any \(t_0\), and thus each \(\varphi'\) is a formula with exactly one free variable \(t_1\). Since the nesting depth of existential quantifiers in each \(\varphi'\) is smaller than that of \(\varphi\), we can apply the induction hypothesis to get temporal formulas \(\text{LTL}(\varphi')\). Reinserting these into \(\psi\) and replacing \(p(t_1)\) in \(\psi\) by \(p\), and \(q(t_1)\) by \(q\) for \(q \in \{\text{future}, \text{present}, \text{past}\}\) gives the temporal formula \(\text{LTL}(\psi)\). To translate \(\varphi \triangleq \exists t_1 \psi\) we separate the temporal formula \((\text{F}^\ast \text{LTL}(\psi) \lor \text{LTL}(\psi) \lor \text{F}^\ast \text{LTL}(\psi))\). The resulting formula is a boolean combination of pure future, pure past and pure present formulas. Replace in this formula every future inside a pure future formula by \(\top\), every other future by \(\bot\). Similarly, replace every past inside a pure past formula by \(\top\), and every other past by \(\bot\). Finally, replace every present inside a pure present formula by \(\top\), every other present by \(\bot\). The resulting formula is the required translation \(\text{LTL}(\varphi)\).

Given any natural model \(\mathcal{M} \triangleq (U, I, w_0)\) for \(\varphi\), define \(I(\text{future}) \triangleq \{w \mid w >
\(w_0 \), \(I(\text{present}) \triangleq \{ w_0 \} \) and \(I(\text{past}) \triangleq \{ w \mid w < w_0 \} \). Then every step in the above translation preserves validity in \(\mathcal{M} \). Therefore, \(\mathcal{M} \models \phi \text{ iff } \mathcal{M} \models \text{LTL}(\phi) \).

To illustrate this construction, let us find the temporal equivalent of \(\phi \triangleq \exists t_1 (t_0 < t_1 \land p(t_1) \land \forall t_2 (t_0 < t_2 < t_1 \rightarrow q(t_2))) \). (We already know that the outcome should be \(\langle q U^+ p \rangle \).) The first replacement results in \(\exists t_1 \psi \), where \(\psi \triangleq \langle \text{future}(t_1) \land p(t_1) \land \neg \exists t_2 (\text{future}(t_2) \land t_0 < t_2 < t_1 \land \neg q(t_2)) \rangle \). The formula \(\phi'(t_1) = \exists t_2 (t_0 < t_1 \land \text{future}(t_2) \land \neg q(t_2)) \) inductively translates to \(\text{LTL}(\phi') = F^+ (\text{future} \land \neg q) = \neg G^- (\text{future} \rightarrow q) \). Thus \(\text{LTL}(\psi) = (\text{future} \land p \land G^- (\text{future} \rightarrow q)) \). To obtain \(\text{LTL}(\exists t_1 \psi) \) we have to separate \(F^+ \text{LTL}(\psi) = F^+ \text{LTL}(\psi) \lor \text{LTL}(\psi) \lor \text{F}^- \text{LTL}(\psi) \). Separating \(F^+ \text{LTL}(\psi) = F^+ (\text{future} \land p \land G^- (\text{future} \rightarrow q)) \) gives \(G^- (\text{future} \rightarrow q) \land (\text{future} \rightarrow q) \land ((\text{future} \rightarrow q) U^- (\text{future} \land p)) \) (see below). The disjuncts \(F^+ \text{LTL}(\psi) = F^+ (\text{future} \land p \land G^- (\text{future} \rightarrow q)) \) and \(\text{LTL}(\psi) = (\text{future} \land p \land G^- (\text{future} \rightarrow q)) \) are already separated. To obtain \(\text{LTL}(\phi) \), we now replace every future inside a pure past or pure present formula by \(\bot \) and every future inside a pure future formula by \(T \). Then \(G^- (\text{future} \rightarrow q) \land (\text{future} \rightarrow q) \) reduces to \(T \), and \((\text{future} \rightarrow q) U^- (\text{future} \land p) \) reduces to \((q U^+ p) \). The disjuncts \(F^+ \text{LTL}(\psi) \) and \(\text{LTL}(\psi) \) reduce to \(\bot \). Therefore, \(F^+ \text{LTL}(\psi) \) reduces to \((q U^+ p) \), which is the expected result for \(\text{LTL}(\psi) \).

In the above, we used the following equivalence to separate a nested occurrence of future- and past- operators:

\[\models F^+ (\phi \land G^- \psi) \iff G^- \psi \land (\psi U^+ \phi) \]

Proof: The left side of this formula states that sometimes in the future, \(\phi \) and always in the past \(\psi \) holds. In other words, there is some \(w_1 > w_0 \) such that \(\phi \) holds at \(w_1 \), and for all \(w_2 < w_1 \), the formula \(\phi \) holds at \(w_2 \). In a natural model, each such \(w_2 \) must be in the past (\(w_2 < w_0 \)), present (\(w_2 = w_0 \)) or future (\(w_0 < w_2 < w_1 \)) of the current point \(w_0 \). Therefore, for each \(w_2 < w_0 \), the formula \(\phi \) holds, and \(\psi \) holds at \(w_0 \), and there is some \(w_1 > w_0 \) such that \(\phi \) holds at \(w_1 \), and for all \(w_0 < w_2 < w_1 \), the formula \(\psi \) holds at \(w_2 \). This is stated by the right side of the formula.

A more convenient way to show the correctness of such formulas than by semantical reasoning is by an automated proof procedure. In Section 7, we will show that \(\text{LTL} \) is decidable. There are several automated provers freely available. In fact, the above formula is checked by the STEP system within milliseconds.

To show expressive completeness, it remains to prove the following:

2.6. Lemma. \(\text{LTL} \) has the separation property for natural models.

Proof: Consider the case of a non-separated formula \(\phi \triangleq (\phi_1 U^+ \phi_2) \), which contains a direct subformula \(\psi \triangleq (\phi_1 U^- \psi_2) \) (i.e., \(\psi \) is a boolean component of \(\phi_1 \) and/or \(\phi_2 \), and does not occur elsewhere in \(\phi_1 \) or \(\phi_2 \)). We write \(\phi_1^- \) and \(\phi_2^- \) for \(\phi_1 \{ \psi := T \} \) and \(\phi_1 \{ \psi := \bot \} \), respectively. By propositional reasoning,
\(\varphi_1 \leftrightarrow ((\psi \lor \varphi_1^\top) \land (\neg \psi \lor \varphi_2^\top)) \) and \(\varphi_2 \leftrightarrow ((\psi \land \varphi_2^\top) \land (\neg \psi \lor \varphi_2^\top)) \). Therefore, \(\varphi \) is equivalent to \(((\psi \lor \varphi_1^\top) \land (\neg \psi \lor \varphi_1^\top)) (\psi \land \varphi_2^\top) \lor (\neg \psi \land \varphi_2^\top))\). By temporal reasoning, this in turn is equivalent to \(((\psi \lor \varphi_1^\top) \U (\psi \land \varphi_2^\top)) \lor (\psi \lor \varphi_1^\top) \U ((\neg \psi \land \varphi_2^\top))\) \land \(((\neg \psi \lor \varphi_1^\top) \U (\psi \land \varphi_2^\top)) \lor ((\neg \psi \lor \varphi_1^\top) \U ((\neg \psi \land \varphi_2^\top))\).

For each of the four boolean components of this formula, an equivalent separated formula is given in Fig. 2. Though these formulas are hard to read and difficult to prove manually, their validity can be easily checked by an automated theorem prover. Intuitively, they are generalizations of the example given above. With the separating clauses, \(\varphi \) can be rewritten such that \(\psi \) is not in the scope of any \(\U \).

Since the formulas of Fig. 2 still hold if \(\U \) and \(\U^\top \) are interchanged, each \((\varphi_1 \U \varphi_2)\) containing a direct subformula \(\psi \equiv (\varphi_1 \U \varphi_2) \) can be rewritten such that \(\psi \) does not occur in the scope of a \(\U^\top \). The general case of several different past-time-subformulas nested within future-subformulas and vice versa can be handled by repeated application of these transformations. Formally, the claim follows by induction on the nesting depth and number of \(\U^\top \) subformulas within \(\U \) and vice versa.

Since in the separation step of this construction subformulas may be duplicated, the resulting \(\text{LTL} \) formula can be nonelementary larger than the original \(\text{FOL} \) formula.

![Figure 2: Separation clauses for LTL](image-url)
3. Second Order Languages

3.1. Linear and Branching Time Logics

As we have seen, linear temporal logic is expressively complete for natural models. The same result (with minor modifications) can be proved for finitely branching trees [Schlingloff 1992a, Schlingloff 1992b], and for certain partially ordered structures [Thiagarajan and Walukiewicz 1997]. In computer science, the possible executions of a program can be modelled as a set of execution sequences. Alternatively, it can be modelled as a unique execution tree, where branches denote nondeterministic decisions. This view is adopted in branching time temporal logic [Lamport 1980, Ben-Ari, Manna and Pnueli 1983, Emerson and Halpern 1986].

Statements about correctness of program can involve assertions about all maximal paths in a tree. A path in a model is a (finite or infinite) nonempty sequence of points $\sigma = (w_0, w_1, \ldots)$, where for each i with $0 \leq i < |\sigma|$ there exists an $R_i \in R$ such that $(w_i, w_{i+1}) \in I(R_i)$. A path is maximal, if each of its points which has a successor in the model also has a successor in the path. In other words, a maximal path is either infinite, or its final point w_n is terminal (there is no w such that $w_n < w$). Computation tree logic (CTL) [Clarke and Emerson 1981, Emerson and Clarke 1982] has the following syntax:

$$\text{CTL} :: \mathcal{P} | \perp | (\text{CTL} \to \text{CTL}) | \text{E}(\text{CTL} \cup^+ \text{CTL}) | \text{A}(\text{CTL} \cup^+ \text{CTL})$$

CTL is interpreted on tree models. A tree is defined as usual: it has a single root w_0, and every node w_n can be reached from w_0 by exactly one finite path. The transitive closure “<” of the successor relation “−” then denotes the usual tree-order: $(w_1, w_2) \in I(<)$ if w_1 is on the (unique) path from the root w_0 up to w_2.

- $w_0 \models E(\varphi U^+ \psi)$ iff there exists $w_1 > w_0$ such that $w_1 \models \psi$, and for all $w_2 \in U$, if $w_0 < w_2 < w_1$ then $w_2 \models \varphi$.
- $w_0 \models A(\varphi U^+ \psi)$ iff for all maximal paths p from w_0 there exists $w_1 > w_0$ on path p such that $w_1 \models \psi$, and for all $w_0 < w_2 < w_1$, $w_2 \models \varphi$.

Thus, the $E U^+$-operator is defined similar to the LTL until-operator. However, the intended models for CTL are trees, whereas LTL usually is interpreted on natural models. In CTL weak and derived operators can also be defined as abbreviations. However, in branching time, there are two variants of each derived operator.

$$\text{E X} \psi \triangleq \text{E}(\perp U^+ \psi), \quad \text{E} \neg \psi \triangleq \neg \text{E} \psi,$$
$$\text{E} F^+ \psi \triangleq \text{E}(\top U^+ \psi), \quad \text{E} G^+ \psi \triangleq \neg \text{E} F^+ \psi,$$
$$\text{E} (\varphi U^+ \psi) \triangleq (\psi \lor \varphi \land \text{E} (\varphi U^+ \psi)), \quad \text{E} (\varphi U \psi) \triangleq (\psi \lor \varphi \land \text{E} (\varphi U^+ \psi)),$$
$$\text{E} (\varphi U^+ \psi) \triangleq (\psi \lor \varphi \land \text{E} (\varphi U^+ \psi)), \quad \text{E} (\varphi U \psi) \triangleq (\psi \lor \varphi \land \text{E} (\varphi U^+ \psi)),$$
$$\text{E} F^+ \psi \triangleq (\psi \lor \varphi \land \text{E} F^+ \psi), \quad \text{E} G^+ \psi \triangleq (\psi \land \text{E} G^+ \psi),$$
$$\text{E} F^+ \psi \triangleq (\psi \lor \varphi \land \text{E} F^+ \psi), \quad \text{E} G^+ \psi \triangleq (\psi \land \text{E} G^+ \psi),$$
$$\text{E} (\varphi U^+ \psi) \triangleq (\psi \lor \varphi \land \text{E} (\varphi U^+ \psi)), \quad \text{E} (\varphi U \psi) \triangleq (\psi \lor \varphi \land \text{E} (\varphi U^+ \psi)),$$
\[E(\varphi W^+ \psi) \triangleq \neg A(\neg U^+ (\varphi \lor \psi)), \quad A(\varphi W^+ \psi) \triangleq \neg E(\neg U^+ (\varphi \lor \psi)). \]

Informally, \(E X \psi \) means that some successor node satisfies \(\psi \), and \(A \tilde{X} \psi \) holds if all successors are \(\psi \). In a terminal point, \(A \tilde{X} \psi \) is valid, but \(A X \psi \) not: if \(w_0 \) has no successors, then the only maximal path \(p \) from \(w_0 \) is the one-element sequence \(\sigma = (w_0) \). On this unique path \(\sigma \) there is no \(w_1 > w_0 \), therefore each formula \(A(\varphi U^+ \psi) \) and \(E(\varphi U^+ \psi) \) must be invalid. As a special case, in such a point \(E X T \) is not valid, but \(E \tilde{X} \psi \) and \(E \tilde{X} \psi \) are valid. In a nonterminal point, \(E X \varphi \leftrightarrow E \tilde{X} \varphi \) and \(A X \varphi \leftrightarrow A \tilde{X} \varphi \). Thus, if we restrict attention to models without terminal points, these operators coincide. The operators \(A X \) and \(E \tilde{X} \) can be expressed by \(E X \) and \(A \tilde{X} \) (with at most linear increase of formula length) via \(A X \varphi \leftrightarrow A \tilde{X} \varphi \land E X T \) and \(E \tilde{X} \varphi \leftrightarrow E X \varphi \lor A \tilde{X} \psi \), that is, \(E \tilde{X} \varphi \leftrightarrow (E X T \rightarrow E X \varphi) \). Thus, all CTL nexttime-operators can be expressed in terms of \(E X \).

The formula \(EF^+ \psi \) means that some node in the computation tree satisfies \(\psi \), and \(AF^+ \psi \) specifies that \(\psi \) must hold somewhere along every maximal computation path. Dually, \(AG^+ \psi \) means that every node in the (sub-) tree satisfies \(\psi \), whereas \(EG^+ \psi \) indicates that \(\psi \) is globally valid along some path.

\[
\begin{align*}
E(\varphi U^+ \psi) & \quad \text{A}(\varphi U^+ \psi) & \quad E X \psi & \quad A X \psi
\end{align*}
\]

In the above picture, nodes satisfying \(\varphi \) are shown solid (or as a shaded area), whereas \(\psi \) nodes are indicated by a circle.

The operator \(A U^+ \) can be expressed by \(E U^+ \) and \(A F^+ \). This characterization is similar to the definition of the unless-operator in linear temporal logic, cf. page 1380:

\[A(\varphi U^+ \psi) \leftrightarrow (A(\varphi W^+ \psi) \land A F^+ \psi) = (\neg E(\neg U^+ (\varphi \lor \psi)) \land A F^+ \psi). \]

Therefore, it is sufficient to consider only the two basic operators \(E U^+ \) and \(A F^+ \) in formal proofs and algorithms. Similarly, the formula \(E(\varphi W^+ \psi) \) can be replaced by \((E(\varphi U^+ \psi) \lor E G^+ \varphi) \). However, there is no negation-free “dual” characterization of \(A W^+ \) and \(E U^+ \).

We now give some examples of CTL formulas. The following properties are typical correctness requirements that might arise in the verification of a finite state concurrent program.

- \(EF^+(\text{started} \land \neg \text{ready}) \): it is possible to get to a state where \(\text{started} \) holds but \(\text{ready} \) does not hold.
- \(AG^+(\text{req} \rightarrow AF^+ \text{ack}) \): if a request occurs, then it will be eventually acknowledged.
— $A G^r A F^r$ stack_is_empty: the proposition stack_is_empty holds infinitely often on every computation path

— $A G^r E F^r$ restart: from any state it is possible to get to a restart state.

For many CTL formulas it is possible to formulate similar correctness properties in LTL. Possibility properties like the last one mentioned above cannot be formulated in LTL. On the other hand, certain fairness properties cannot be formulated in CTL.

How can we compare the expressivity of CTL with (the future fragment of) LTL? Direct comparison is difficult, since models are different: on natural models, which are special tree models with branching degree one, $A U^r$ and $E U^r$-operators coincide. On tree models with higher branching degree, LTL obviously cannot express $A(\varphi U^r \psi)$.

Therefore, one considers LTL and CTL on (nonlinear, non-tree) Kripke-models (U, I, u_0). In contrast to natural or tree models, Kripke-models can contain reflexive points, loops or even dense relations. We call an LTL future formula sequence-valid in a Kripke-model M, if it is valid in all natural models $((w_0, w_1, \ldots), I, w_0)$ which are generated from M, that is, for all maximal paths w_0, w_1, \ldots in U starting from w_0 (A formal definition of this notion will be given in Section 4.) Similarly, a CTL-formula is called tree-valid in a Kripke-model, if it is valid in the root of the unique maximal tree generated from it.

With this definition, the expressivity of LTL and CTL can be compared. It turns out that on Kripke models, neither of both is strictly more expressive than the other one. For example, the LTL formula $\varphi \triangleq F^r G^r p$ is not expressible in CTL (it is not the same property as $A F^r A G^r p$). That is, there is no CTL-formula ψ such that ψ is tree-valid in exactly the same Kripke-models in which φ is sequence-valid. Similarly, $A G^r E F^r p$ is not expressible in LTL (it is not the same as $G^r F^r p$).

On Kripke-models, the logic CTL* (see [Emerson and Lei 1985, Emerson and Halpern 1986]) subsumes CTL and LTL by separating path quantification (E) from temporal quantification (U^r). Thus it is possible to write e.g. $E G^r F^r p$. The logic CTL* is strictly more expressive than both CTL and LTL. On binary trees, the expressiveness of CTL* can be compared to first order logic with additional (second order) quantification on paths. For more information on the expressiveness and complexity of various sublogics of CTL*, see [Emerson 1990].

3.2. Propositionally Quantified Logics

Quantification over maximal paths is not a first-order notion. It is clear that for natural models, which consist of exactly one maximal path, this quantifier is not very useful. However, even for natural models, there might be other types of second-order quantification which could be interesting. Wolper remarked that “temporal logic can be more expressive”[Wolper 1982, Wolper 1983]. In temporal or first-
order logic, it is not possible to specify that a certain proposition \(p \) holds on every second point of an execution sequence, without constraining the values of \(p \) in intermediate points. Formally, for a natural model where \(U = (w_0, w_1, \ldots) \), define the new operator \(G^{2n} \) by

\[
u_i \models G^{2n} \varphi \quad \text{iff} \quad \nu_{i+2n} \models \varphi \text{ for all } n \geq 0
\]

We will show that this operator cannot be expressed in LTL or FOL. First, note that the following operators are not equivalent to \(G^{2n} \varphi \).

\[
G^{2n}_{\text{LTL}} \varphi \triangleq \varphi \wedge G^* (\varphi \rightarrow X X \varphi)
\]

\[
(G^{2n}_{\text{POL}} \varphi)(t_0) \triangleq \varphi(t_0) \wedge \forall t \geq t_0 (\varphi(t) \rightarrow \forall t_1, t_2 (t < t_1 < t_2 \rightarrow \varphi(t_2)))
\]

These formulas define a stronger property than required: they imply that if \(\varphi \) holds in two adjacent states, it must hold always. Therefore, \(\models (G^{2n}_{\text{LTL}} \varphi \rightarrow G^{2n} \varphi) \). The reverse implication does not hold: there are models satisfying \(G^{2n} \varphi \) but not \(G^{2n}_{\text{LTL}} \varphi \) or \(G^{2n}_{\text{POL}} \varphi(t_0) \), respectively.

3.1. THEOREM (Wolper). Let \(p \) be any atomic proposition. There is no LTL-formula \(\varphi \) such that \(\models \varphi \leftrightarrow G^{2n} p \).

PROOF: Consider the following sequence \((M_0, M_1, M_2, \ldots)\) of models. For each \(i \geq 0 \), define \(M_i \triangleq (U_i, \mathcal{I}_i, w_0^i) \), where \((U_i, \prec)\) is isomorphic to the integers: \(U_i \triangleq \ldots, w_i^0, w_i^{-1}, w_i^{-2}, \ldots \). Furthermore, define \(\mathcal{I}_i(q) \triangleq U_i \setminus w_i^j \) for all \(q \in \mathcal{P} \).

That is, \(w_i^n \models q \) if \(i \neq n \) for all atomic propositions \(q \). Since \((U_i, \mathcal{I}_i, w_0^i)\) is isomorphic to \((U_{i+1}, \mathcal{I}_{i+1}, w_0^{i+1})\), we have \(w_0^i \models \varphi \) iff \(w_0^{i+1} \models \varphi \) for all formulas \(\varphi \). As a consequence, \(w_0^i \models \varphi \) iff \(w_0^{i+1} \models X \varphi \).

In the next step, we prove that any LTL formula will almost always be true or almost always be false in the sequence \((M_i)\): for any \(\varphi \in \text{LTL} \) there exists an \(i \) such that for all \(j \geq i \) it holds that \(M_i \models \varphi \) iff \(M_j \models \varphi \). This is proved by induction on the structure of LTL formulas. The only interesting case is given by the until-connectives. We prove the case of \((\varphi U^* \psi) \). For this case, the induction hypothesis guarantees that there is an \(i \) such that for all \(j \geq i \), both \(w_0^i \models \varphi \) iff \(w_0^{i+1} \models \varphi \) (*) and \(w_0^i \models \psi \) iff \(w_0^{i+1} \models \psi \) (**). We have to show that \(w_0^i \models (\varphi U^* \psi) \) iff \(w_0^{i+1} \models (\varphi U^* \psi) \). From the above consequence, \(w_0^i \models (\varphi U^* \psi) \) iff \(w_0^{i+1} \models X(\varphi U^* \psi) \) (**). The following recursive characterization is valid: \(\models (\varphi U^* \psi) \leftrightarrow (\psi \wedge X(\varphi U^* \psi)) \) (**). In particular, this implies \(\models (\psi \rightarrow (\varphi U^* \psi)) \) (**). Therefore, \(w_0^i \models (\varphi U^* \psi) \). By (**), \(w_0^{i+1} \models (\varphi U^* \psi) \) iff \(w_0^{i+1} \models (\varphi U^* \psi) \) iff \(w_0^i \models (\varphi U^* \psi) \) iff \(w_0^{i+1} \models (\varphi U^* \psi) \).

To complete the proof, we now show that this eventual stability property does not hold for formulas which include the \(G^{2n} \) operator. It is not hard to see that \(M_i \models G^{2n} p \) if \(i \) is odd: recall that \(w_0^i \models \neg p \). Thus, if \(i \) is even, then for \(n \triangleq i/2 \)
we have $w_{i+2n} \not\models p$, which means $w_i \not\models G^{2n} p$. If i is odd, however, then for all $n \geq 0$, $w_{i+2n} \models p$, and thus $w_i \models G^{2n} p$. Hence, we have shown that for every LTL formula φ there is a model \mathcal{M}_i such that $\mathcal{M}_i \not\models (\varphi \leftrightarrow G^{2n} p)$.

The above proof shows that the G^{2n} operator cannot be defined in the basic temporal or first order language. However, it can be defined if additional propositions are allowed. To assert that $G^{2n} \varphi$ holds, it suffices to provide a “new” proposition q (not occurring in φ) such that $G^{2n}_{\text{ext}} q$ holds, and that φ is valid wherever q is valid. This puts an additional constraint on the “auxiliary variable” q, which can be considered as an “implementation detail” in the context of φ. If we disregard the value of q, then the models satisfying $(G^{2n}_{\text{ext}} q \land G'(q \rightarrow \varphi))$ are exactly those satisfying $G^{2n} \varphi$. That is, for any model \mathcal{M} such that $\mathcal{M} \models (G^{2n}_{\text{ext}} q \land G'(q \rightarrow \varphi))$ it holds that $\mathcal{M} \models G^{2n} \varphi$, and for every model \mathcal{M} such that $\mathcal{M} \models G^{2n} \varphi$ it holds that $\mathcal{M}' \models (G^{2n}_{\text{ext}} q \land G'(q \rightarrow \varphi))$, where \mathcal{M}' differs from \mathcal{M} only in the fact that $\mathcal{I}(q) = \{w_0, w_2, w_4, \ldots\}$. Logically, this projection operation amounts to existential quantification on temporal propositions or sets of points:

$$G^{2n} \varphi \leftrightarrow \exists q (G^{2n}_{\text{ext}} q \land G'(q \rightarrow \varphi))$$

$$(G^{2n} \varphi)(t_0) \leftrightarrow \exists q ((G^{2n}_{\text{ext}} q)(t_0) \land \forall t \geq t_0 (q(t) \rightarrow \varphi(t)))$$

The language used in the first of these formulas is called quantified temporal logic qTL [Sistla 1983], the language of the second item is monadic second order logic MSOL.

$$\begin{align*}
qTL & := \mathcal{P} \mid \mathcal{Q} \mid \bot \mid (qTL \rightarrow qTL) \mid (qTL \lor qTL) \mid (qTL \lor qTL) \mid \exists q qTL \\
MSOL & := \mathcal{P}(\mathcal{T}) \mid \mathcal{Q}(\mathcal{T}) \mid \bot \mid (MSOL \rightarrow MSOL) \mid R^+(\mathcal{T}, \mathcal{T}) \mid \exists T MSOL \mid \exists q MSOL
\end{align*}$$

To define this syntax, we used another syntactic category $\mathcal{Q} = \{q, q_0, \ldots\}$ of proposition variables. Any valuation in a model \mathcal{V} assigns a set $v(q) \subseteq U$ to each of these (second order) variables. The formula $\exists q \varphi$ is valid in a model $\mathcal{M} = (U, I, v)$ if it is valid in some model $\mathcal{M}' = (U, I, v')$ which differs from \mathcal{M} at most in the valuation of the proposition variable $q \in \mathcal{Q}$.

It is easy to lift the expressive completeness theorem 2.4 to second order.

3.2. Lemma. On natural models, qTL has the same expressiveness as MSOL.

Proof: In the proof of Theorem 2.4, it was shown how to construct the translation LTL(φ) of a first order formula φ. For any MSOL formula there is an equivalent prenex formula of the form $\sigma q_1 \sigma q_2 \ldots \sigma q_n \psi$, where ψ is a first order formula and each σ is a second order quantifier. Thus, defining $\text{MSOL}(\sigma q_1 \sigma q_2 \ldots \sigma q_n \psi)$ by $\sigma q_1 \sigma q_2 \ldots \sigma q_n \text{LTL}(\psi)$ gives a translation from MSOL into qTL.
3.3. **Lemma.** On natural models, the U^+-operator in qTL is definable by the operators G^+ and X:

$$(\varphi \ U^+ \psi) \leftrightarrow \forall q (G^+(X(\psi \lor \varphi \land q) \rightarrow q) \rightarrow q).$$

Proof: Since this lemma is used several times in subsequent sections, we give a detailed proof. For one direction, assume that $(\varphi \ U^+ \psi)$ is valid in $M \models (U, I, w_0)$. To prove that $M \models \forall q (G^+(X(\psi \lor \varphi \land q) \rightarrow q) \rightarrow q)$, let $I'(q)$ be an arbitrary set of points, and show that $(U, I', w_0) \models (G^+(X(\psi \lor \varphi \land q) \rightarrow q) \rightarrow q)$. In other words, from the assumption $w_0 \models G^+(X(\psi \lor \varphi \land q) \rightarrow q)$ we have to show that $w_0 \models \forall q$. In any natural model satisfying $w_0 \models (\varphi \ U^+ \psi)$, there are $w_1, \ldots, w_n \in U$ such that $w_i \prec w_{i+1}$ for all $0 \leq i < n$, and $\varphi(w_i)$ for all $0 < i < n$, and $w_n \models \psi$. If $w_0 \models G^+(X(\psi \lor \varphi \land q) \rightarrow q)$, then $w_i \models (X(\psi \lor \varphi \land q) \rightarrow q)$ for all $i \geq 0$. Hence, $w_i \models (X(\psi \lor q) \rightarrow q)$ and $w_i \models (X(\varphi \land q) \rightarrow q)$ for all $i \geq 0$. From $w_n \models \psi$ it follows that $w_{n-1} \models X(\psi \lor q)$, $w_{n-1} \models X(\varphi \land q)$, and $w_{n-2} \models (X(\varphi \land q) \rightarrow q)$, where $w_{n-2} \models (X(\varphi \land q) \rightarrow q)$, it follows that $w_{n-2} \models q$. Continuing inductively, we find that $w_i \models q$ for all $0 \leq i < n$. Therefore, $w_0 \models q$.

For the other direction, assume that $w_0 \models \forall q (G^+(X(\psi \lor \varphi \land q) \rightarrow q) \rightarrow q)$ and show that $w_0 \models (\varphi \ U^+ \psi)$. First, we show that there must be some $w > w_0$ satisfying $w \models \psi$. Assume for contradiction that this is not the case. Choose $I(q) \triangleq \{w \mid \text{not } w \geq w_0\}$. In natural models, this is the set $\{w \mid w < w_0\}$. It follows that (i) $w \models q$ for all w such that not $w \geq w_0$, (ii) $w_0 \not\models q$, and (iii) $w \not\models q$ for all $w > w_0$. We show that $(*)$: $w \models (X(\psi \lor \varphi \land q) \rightarrow q)$ for all $w \in U$. According to the contradiction assumption, $w \not\models \psi$ for all $w > w_0$. With (iii), it follows that $w \not\models (\psi \lor \varphi \land q)$ for all $w > w_0$. Hence, $w \not\models X(\psi \lor \varphi \land q)$ for all $w \geq w_0$. As a consequence, $(*)$ holds for all $w \geq w_0$. If not $w > w_0$, then $(*)$ is an immediate consequence of (i). From $(*)$, we infer that $w_0 \models G^+(X(\psi \lor \varphi \land q) \rightarrow q)$. Therefore, $w_0 \models q$, which is a contradiction to (iii).

Let w_1, \ldots, w_n be a set of points such that $w_i \prec w_{i+1}$ for all $0 \leq i < n$, and w_n is the smallest point satisfying ψ (i.e., $w_n \models \psi$ and $w_i \models \neg \psi$ for all $0 < i < n$). If $n = 1$, we are done: in this case $w_0 \models X(\psi \lor \varphi \land q)$, which implies that $w_0 \models (\varphi \ U^+ \psi)$. If $n > 1$, to prove $w_0 \models (\varphi \ U^+ \psi)$ we additionally have to show that $w_i \models \varphi$ for any $0 < i < n$. Substitution of q with $\neg q$ in the assumption yields the following equivalent version: $w_0 \models \forall q (q \rightarrow F^+(q \land X(\psi \lor \varphi \land \neg q)))$. Choose $I(q) \triangleq \{w \mid w_0 \leq w < w_0\}$. It follows that $w_0 \models F^+(q \land X(\psi \lor \varphi \land \neg q))$. That is, there is some $w \in U$ such that $w \models (q \land X(\psi \lor \varphi \land \neg q))$. Since n is minimal, there is no $w \in I(q)$ which satisfies $w \models X(\psi \lor \varphi \land \neg q)$. Therefore, it follows that there is a $w \geq w_0$ such that $w \models (q \land X(\varphi \land \neg q))$. Since w_{i-1} is the only point with $w_{i-1} \models (q \land X \neg q)$ we can conclude that $w_{i-1} \models X(\varphi \land \neg q)$, i.e., $w_i \models \varphi$. 2

As a sideline we remark that this proof does not make essential use of the “past-component” of the G^+-operator; in fact, the same proof holds verbatim if we replace G^+ by G^+ and F^+ by F^+. Thus, a corollary to Lemma 3.3 is $(\varphi \ U^+ \psi) \leftrightarrow \forall q (G^+(X(\psi \lor \varphi \land q) \rightarrow q) \rightarrow q)$. (Since F^+ is somewhat more specific than F^+ this could be considered as a somehow weaker result.)
The characterization of the \mathbf{U}^+-operator with second order quantification is a special case of the general scheme $\forall q\forall^+ \mathbf{G}^+(\xi \rightarrow q)$, where $\xi \triangleq X(\psi \lor \varphi \land q)$. Dually, the operator $(\varphi \mathbf{W}^+ \psi) \triangleq \neg(\neg\psi \mathbf{U}^- (\neg(\varphi \lor \psi)))$ is characterized by
\[
(\varphi \mathbf{W}^+ \psi) \leftrightarrow \neg \forall q \forall^+ \mathbf{G}^+ (X((\neg\varphi \land \neg\psi) \lor (\neg\psi \land \varphi)) \rightarrow q) \\
\leftrightarrow \exists q (\neg q \land \mathbf{G}^+(X((\neg\varphi \land \neg\psi) \lor (\neg\psi \land \varphi)) \rightarrow q)) \\
\leftrightarrow \exists q (\neg q \land \mathbf{G}^+(\neg q \rightarrow \neg X((\neg\varphi \land \neg\psi))) \\
\leftrightarrow \exists q (\neg q \land \mathbf{G}^+(\neg q \rightarrow \neg \mathbf{X}(\psi \lor (\varphi \land q)))) \\
\leftrightarrow \exists q (\neg q \land \mathbf{G}^+(q \rightarrow \mathbf{X}(\psi \lor (\varphi \land q)))
\]
This is an instance of the dual scheme $\exists q (q \land \mathbf{G}^+(q \rightarrow \xi))$ with $\xi \triangleq \mathbf{X}(\psi \lor \varphi \land q)$.

For complexity reasons, it is not always advisable to allow quantifiers on arbitrary subsets of the universe U. Therefore, we introduce fixpoint quantification: quantification on sets which follows these schemes. This results in the propositional μ-calculus $\mu\mathbf{TL}$ [Emerson and Clarke 1980, Pratt 1981, Kozen 1983, Kozen and Parikh 1983]:

$$\mu\mathbf{TL} := \mathcal{P} \mid \mathcal{Q} \mid \bot \mid (\mu\mathbf{TL} \rightarrow \mu\mathbf{TL}) \mid \langle R \rangle \mu\mathbf{TL} \mid \nu Q \mu\mathbf{TL}.$$

The semantics of $\mu\mathbf{TL}$ can be defined by a translation into MSOL.

- $\text{MSOL}(\varphi)$ is defined as in $\text{FOL}(\varphi)$, for the cases $p \in \mathcal{P}$, \bot, $(\psi_1 \rightarrow \psi_2)$, and $\langle R \rangle \psi$
- $\text{MSOL}(q) \triangleq q(t_0)$, if $q \in \mathcal{Q}$
- $\text{MSOL}(\nu q \varphi) \triangleq \exists q(q(t_0) \land \forall t(q(t) \rightarrow \text{MSOL}(\varphi\{t_0 := t\})).$

Recall that $\varphi\{t_0 := t\}$ denotes the formula which is formed from φ by replacing every free occurrence of t_0 by t. Similarly, $\varphi\{q := \psi\}$ denotes the formula which results from φ by replacing every free occurrence of q with ψ. The formula $\nu q \varphi$ is short for $\neg \forall q (\neg \varphi\{q := \neg q\}).$ Thus, the translation of $\nu q \varphi$ evaluates to

- $\text{MSOL}(\nu q \varphi) \equiv \forall q (\neg (q(t_0) \land \forall t(q(t) \rightarrow \neg \text{MSOL}(\varphi\{t_0 := t\}))))$

In this chapter, we use ν as basic operator and μ as a defined operator, since the semantics of ν is a restricted existential quantification on sets of points, and μ is a restricted universal second order quantifier. However, $(\varphi \mathbf{U}^+ \psi)$, which is defined by an existential first order clause, is often associated with a μ-formula: when interpreting $\mu\mathbf{TL}$ on natural models, we use the operator X for the unique diamond operator $\langle R \rangle$. With this notation, Lemma 3.3 can be reformulated as follows.

3.4. Corollary. For any natural model \mathcal{M},

$$\mathcal{M} \models (\varphi \mathbf{U}^+ \psi) \iff \mathcal{M} \models \nu q \ X(\psi \lor \varphi \land q)$$

Proof: With Lemma 3.3, the equivalence follows almost immediately from the definitions.
\[\text{MSOL}(\mu q X(\psi \lor \varphi \land q)) = \forall q(\forall t(\text{MSOL}(X(\psi \lor \varphi \land q)) \{t_0 := t \rightarrow q(t) \rightarrow q(t_0)\))
\]
\[= \text{MSOL}(\forall q(G^\varphi(X(\psi \lor \varphi \land q) \rightarrow q)))
\]
\[\leftrightarrow \text{FOL}(\forall U^\varphi) \quad \text{(according to Lemma 3.3)} \]

Corollary 3.4 does not hold for more general Kripke models. In natural models, other operators can be characterized by similar \(\mu \text{TL} \) formulas:

\[
\mathcal{M} \models F^+ \psi \quad \text{iff} \quad \mathcal{M} \models \mu q \ X(\psi \lor q)
\]
\[
\mathcal{M} \models (\varphi W^+ \psi) \quad \text{iff} \quad \mathcal{M} \models \nu q \ \Box(\psi \lor \varphi \land q)
\]
\[
\mathcal{M} \models G^+ \psi \quad \text{iff} \quad \mathcal{M} \models \nu q \ (\psi \land \Box q)
\]
\[
\mathcal{M} \models (\varphi U^+ \psi) \quad \text{iff} \quad \mathcal{M} \models \mu q \ (\psi \lor \varphi \land X q)
\]

Similarly, on tree models all \(\text{CTL} \) operators can be defined by \(\mu \text{TL} \) formulas. The same holds for most other programming logics which can be found in the literature. A formal justification of this statement will be given below in Theorem 5.10.

For certain formulas, an alternative semantical description of the \(\nu \) and \(\mu \) quantifiers in terms of greatest and least fixed points can be given. A function \(f : 2^U \rightarrow 2^U \) is called monotonic, if \(P \subseteq Q \) implies that \(f(P) \subseteq f(Q) \). A set \(Q \subseteq U \) is called a fixed point of \(f \), if \(Q = f(Q) \).

Let \(\mathcal{gfp}(f) = \bigcup \{ Q \mid Q \subseteq f(Q) \} \) and \(\mathcal{lfp}(f) = \bigcap \{ Q \mid f(Q) \subseteq Q \} \). The Knaster-Tarski fixpoint theorem [Tarski 1955] states that if \(f \) is monotonic, then \(\mathcal{gfp}(f) \) and \(\mathcal{lfp}(f) \) are the greatest and least fixed point of \(f \).

3.5. Theorem (Knaster-Tarski). Let \(f : 2^U \rightarrow 2^U \) be monotonic. Then

\begin{enumerate}
\item \(\mathcal{gfp}(f) = f(\mathcal{gfp}(f)) \) and \(\mathcal{lfp}(f) = f(\mathcal{lfp}(f)) \), and
\item If \(Q = f(Q) \), then \(Q \subseteq \mathcal{gfp}(f) \) and \(\mathcal{lfp}(f) \subseteq Q \).
\end{enumerate}

Proof: Since \(\mathcal{gfp} \) and \(\mathcal{lfp} \) are dual, it suffices to prove the theorem for \(\mathcal{gfp} \).

If \(Q = f(Q) \), then \(Q \subseteq f(Q) \). If \(Q \subseteq f(Q) \), then \(Q \in \{ Q \mid Q \subseteq f(Q) \} \), that is, \(Q \subseteq \bigcup \{ Q \mid Q \subseteq f(Q) \} = \mathcal{gfp}(f) \). This proves (b). Furthermore, since \(f \) is monotonic, it implies that \(f(Q) \subseteq f(\mathcal{gfp}(f)) \). Hence for each \(Q \), if \(\mathcal{gfp}(f) \subseteq f(\mathcal{gfp}(f)) \) then \(\mathcal{gfp}(f) \subseteq f(\mathcal{gfp}(f)) \) by transitivity of set inclusion. Since each individual \(Q \) is a subset of \(f(\mathcal{gfp}(f)) \), this means that \(\bigcup \{ Q \mid Q \subseteq f(Q) \} \subseteq f(\mathcal{gfp}(f)) \), i.e., \(\mathcal{gfp}(f) \subseteq f(\mathcal{gfp}(f)) \). This is one part of (a). Now, we use this result to infer the converse inclusion of (a): since \(f \) is monotonic, \(f(\mathcal{gfp}(f)) \subseteq f(f(\mathcal{gfp}(f))) \). Thus, \(f(\mathcal{gfp}(f)) \subseteq f(\mathcal{gfp}(f)) \), which means \(f(\mathcal{gfp}(f)) \subseteq \bigcup \{ Q \mid Q \subseteq f(Q) \} \). Therefore, \(f(\mathcal{gfp}(f)) \subseteq \mathcal{gfp}(f) \).

In fact, this proof shows that the second part of the theorem can be strengthened.

3.6. Corollary. If \(f : 2^U \rightarrow 2^U \) is monotonic, then

\begin{itemize}
\item \(Q \subseteq f(Q) \) implies \(Q \subseteq \mathcal{gfp}(f) \), and
\item \(f(Q) \subseteq Q \) implies \(\mathcal{lfp}(f) \subseteq Q \).
\end{itemize}

For a more detailed discussion of other fixpoint theorems, see [Davey and Priestley 1990, Gunter and Scott 1990].
In a frame $\mathcal{F} = (U, \mathcal{I})$, any formula φ defines a set $\varphi^\mathcal{F} \subseteq U$ of points in the universe, namely $\varphi^\mathcal{F} \triangleq \{ w \mid (U, \mathcal{I}, w) \models \varphi \}$. Likewise, a formula φ with a free proposition variable q defines a function $\varphi^\mathcal{F}_q : U \to U$ from sets of points to sets of points (a predicate transformer): if $Q \subseteq U$, then $\varphi^\mathcal{F}_q(Q) \triangleq \{ w \mid (U, \mathcal{I}', w) \models \varphi \}$, where \mathcal{I}' differs from \mathcal{I} only in $\mathcal{I}'(q) \triangleq Q$.

3.7. Lemma. $(\nu q \varphi)^\mathcal{F} = gfp(\varphi^\mathcal{F}_q)$ and $(\mu q \varphi)^\mathcal{F} = lfp(\varphi^\mathcal{F}_q)$.

Proof: According to the definitions, $w \in gfp(\varphi^\mathcal{F}_q)$ iff $w \in \bigcup \{ Q \mid Q \subseteq \varphi^\mathcal{F}_q(Q) \}$, that is, if there is some $Q \subseteq U$ such that $w \in Q$ and $Q \subseteq \varphi^\mathcal{F}_q(Q)$. In MSOL this condition can be denoted as $w \models \exists q(t_0) \land \forall t(q(t) \rightarrow \text{MSOL}(\varphi(t_0 := t)))$. This clause is exactly the semantical translation $\text{MSOL}(\nu q \varphi$; thus $w \in gfp(\varphi^\mathcal{F}_q)$ iff $w \models \nu q \varphi$. For $lfp(\varphi^\mathcal{F}_q)$, the dual proof holds.

We say that a formula φ is monotonic in q, if the corresponding predicate transformer $\varphi^\mathcal{F}_q$ is monotonic. In other words, φ is monotonic in q iff $(\psi_1 \rightarrow \psi_2) \models \varphi[q := \psi_1] \rightarrow \varphi[q := \psi_2]$ holds. φ is monotonic, if for each sub-formula $\nu q \psi$, the formula ψ is monotonic in q. Call an occurrence of a proposition variable q in a formula φ positive or negative, if it is under an even or odd number of negations. Formally, this notion is defined recursively: q is positive in the formula φ. An occurrence of q in the formula $(\varphi \rightarrow \psi)$ is positive, if it is a negative occurrence in φ or a positive occurrence in ψ, and negative, if it is a positive occurrence in φ or a negative occurrence in ψ. An occurrence of q in $(R)\varphi$ and $\forall q \varphi$ is positive or negative, if it is positive or negative in φ, respectively. A formula φ is called positive in q, if every free occurrence of q in φ is positive. It is positive, if each sub-formula $\nu q \psi$ is positive in q.

3.8. Lemma. If φ is positive in q, then $\varphi^\mathcal{F}_q$ is a monotonic predicate transformer.

Proof: This statement can be proved by induction on the structure of φ. The inductive basis, namely formulas which are atomic propositions, proposition variables or boolean constants, is immediate. For the inductive step, assume that $P \subseteq Q$. If $(\varphi \rightarrow \psi)$ is positive in q, then ψ must be positive and φ must be negative in q. Therefore, $\neg \varphi$ is positive in q. The induction hypothesis is that $\psi^\mathcal{F}_q(P) \subseteq \psi^\mathcal{F}_q(Q)$ and $\neg \psi^\mathcal{F}_q(P) \subseteq \neg \psi^\mathcal{F}_q(Q)$. From this we can infer that $\varphi^\mathcal{F}_q(Q) \subseteq \varphi^\mathcal{F}_q(P)$. Therefore, if $\varphi^\mathcal{F}_q(P) \subseteq \psi^\mathcal{F}_q(P)$ then $\varphi^\mathcal{F}_q(Q) \subseteq \psi^\mathcal{F}_q(Q)$. This follows from $\varphi^\mathcal{F}_q(Q) \subseteq \psi^\mathcal{F}_q(P) \subseteq \psi^\mathcal{F}_q(Q)$. In other words, $(\varphi \rightarrow \psi)^\mathcal{F}_q(P) \subseteq (\varphi \rightarrow \psi)^\mathcal{F}_q(Q)$. For the case $(R)\varphi$, the induction hypothesis is that $\varphi^\mathcal{F}_q(P) \subseteq \varphi^\mathcal{F}_q(Q)$. Then, $\{ w \mid \exists w'(w, w') \in \mathcal{I}(R) \land w' \in \varphi^\mathcal{F}_q(P) \} \subseteq \{ w \mid \exists w'(w, w') \in \mathcal{I}(R) \land w' \in \varphi^\mathcal{F}_q(Q) \}$. In other words, $(\langle R \rangle \varphi)^\mathcal{F}_q(P) \subseteq (\langle R \rangle \varphi)^\mathcal{F}_q(Q)$. Similarly, for formulas $\nu \mu q \varphi$, where q and q' are different variables, the induction hypothesis is that $\varphi^\mathcal{F}_{\nu \mu q \psi}(P) \subseteq \varphi^\mathcal{F}_{\nu \mu q \psi}(Q, X)$ for all X. Therefore, $X \subseteq (\langle R \rangle \varphi)^\mathcal{F}_{\nu \mu q \psi}(P, X)$ implies $X \subseteq (\langle R \rangle \varphi)^\mathcal{F}_{\nu \mu q \psi}(Q, X)$ for all X. Consequently, $\{ w \mid \exists w \in X \} \subseteq \varphi^\mathcal{F}_{\nu \mu q \psi}(P, X)$ implies $\{ w \mid \exists w \in X \} \subseteq \varphi^\mathcal{F}_{\nu \mu q \psi}(Q, X)$. According to the definition, this is the semantics of
$(\nu q')^P_\phi (P) \subseteq (\nu q')^Q_\phi (Q)$. The last case is $\nu q' \phi$. Since this formula has no free occurrence of variable q, its denotation $(\nu q')^P_\phi$ is a constant function. Trivially, constant functions are monotonic.

The converse of this statement does not hold in general. In particular, [Ajtai and Gurevich 1987] shows that there is a formula which is monotonic on all finite structures but has no positive equivalent.

3.9. **COROLLARY.** If ϕ is positive, then

- $\models (\nu q' \phi \leftrightarrow \varphi (q := \nu q \phi))$ and $\models (\mu q \phi \leftrightarrow \varphi (q := \mu q \phi))$.
- If $(U, I) \models (\chi \leftrightarrow \varphi (q := \chi))$ then both $(U, I) \models (\chi \rightarrow \nu q \phi)$ and $(U, I) \models (\mu q \phi \rightarrow \chi)$.
- $(U, I) \models (\chi \rightarrow \varphi (q := \chi))$ implies $(U, I) \models (\chi \rightarrow \nu q \phi)$, and $(U, I) \models (\varphi (q := \chi) \rightarrow \chi)$ implies $(U, I) \models (\mu q \phi \rightarrow \chi)$.

PROOF: If ϕ is positive in q, then φ^P_q is monotonic according to Lemma 3.8. Theorem 3.5 asserts that $gbody(\varphi^P_q) = \varphi^P_q (gbody(\varphi^P_q))$. In the notation of Lemma 3.7, this means $(\nu q \varphi)^P = \varphi^P_q ((\nu q \varphi)^P)$. Moreover, $\varphi^P_q ((\nu q \varphi)^P) = (\varphi_q (q := \nu q \varphi))^P$. Therefore, $\mathcal{M} \models (\nu q \phi \leftrightarrow \varphi (q := \nu q \phi))$. The other statements are shown similarly.

According to Corollary 3.4, $(\phi \mathbf{U}^+ \psi)$ and $(\varphi \mathbf{W}^+ \psi)$ in natural models are least and greatest fixed points of $\mathbf{X}(\psi \vee \varphi \land q)$ and $\mathbf{B}(\psi \vee \varphi \land q)$, respectively. Therefore, the following recursion and induction axioms hold:

- $\models (\phi \mathbf{U}^+ \psi) \leftrightarrow \mathbf{X}(\psi \vee \varphi \land (\phi \mathbf{U}^+ \psi))$ and $\models (\phi \mathbf{W}^+ \psi) \leftrightarrow \mathbf{B}(\psi \vee \varphi \land (\phi \mathbf{W}^+ \psi))$.
- $(U, I) \models (\mathbf{X}(\psi \vee \varphi \land \chi) \rightarrow \chi)$ implies $(U, I) \models ((\phi \mathbf{U}^+ \psi) \rightarrow \chi)$, and $(U, I) \models (\chi \rightarrow \mathbf{B}(\psi \vee \varphi \land \chi))$ implies $(U, I) \models (\chi \rightarrow (\phi \mathbf{W}^+ \psi))$.

In particular, for \mathbf{F}^+, \mathbf{G}^+, \mathbf{F}^* and \mathbf{G}^*, we have

- $\models (\mathbf{F}^+ \psi) \leftrightarrow \psi \vee \mathbf{F}^+ \psi$ and $\models (\mathbf{G}^+ \phi) \leftrightarrow \phi \land \mathbf{G}^+ \phi$.
- $\models (\mathbf{F}^* \psi) \leftrightarrow (\psi \land \mathbf{X} \mathbf{F}^* \psi)$ and $\models (\mathbf{G}^* \phi) \leftrightarrow (\phi \land \mathbf{B} \mathbf{G}^* \phi)$.
- $(U, I) \models (\mathbf{F}^+(\psi \land \chi) \rightarrow \chi)$ implies $(U, I) \models ((\mathbf{F}^+ \psi) \rightarrow \chi)$, and $(U, I) \models (\chi \rightarrow \mathbf{B}(\psi \land \chi))$ implies $(U, I) \models (\chi \rightarrow (\phi \mathbf{W}^+ \psi))$.
- $(U, I) \models (\mathbf{G}^+(\psi \land \chi) \rightarrow \chi)$ implies $(U, I) \models ((\mathbf{F}^* \psi) \rightarrow \chi)$, and $(U, I) \models (\chi \rightarrow (\phi \land \mathbf{G}^+ \chi))$ implies $(U, I) \models (\chi \rightarrow (\phi \mathbf{G}^+ \psi))$.

As we have shown, positive $\mu \mathbf{TL}$ formulas denote greatest or least fixed points of predicate transformers. For nonmonotonic formulas, the existence of fixed points is not granted. For example, there is no $Q \subseteq U$ satisfying $Q = U \setminus Q$; thus, there is no fixed point of $(-q)^P$. However, the \mathbf{MSOL} semantics of $\nu q \neg q$ is $\exists q(q(t_0) \land \forall t(q(t) \rightarrow -q(t)))$, which is equivalent to the well-defined value \bot. On general Kripke-models, positive $\mu \mathbf{TL}$ is strictly weaker in expressiveness than unrestricted $\mu \mathbf{TL}$. Even unrestricted $\mu \mathbf{TL}$ can, in turn, express fewer properties of Kripke models than monadic second order logic.
3.10. Lemma. Consider the class of all Kripke models.
(a) There is no positive μTL formula which is equivalent to νq((R) → q).
(b) There is no μTL formula which is equivalent to ∀νp(t).

Proof: For (a), consider \(\varphi \models \nu q((R) \rightarrow q) \). Then \(\text{MSOL}(\varphi) = 3q(q(t_0) \land \forall t(q(t) \rightarrow \exists t'(tRt' \land t_0 \neq t)) \). This formula is equivalent to the first order condition \(\exists t(t_0Rt \land t_0 \neq t) \); in one direction, if there is some \(q \) such that \(w \in I(q) \) and \(w \models \forall t(q(t) \rightarrow \exists t'(tRt' \land \neg q(t'))) \), then there must be a point reachable from \(w \) which is not in \(I(q) \), i.e., different from \(w \). For the reverse implication, assume that \(w \models \exists t(t_0Rt \land t_0 \neq t) \) and let \(I(q) = \{ w \} \). Then \(w \models q(t_0) \) and \(w \models \forall t(q(t) \rightarrow \exists t'(tRt' \land \neg q(t'))) \).

Therefore, \(w \models \varphi \).

There is no positive formula which can express this property: consider the frame \(F \triangleq (U, I) \), where \(U \triangleq \{ w_0, w_1 \} \), \(I(R) \triangleq \{ (w_0, w_0), (w_0, w_1), (w_1, w_1) \} \) and \(I(p) = \{ \} \) for all \(p \in \mathcal{P} \). Then \(w_0 \models \varphi \) and \(w_1 \not\models \varphi \). For each positive formula \(\psi \), however, it holds that \(w_0 \models \psi \) iff \(w_1 \not\models \psi \). To prove this, we show by induction on the structure of \(\psi \) that \(\psi^F = \{ \} \) or \(\psi^F = U \). For propositional formulas, this is immediate; the case \((R) \psi \) follows from the definition of \(F \). The only remaining case are formulas \(\nu q \psi \). According to the induction hypothesis, either \((\psi(q := \top))^F = \{ \} \) or \((\psi(q := \top))^F = U \). In the first case, from the fact that \((\nu q \psi)^F \subseteq \top^F \) and monotonicity of \(\psi \) we infer that \((\psi(q := \nu q \psi))^F \subseteq (\psi(q := \top))^F = \{ \} \). The first part of Theorem 3.5 implies that \((\nu q \psi)^F \subseteq (\psi(q := \nu q \psi))^F \); therefore, \((\nu q \psi)^F = \{ \} \). In the second case, \(U = \top^F = (\psi(q := \top))^F \). With the second part of Theorem 3.5, it follows that \(\top^F \subseteq (\nu q \psi)^F \), i.e., \((\nu q \psi)^F = U \).

Statement (b) holds since the truth of μTL formulas is preserved under disjoint unions of models, whereas \(\varphi \models \forall \nu p(t) \) can be invalidated by adding an isolated point \(w \) with \(w \not\models p \). Formally, consider the models \(M_0 \triangleq (U_0, I, w_0) \) and \(M_1 \triangleq (U_1, I, w_0) \), where \(U_0 \triangleq \{ w_0 \} \), \(U_1 \triangleq \{ w_0, w \} \), \(I(R) \triangleq \{ \} \) and \(I(p) \triangleq I(q) \triangleq \{ w_0 \} \). Then \(M_0 \models \varphi \) and \(M_1 \not\models \varphi \), whereas for each μTL formula \(\psi \) it holds that \(M_0 \models \psi \) iff \(M_1 \models \psi \). As above, the only interesting case is \(\nu q \psi \). If \(M_0 \models \nu q \psi \), then \(q_0 \models \psi \), which implies \(M_1 \models \nu q \psi \). In the other direction, \(M_1 \models \nu q \psi \) implies that either \(M_1 \models \psi \) or \(M_1' \triangleq (U_1, I_1, w_0) \models \psi \), where \(I_1(q) = U_1 \). In the first case, \(M_0 \models \nu q \psi \) follows directly. In the second case, \(M_1 \models \psi(q := \top) \), which implies \(M_0 \models \psi(q := \top) \) by the induction hypothesis. From this, it follows that \(M_0 \models \nu q \psi \).

If the model is connected (that is, \(\forall w, w'(w < w' \land w' = w' \land w > w') \)), there is always a point reachable from the current point. In this case, the operator \(\mathbb{G}^+ \) (the universal modality) can replace the first-order universal quantifier: \(M \models \forall \nu p(t) \) iff \(M \models \mathbb{G}^+ p \). In this case,

\[
M \models \nu q \varphi \quad \text{iff} \quad M \models \exists q(q \land \mathbb{G}^+(q \rightarrow \varphi))
\]

\[
M \models \mu q \varphi \quad \text{iff} \quad M \models \forall q(\mathbb{G}^+(\varphi \rightarrow q) \rightarrow q).
\]

Hence, on connected models (and, in particular, on natural models) μTL is at most as expressive as qTL (and MSOL). Since μTL does not contain any past-operators, there is no μTL formula which is equivalent to \(F^- \top \) Subsequently, however, we will
show that for initial validity in natural models a translation from \(\mathsf{qTL} \) (or \(\mu \mathsf{TL} \)) into positive \(\mu \mathsf{TL} \) exists. Since the proof uses \(\omega \)-regular languages and \(\omega \)-automata, it is postponed to subsection 3.4.

3.3. \(\omega \)-automata and \(\omega \)-languages

Given a (finite or infinite) natural model \(M \equiv (U, I, w_0) \), the interpretation \(I \) defines a mapping \(I : P \to 2^U \) from propositions into subsets of the universe. Define a labelling function \(\mathcal{L} : U \to 2^P \) by

\[
p \in \mathcal{L}(w) \quad \text{iff} \quad w \in I(p)
\]

That is, \(\mathcal{L}(w) \equiv \{ p \mid w \in I(p) \} \) is the label of point \(w \in U \). If \(U = (w_0, w_1, w_2, \ldots) \), then the sequence \(\sigma = (\mathcal{L}(w_0), \mathcal{L}(w_1), \mathcal{L}(w_2), \ldots) \) is called the \(\omega \)-word of \(M \) over the alphabet \(\Sigma \equiv 2^P \). A set of \(\omega \)-words is called an \(\omega \)-language.

Let \(F \equiv (U, I) \) be the frame of a natural model. Formula \(\varphi \) is initially valid in \(F \), if \((U, I, w_0) \models \varphi \), where \(w_0 \) is the unique initial point of \(U \) (which has no predecessors). For any such frame \(F \) it holds that \(\varphi \) is universally valid iff \(G \varphi \) is initially valid, and \(\varphi \) is initially valid iff \((G^* \perp \rightarrow \varphi) \) is universally valid.

We say that a linear-time logic formula defines the set of all natural frames in which it is initially valid. Thus every such formula defines the \(\omega \)-language given by these frames. We now show that in order to define languages by formulas it suffices to restrict attention to the future fragment of temporal logic. The separation Lemma 2.6 states that any \(\mathsf{LTL} \)-formula can be separated into a boolean combination of pure future, pure present and pure past formulas. It can be extended to \(\mathsf{qTL} \):

3.11. Lemma. \(\mathsf{qTL} \) has the separation property on natural models.

Proof: Note that the formula \(\exists q(\varphi \lor \psi) \iff (\exists q \varphi \lor \exists q \psi) \) is valid. Moreover, if \(\varphi_1, \ldots, \varphi_n \) are pure past, \(\psi_1, \ldots, \psi_m \) are pure present and \(\chi_1, \ldots, \chi_l \) are pure future, then \(\exists q(\bigwedge_1 \varphi_i \land \bigwedge_1 \psi_j \land \bigwedge_1 \chi_k) \) is equivalent to \((\exists q \bigwedge_1 \varphi_i \land \exists q \bigwedge_1 \psi_j \land \exists q \bigwedge_1 \chi_k) \). Informally, this can be seen as follows: \(\exists q(\varphi \land \psi) \rightarrow (\exists q \varphi \land \exists q \psi) \) is a tautology. In the other direction, assume that the past-formulas \(\varphi_1, \ldots, \varphi_n \) are valid in the model \((U, I, w_0) \) where \(I(q) \equiv Q_1 \), the present-formulas \(\psi_j \) are valid with \(I(q) \equiv Q_2 \), and the future-formulas \(\chi_k \) are valid if \(I(q) \equiv Q_3 \), then the conjunction of past, present and future part is valid if \(I(q) \equiv \{ w \mid w < w_0 \} \cap Q_1 \cup \{ w \mid w_0 \cap Q_2 \} \cup \{ w \mid w > w_0 \} \cap Q_3 \).

Now assume that \(\varphi \equiv \exists q \psi \), and show that there is an equivalent separated formula. The induction hypothesis is that for \(\psi \) there exists an equivalent formula \(\psi' \) which is a boolean combination of pure future, past and present formulas. Let \(\psi'^n \equiv \bigvee (\varphi_i \land \psi_j \land \chi_k) \) be \(\psi' \) in disjunctive normal form, where all \(\varphi_i \) are pure past, \(\psi_j \) pure present and \(\chi_k \) pure future. Applying the above formulas we see that \(\exists q \psi'^n \iff \bigvee \bigwedge (\exists q \varphi_i \land \exists q \psi_j \land \exists q \chi_k) \). This formula is separated and equivalent to \(\varphi \).
3.12. Lemma. For any LTL or qTL formula φ there exists an LTL or qTL future formula (without U^*-operators) defining the same language.

Proof: Given a separated formula φ, let φ^+ be the formula φ where every subformula $(\varphi U^* \psi)$ is replaced by \perp. Then φ is initially valid in any natural model M iff ψ^+ is initially valid in M. Thus φ and φ^+ define the same language.

Languages can also be defined by (ω-)regular expressions and by finite (ω-) automata.

The language of (ω-)regular expression is defined similar to the language of usual regular expressions, with an additional operation denoting infinite repetition of a subexpression.

- Every letter from the alphabet is an ω-regular expression.
- If α and β are ω-regular expressions, then so are ε, $(\alpha + \beta)$, $(\alpha; \beta)$ and α^+.
- If α is an ω-regular expression, then so is α^ω.

Every ω-regular expression defines an ω-language: the letter $a \in P$ defines $\{(a)\}$, i.e., a one-word language (one-element set) consisting of a one-letter word (one-element sequence). ε denotes the empty language, and $(\alpha + \beta)$, $(\alpha; \beta)$ and α^+ denote union, sequential composition and finite iteration of languages. α^ω denotes the language of all words consisting of an infinite concatenation of words from α.

A language is called ω-regular if it can be defined by an ω-regular expression.

We use boolean terms over P to denote (unions of) letters. For example, if $P = \{p_1, p_2\}$ then $\neg p_1 \land p_2$ denotes the letter $\{p_2\}$, and $(\neg p_1 \lor p_2)$ denotes $\{\} + \{p_2\} + \{p_1, p_2\}$.

As an example for an ω-regular expression, consider $(\neg p_1)\omega + (p_1 + p_2)\omega$. This expression defines the set of all infinite words $(\sigma_0, \sigma_1, \sigma_2, \ldots)$ such that either for all i it holds that $p_1 \not\in \sigma_i$, or for infinitely many i it holds that $p_2 \in \sigma_i$. That is, it defines the set of natural models M such that $M \models G^\omega (\neg p_1 \land X \top) \lor G^\omega F^\omega p_2$. Since this formula implies $G^\omega X \top$, each of its natural models must be infinite.

An ω-automaton or fair transition system over the alphabet $\Sigma = 2^P$ is defined like a usual (nondeterministic) automaton with an additional recurrence set (“fairness constraint”); it is a tuple $(S, \Delta, S_0, S_{acc}, S_{rec})$, where

- S is a set of states,
- $\Delta \subseteq S \times \Sigma \times S$ is the transition relation,
- $S_0 \subseteq S$ is the set of initial states,
- $S_{acc} \subseteq S$ is the set of accepting states (for finite words), and
- $S_{rec} \subseteq S$ is the set of recurring states (for infinite words).

A Büchi-automaton is a finite ω-automaton, that is, a fair transition system where the set S of states is finite. A transition system (or labelled transition system) is a fair transition system where $S_{acc} = S_{rec} = S$. A weakly fair transition system is an ω-automaton where $S_{rec} = S$ and $S_{acc} = \{s \mid \forall u, s'(s, a, s') \not\in \Delta\}$. That is, in a weakly fair transition system all states are recurring, and states are accepting if
they are terminal. Usually, when talking about labelled and weakly fair transition systems, we omit the redundant components \(S_{acc} \) and \(S_{rec} \).

A (finite or infinite) nonempty word \(\sigma \equiv (\sigma_0, \sigma_1, \ldots) \) is accepted by an automaton \((S, \Delta, S_0, S_{acc}, S_{rec})\), if there is a function \(\rho \) assigning to any \(i < |\sigma| \) a state \(\rho(\sigma_i) \in S \) of the automaton such that

- \(\rho(0) \in S_0 \)
- For all \(0 \leq i < n \), \((\rho(i), \sigma_i, \rho(i + 1)) \in \Delta \), and
- \((\rho(n), \sigma_n, s) \in \Delta \) for some \(s \in S_{acc} \), if \(\sigma \) is finite with last letter \(w_n \), and
- \(\inf(\rho) \cap S_{rec} \neq \{\} \), if \(\sigma \) is infinite, where \(\inf(\rho) \) is the set of states that appear infinitely often in the range of \(\rho \). That is, at least one recurring state must be selected infinitely often.

For alternative acceptance conditions, see [Thomas 1990]. We say that an automaton accepts a natural model \(M \), if it accepts the \(\omega \)-word of \(M \). The language of a transition system consists of all paths through the transition graph; this language is prefix-closed (for any word in the language, all of its prefixes are also contained). The language defined by a weakly fair transition system consists of all maximal paths through the graph.

![Büchi automaton](image)

Figure 3. A Büchi automaton accepting \((-p1)^\omega + (T; p2)^\omega\)

As an example of a Büchi-automaton, consider Figure 3. This automaton accepts (i.e., defines) exactly the same language as the example \(\omega \)-regular expression above. In general, for any \(\omega \)-regular expression we can construct such a Büchi-automaton and vice versa; Büchi-automata can define all and only \(\omega \)-regular languages.

3.13. Lemma. \(\omega \)-regular expressions and Büchi-automata are of equal expressive power.

Proof: The proof of this statement is similar as for automata on finite words: for one direction, we have to show that the Büchi acceptance condition can be captured

\[4\] In the literature, a fairness constraint in a transition systems is sometimes defined to be a set of pairs \((s, e) \), where \(s \in S \) is a state and \(e \in \Delta \) is an edge. It imposes the condition that if \(s \) appears infinitely often, then \(e \) must be taken infinitely often in each accepted word. It can be shown that for our purposes these definitions are equivalent. See [Amchitrakul 1995] for the relationships and translations between these two notions for various acceptance conditions.
by an appropriate regular expression. Let \(L(s_i,s_j) \) be a regular expression for the language of finite nonempty words sending an automaton from state \(s_i \) into state \(s_j \). Then the \(\omega \)-regular expression associated with any Büchi-automaton is

\[
\Sigma \{ L(s_0,s) \mid s_0 \in S_0, s \in S_{acc} \} + \Sigma \{ L(s_0,s);L(s,s)^\omega \mid s_0 \in S_0, s \in S_{rec} \}
\]

For the other direction it must be shown that Büchi-automata are closed under single letters, the empty language, union, concatenation, and finite and infinite repetition. All of these constructions are straightforward extensions of the appropriate constructions for automata on finite words [Hopcroft and Ullman 1979].

The automaton resulting from this proof is highly nondeterministic. An automaton is called deterministic, if its transition relation is a function \(\Delta : S \times \Sigma \to S \). For each nondeterministic finite automaton on finite words an equivalent deterministic one is given by the well known powerset construction of Rabin and Scott [Hopcroft and Ullman 1979]. The same holds for finite transition systems. In contrast, for nondeterministic Büchi-automata it is not always possible to construct an equivalent deterministic one. For example, consider the language \(L \) of all words containing only finitely many \(q \). This language is defined by the formula \(F^*G^* \neg p \) or the \(\omega \)-regular expression \((T^+ + (T^+; \neg p^\omega)) \). However, there is no deterministic Büchi-automaton defining \(L \): Assume for contradiction that \(L \) is the language of \(\mathcal{A} \). Then \(\mathcal{A} \) must accept \((\sigma; (\neg p)^\omega)\) for any finite word \(\sigma \). In particular, from any reachable state some recurring state is reached by a finite number of \(\neg p \)-transitions. Let \(m \) be the maximum of these numbers. Therefore, in the run of \(\mathcal{A} \) on the word \((p; (\neg p)^m)^\omega\) infinitely often recurring states are visited. Thus, this word also is accepted by \(\mathcal{A} \). This is a contradiction, since it is not in \(L \).

3.4. Automata and Logics

Büchi [Büchi 1962] showed that his automata are closed under complement; this is a highly nontrivial proof. The best known construction for complementing Büchi-automata was given in [Safra 1988]; it involves an exponential blowup of the number of states of the automaton. More precisely, if \(\mathcal{A} \) has \(n \) states, then it can be shown that the smallest automaton accepting the complement language of \(\mathcal{A} \) in general has \(O(2^{n \log n}) \) states. For more information on the complementation problem for Büchi automata, see [Sistla, Vardi and Wolper 1987, Thomas 1990].

Closure under complement can be used to show that Büchi-automata are at least as expressive as \(qTL \).

3.14. Lemma. For every \(qTL \) formula there is a Büchi-automaton defining the same language.

Proof: According to Lemma 3.12 it suffices to give a translation for formulas without \(\mathcal{U}^* \). An automaton for the proposition \(p \in \mathcal{P} \) is given by the trivial two-state machine \((\{s_0, s_{acc}\}, \Delta, \{s_0\}, \{s_{acc}\}, \{\}\)) where \((s_0, a, s_{acc}) \in \Delta \iff p \in a \). An automaton
for \bot is one which never accepts. From an automaton for φ, an automaton for $X\varphi$ and $F^c\varphi$ can be built by an appropriate prefixing with a single step or loop on the initial states. According to the remark following Lemma 3.3, U^c can be expressed with X, F^c and second order quantification. Implications ($\varphi \rightarrow \psi$) can be written as $(\neg \varphi \lor \psi)$ and thus be reduced to unions and complements. Finally, existential second order quantification amounts to the projection of the automaton onto a smaller alphabet: given an automaton $A = (S, \Delta, S_0, S_{acc}, S_{rec})$ over the alphabet $2^{P\cup Q}$ which accepts the models of φ, the automaton $A'(S, \Delta', S_0, S_{acc}, S_{rec})$ accepts all models of $\exists q \varphi$, where $(s_i, a, s_j) \in \Delta'$ iff $(s_i, a \setminus \{q\}, s_j) \in \Delta$ or $(s_i, a \cup \{q\}, s_j) \in \Delta'$.

In particular, since LTL is a sublanguage of qTL, for every LTL formula there exists a corresponding Büchi-automaton. In Section 7, we will describe a tableau decision procedure, which can be seen as an efficient algorithm to construct a Büchi-automaton from a formula. Other aspects of the connections between temporal logics, monadic logics and automata can be found in [Thomas 1999].

We now show that ω-regular expressions are at most as expressive as μTL:

3.15. Lemma. For every ω-regular expression there exists a μTL-formula describing the same language.

Proof: The proof associates with every ω-regular expression φ a μTL-formula $\mu_{TL}(\varphi)$ with at most one free proposition variable q indicating the end of the sequence.

- $\mu_{TL}(P) \eqdef (\bigwedge_{p \in P} p \land \bigwedge_{p \notin P} \neg p \land q)$, if $P \in 2^P$
- $\mu_{TL}(\bot) \eqdef \bot$
- $\mu_{TL}(\varphi \lor \psi) \eqdef (\mu_{TL}(\varphi) \lor \mu_{TL}(\psi))$
- $\mu_{TL}(\varphi; \psi) \eqdef \mu_{TL}(\varphi)\{q \eqdef X \mu_{TL}(\psi)\}$
- $\mu_{TL}(\varphi^+) \eqdef q_1 (\mu_{TL}(\varphi)\{q \eqdef q \lor X q_1\})$
- $\mu_{TL}(\varphi^-) \eqdef \forall q_1 (\mu_{TL}(\varphi)\{q \eqdef X q_1\})$

If φ defines a language of infinite strings, then $\mu_{TL}(\varphi)$ does not contain any free occurrence of q. However, if φ defines a language of finite strings, then $\mu_{TL}(\varphi)$ contains the free proposition variable q denoting the final point. A finite string is characterized by the fact that in its last point the formula $\mathfrak{X} \bot$ holds. Therefore, the μ_{TL}-formula corresponding to an ω-regular expression φ is defined as $\mu_{TL}(\varphi) \eqdef \mu_{TL}(\varphi)\{q \eqdef \mathfrak{X} \bot\}$. It can be shown that $\mu_{TL}(\varphi)$ defines the same language as the ω-regular expression φ.

As an example, consider the expression $(\neg p1)^\omega + (T^+; p2)^\omega$.

$\mu_{TL}((\neg p1)^\omega + (T^+; p2)^\omega)$

$= \nu q_1 (\mu_{TL}(\neg p1)\{q \eqdef X q_1\}) \lor \nu q_2 (\mu_{TL}(T^+; p2)\{q \eqdef X q_2\})$

$= \nu q_1 ((\neg p1 \land q)\{q \eqdef X q_1\}) \lor \nu q_2 ((\mu_{TL}(T^+)\{q \eqdef X \mu_{TL}(p2)\})\{q \eqdef X q_2\})$

$= \nu q_1 (\neg p1 \land X q_1) \lor \nu q_2 (\mu_{TL}(T^+ \land q)\{q \eqdef q \lor X q_3\}) \lor \nu q_2 (\mu_{TL}(T^+ \land q)\{q \eqdef X \mu_{TL}(p2)\})$
\[= \nu q_1 (\neg p_1 \land X q_1) \lor \nu q_2 (\mu q_3 (X p_2 \lor q) \lor X q_2) \{ q := X q_2 \})
\[= \nu q_1 (\neg p_1 \land X q_1) \lor \nu q_2 (\mu q_3 X (p_2 \lor q_2) \lor q_2))
\[= G'(\neg p_1 \land X \top) \lor G'F^*p_2
\]

This lemma closes the circle in the expressiveness results of second order languages.

3.16. **Theorem (Büchi, Wolper, Sistla).** To define \(\omega \)-languages, the following formalisms are of equal expressive power:

i. \(\mu TL \)

ii. \(qTL \)

iii. \(MSOL \)

iv. Büchi-automata

v. \(\omega \)-regular expressions

Proof: For every \(\mu TL \)-formula there exists an equivalent \(qTL \)-formula by definition; on natural models \(qTL \) is equal in expressiveness to \(MSOL \) by Lemma 3.2; according to Lemma 3.14, for every \(qTL \) (or \(MSOL \)) formula there is a Büchi-automaton defining the set of its models; by Lemma 3.13, Büchi-automata are equivalent to \(\omega \)-regular expressions; and these in turn can be described by \(\mu TL \)-formulas as shown in Lemma 3.15.

Similar results can be proved about logics with past operators on integer models (bi-infinite words) and two-way automata, and about branching time logics (\(\mu TL / qTL \) on tree models) and tree automata (\(\Delta \subseteq S \times 2^P \times (R \times S)^n \)) (see [Niwinski 1988, Thomas 1990, Schlingloff 1992b]).

4. **Model Transformations and Properties**

As we have seen, linear temporal formulas and \(\omega \)-automata both can be used to describe sets of infinite sequences. The practical difference is, that logic tends to be more “descriptive”, specifying what a system should do, whereas automata tend to be more “machine-oriented”, indicating how it should be done. Logical formulas are “global”, they are interpreted on the whole structure, whereas automata are “local”, describing single states and transitions.

Therefore, traditionally automata or related models are used to give an abstract account of the system to be verified, whereas formulas are used to specify properties of these systems. But, since it is possible to translate between automata and formulas and back, this choice is a matter of complexity, of available algorithms and of taste. We could equally well define both system and properties in temporal logic; in this case we would have to prove an implication formula (Section 7 will explain how to do this). Another alternative is that both the implementation and the specification are given as automata, where the latter is more “abstract” than the former. Then we have to prove that one can simulate the other.
In the next sections, we describe various transformations between models such as simulations and refinements, and investigate the preservation of logical properties under these transformations.

4.1. Models, Automata and Transition Systems

The previous section related ω-automata and linear temporal formulas via the ω-language accepted by the automaton and the set of natural models in which the formula is initially valid. There is, however, a more direct connection on the structural level. Let $M = (U, I, w_0)$ be a Kripke-model with predicates from \mathcal{P} and accessibility relations from R. Consider the alphabet $\Sigma = 2^\mathcal{P} \times R$, and let $\sigma = (\sigma_0, \sigma_1, \sigma_2, \ldots)$ be an ω-word, where $\sigma_i = (a_i, R_i)$. We say that σ is generated by M if there exists a mapping ρ from indices of letters of σ into points of U, such that

- $\rho(0) = w_0$,
- if $\rho(i) = w$, then $a_i = L(w)$,
- if $\rho(i) = w$ and $\rho(i + 1) = w'$, then $(w, w') \in I(R_i)$, and
- if σ is finite with last letter σ_n, and $\rho(n) = w$, then w is terminal (i.e., there is no w' such that $w < w'$).

(Recall that $L(w) \equiv \{ p \mid p \in I(w) \}$ is the label of point w.) The fourth condition guarantees that generated words represent maximal paths in the model5. Define the language generated by M to be the set of all ω-words generated by M. With these definitions, Kripke-models can be regarded as weakly fair transition systems for the alphabet $\Sigma = 2^\mathcal{P} \times R$. (Recall that in a weakly fair transition system all states are recurring, and all terminal states are accepting.)

4.1. Lemma. For any Kripke-model $M = (U, I, w_0)$ there exists a weakly fair transition system $M_A = (S, \Delta, S_0)$, such that the language generated by M is equal to the language accepted by M_A.

Proof: To prove this lemma, there are several alternative constructions. One possibility is to define $S \equiv U \cup \{ \text{stop} \}$, where stop is a special accepting state for finite paths. Furthermore, $S_0 \equiv \{ w_0 \}$, and $(w, (P, R), s) \in \Delta$ iff $w \in U$, $L(w) = P$, and either $(w, s) \in I(R)$ or w is terminal and $s = \text{stop}$. Then, M_A accepts exactly the set of all natural models which are generated by M.

Thus, models can be seen as automata. Likewise, formulas can be seen as automata: in the previous section we observed that for every LTL formula there exists an equivalent Büchi-automaton. Since this proof is constructive, it yields a method to obtain such an automaton. However, a much more concise way of constructing it is the tableau construction sketched in Section 7 below.

5Some texts omit this condition, with the consequence that all prefixes of a generated word are also generated. Other authors impose the even stronger condition that all generated words must be infinite; this implies that all points in a model should be non-terminal.
Let φ be an LTL-formula, and \mathcal{M} be a Kripke-model with a single accessibility relation. Then φ is sequence-valid in \mathcal{M} iff the language generated by \mathcal{M} (i.e., the language accepted by the weakly fair transition system \mathcal{M}_A for \mathcal{M}) is a subset of the language accepted by the Büchi-automaton \mathcal{M}_φ for φ. That is,

$$\mathcal{M} \models \varphi \iff L(\mathcal{M}_A) \subseteq L(\mathcal{M}_\varphi).$$

The latter condition is equivalent to $L(\mathcal{M}_A) \cap L(\overline{\mathcal{M}_\neg \varphi}) = \emptyset$, or $L(\mathcal{M}_A \times \mathcal{M}_{\neg \varphi}) = \emptyset$. Here, $\mathcal{M}_1 \times \mathcal{M}_2$ denotes the product of ω-automata, where the product automaton $\mathcal{M}_1 \times \mathcal{M}_2$ accepts an infinite word σ iff each component automaton accepts σ. Formally, if $\mathcal{M}_i \triangleq (S_i, \Delta_i, S_{i,0}, S_{i,\text{acc}}, S_{i,\text{rec}})$ for $i = 1, 2$, then $\mathcal{M}_1 \times \mathcal{M}_2 \triangleq (S, \Delta, S_0, S_{\text{acc}}, S_{\text{rec}})$, where

- $S \triangleq S_1 \times S_2 \times \{1, 2\}$,
- $((s_1, s_2, i), a, (s'_1, s'_2, j)) \in \Delta$ iff $(s_1, a, s'_1) \in \Delta_1$, $(s_2, a, s'_2) \in \Delta_2$, and $i = j$, or $i = 1$ and $s_1 \in S_{1,\text{rec}}$ and $j = 2$, or $i = 2$ and $s_2 \in S_{2,\text{rec}}$ and $j = 1$.
- $S_0 \triangleq S_{1,0} \times S_{2,0} \times \{1\}$,
- $S_{\text{acc}} \triangleq S_{1,\text{acc}} \times S_{2,\text{acc}} \times \{0, 1\}$,
- $S_{\text{rec}} \triangleq S_{1,\text{rec}} \times S_{2,\text{rec}} \times \{2\}.$

Intuitively, the definition of S_{rec} enforces that in an infinite run of $\mathcal{M}_1 \times \mathcal{M}_2$ both a state from $S_{1,\text{rec}}$ and a state from $S_{2,\text{rec}}$ must be visited infinitely often. With this construction, model checking of LTL sequence-validity in finite models reduces to the nonemptiness problem of Büchi-automata: a feasible way to check whether $\mathcal{M} \models \varphi$ is to construct the Büchi-automata \mathcal{M}_A for the model and $\mathcal{M}_{\neg \varphi}$ for $\neg \varphi$, and to check whether the language of the product automaton $\mathcal{M}_A \times \mathcal{M}_{\neg \varphi}$ is empty. This approach is implemented in the SPIN and COSPAN model checking tools [Holzmann 1991, Kurshan 1994].

If both system \mathcal{M} and property φ are given as automata, then “specification” φ can be regarded as a “more abstract version” of the “implementation” \mathcal{M}. We write $\mathcal{M}_I \models \mathcal{M}_S$ if $L(\mathcal{M}_I) \subseteq L(\mathcal{M}_S)$, i.e., if (the language of) \mathcal{M}_I is a subset of (the language of) \mathcal{M}_S. A property φ is defined to be just any ω-language $\varphi \subseteq \Sigma^\omega$, where $\Sigma = 2^p \times R$.

4.2. Theorem. Let \mathcal{M}_1 and \mathcal{M}_2 be Büchi-automata. Then

- $\mathcal{M}_1 \models \mathcal{M}_2$ iff for all properties φ, if $\mathcal{M}_2 \models \varphi$ then $\mathcal{M}_1 \models \varphi$.
- $\mathcal{M}_1 \models \mathcal{M}_2$ iff for all ω-regular φ, if $\mathcal{M}_2 \models \varphi$ then $\mathcal{M}_1 \models \varphi$.

Proof: One direction is immediate by transitivity of the subset relation: if $L(\mathcal{M}_1) \subseteq L(\mathcal{M}_2)$ and $L(\mathcal{M}_2) \subseteq L(\varphi)$, then $L(\mathcal{M}_1) \subseteq L(\varphi)$. The other direction follows from instantiating φ with $L(\mathcal{M}_2)$ and, in the strong form, from the fact that the Büchi-automaton \mathcal{M}_2 defines a regular language.

This theorem can help to reduce the complexity of checking whether a model satisfies a formula. In order to prove $\mathcal{M}_1 \models \varphi$, it can be helpful to look for a “small” model \mathcal{M}_2 such that $\mathcal{M}_1 \models \mathcal{M}_2$ and $\mathcal{M}_2 \models \varphi$.
4.2. Safety and Liveness Properties

A similar characterization result as the above 4.2 holds for finite transition systems and a special class of \(\omega \)-languages called *safety-properties*. For natural models \(M \) and \(M' \), let \(M^{[1:-i]} \) be the model consisting of the first \(i \) points of \(M \), and \(M \circ M' \) be the concatenation of the two models \(M \) and \(M' \). (If \(M \) is infinite, then define \(M \circ M' \equiv M \).

- \(\varphi \) is a *safety property*, iff for every natural model \(M \),
 \[
 M \models \varphi \text{ if } \forall i \exists M': M^{[1:-i]} \circ M' \models \varphi
 \]

This definition is from [Alpern and Schneider 1985]. An \(\omega \)-language \(\varphi \) is a safety property if for every model not satisfying \(\varphi \) there is a finite prefix \(M^{[1:-i]} \) which can not be completed by any continuation \(M' \) such that \(M^{[1:-i]} \circ M' \models \varphi \). In other words, for every model dissatisfying \(\varphi \) something “bad” must have happened after some finite number of steps which cannot be remedied by any future good behavior. Hence, in Lamport’s popular characterization, safety properties express that “something bad never happens” [Lamport 1983].

- \(\varphi \) is a *liveness property*, iff for every natural model \(M \),
 \[
 \forall i \exists M': M^{[1:-i]} \circ M' \models \varphi
 \]

A liveness property \(\varphi \), on the other hand, can never be refuted by observing only a finite prefix of some run. It holds, if and only if every finite sequence can be completed to a model satisfying \(\varphi \), hence \(\varphi \) states that “something good eventually happens”. Notice, however, that in contrast to the “bad thing” referred to above, the occurrence of the “good thing” does not have to be observable in any fixed time interval. Thus, liveness failures cannot be detected by testing.

Without proof we state some facts about safety and liveness from [Alpern and Schneider 1985]:

4.3. Theorem. *(Properties of safety and liveness)*

- *Safety properties are closed under finite unions and arbitrary intersections.*
- *Liveness properties are closed under arbitrary unions, but not under intersections.*
- *\(\top \) is the only property which is both a safety and a liveness property.*
- *For any property \(\varphi \) there exists a safety property \(\varphi_S \) and a liveness property \(\varphi_L \) such that \(\varphi = (\varphi_S \cap \varphi_L) \).*

The last of these facts is known as the *decomposition theorem* and can be proved by topological arguments. The safety-part of a property \(\varphi \) is the topological closure of \(\varphi \), that is, the least safety property containing \(\varphi \). As an example, on natural models the *LTL*-formula \((p U^+ q) \) is equivalent to \((p W^+ q) \land F^+ q \), where the language defined by \((p W^+ q) \) is a safety property and the language defined by \(F^+ q \) is a
liveness property. Similarly, total correctness statements about programs can be decomposed into invariance (safety) and termination (liveness).

We now give a syntactical characterization of LTL safety properties.

4.4. Theorem. Every temporal formula built from literals with \(\bot, \top, \land, \lor \) and \(W^+ \) defines a safety property.

Proof: The proof is by induction on the structure of the formula. The only interesting case is \((\varphi \ W^+ \psi)\). Assume that any model \(M \) falsifying both \(\varphi \) and \(\psi \) has a finite prefix \(M^{[1..i]} \) such that any extension of \(M^{[1..i]} \) falsifies these formulas. If \(M \not\models (\varphi \ W^+ \psi) \), then there is a \(w_i > w_0 \) such that \(w_j = (\neg \varphi \land \neg \psi) \), and \(w_k = \neg \psi \) for \(w_0 < w_k < w_j \). Therefore, in any model \(M^{[1..j+i]} \circ M' \), the formula \((\varphi \ W^+ \psi)\) must be invalid.

An alternative characterization of safety in linear temporal logic is with past operators. Any LTL formula \(G^\psi \), where \(\psi \) is a past formula, defines a safety property. Moreover, any LTL-definable safety property can be defined by a formula of this form [Lichtenstein et al. 1985].

A binary relation \(\Delta \subseteq U \times U \) is called image finite, if for any \(x \in U \) the set \(\{ y \in U \mid (x, y) \in \Delta \} \) is finite. In particular, any finite relation is image finite. We call a transition system \((S, \Delta, S_0) \) finitary, if \(S_0 \) is finite and \(\Delta \) is image finite. Of course, any finite transition system is finitary. Intuitively, finitary transition systems allow only “finite nondeterminism”. The following statement extends Theorem 4.4 to finitary transition systems:

4.5. Theorem. Any finitary transition system defines a safety property.

Proof: Consider the language \(L \) of a finitary transition system. We have to show that for every sequence \(\sigma \), if \(\forall i \exists \sigma' : \sigma^{[1..i]} \circ \sigma' \in L \) then \(\sigma \in L \). In other words, assume that any finite prefix of \(\sigma \) can be extended to a string in \(L \) and show \(\sigma \in L \). If \(\sigma \) is finite, then it is a finite prefix of itself; thus there exists some \(\sigma' \) such that \(\sigma \circ \sigma' \in L \). Since every state of a transition system is accepting, it follows that \(\sigma \in L \). If \(\sigma \) is infinite, consider the following computation tree: each node is marked by \((s, \sigma^{[1..i]}))\), where \(s \) is a state of the transition system and \(\sigma^{[1..i]} \) is a finite prefix of \(\sigma \). The root is marked \((s,())\), where \(s \) is any state. For any initial state \(s_0 \in S_0 \) of the transition system there is a child of the root in the computation tree which is marked \((s_0, \sigma_0)\), where \(\sigma_0 = \sigma^{[1..0]} \) is the first letter of \(\sigma \). Given a node marked \((s, \sigma^{[1..i]}))\) where \(i > 0 \), for any \(s' \) such that \((s, \sigma_{i+1}, s') \in \Delta \) there is a child node in the tree marked \((s', (\sigma_0, ..., \sigma_i))\). Thus there exists a node marked \((s, \sigma^{[1..i]})\) iff there is a path from some initial state to state \(s \) which is labelled by \((\sigma_0, ..., \sigma_{i-1})\). Since \(S_0 \) is finite and \(\Delta \) is image finite, the computation tree is finitely branching. Since every prefix of \(\sigma \) can be extended to a string which is accepted by the transition system, the tree contains infinitely many nodes. Thus, by König’s lemma from elementary set theory, it must contain an infinite branch. Therefore,
there is a path in the transition system labelled by σ. Since all states in a transition system are recurring, it accepts σ.

Figure 4: A non-finitary Kripke-model

Without the finitary restriction, Lemma 4.5 does not hold: consider the infinite transition system \mathcal{M} of Figure 4. It shows a tree, such that for every natural number i a path of length i starts from the root. This transition system defines the set of all finite strings ($\mathcal{F}^* \mathcal{X} \bot$), which is not a safety property. Similarly, the same language can be defined by an image finite transition system with infinitely many starting states. In particular, Lemma 4.5 implies that any finite transition system defines an ω-regular safety property. A weaker inverse statement also holds:

4.6. Lemma. For every ω-regular safety property there is a finite transition system defining this property.

Proof: Assume that a Büchi-automaton defining a certain safety property φ is given. We transform this automaton into a suitable normal form. First, any nonaccepting state s can either declared to be accepting or deleted, depending on whether an accepting state is reachable from s or not: since safety properties are prefix-closed languages, if there is an accepted path which passes through nonaccepting states, then there must be an equivalent path passing only through accepting states. Similarly, nonaccepting SCCs can be deleted: these are nontrivial strongly connected components in the automaton which do not contain a recurring state. Since φ is a safety property, for any accepted path ρ passing through states in a nonaccepting SCC there must be an equivalent path which avoids this SCC. Otherwise, assume that $\rho = \rho_1 \circ \rho_2$, where ρ_1 leads into the nonaccepting SCC. Consider the (nonaccepted) path $\rho_1 \circ \sigma^\omega$ which passes infinitely often through the nodes of this nonaccepting SCC. Any finite prefix $\rho_1 \circ \sigma^n$ of this path can be extended to the accepted path $\rho_1 \circ \sigma^n \circ \rho_2$; hence the whole path would have to be accepted. After the deletion of nonaccepting SCCs, each nontrivial SCC contains a recurring state. Therefore,
the automaton accepts all finite and infinite paths through its state graph. Consider the transition system with the same state set and transition relation, where all states are accepting and recurring. The language of this transition system is the same as that of the (reduced) automaton.

For LTL safety properties \(\varphi \), a deterministic transition system \(M_\varphi \) corresponding to \(\varphi \) can be obtained directly by a tableau procedure; see section 7.

Given a finite Kripke model \(M \) and an \(\omega \)-regular safety property \(\varphi \), checking whether \(M \) sequence-validates \(\varphi \) is especially easy. Let \(M_A \) be the weakly fair transition system corresponding to \(M \) according to Lemma 4.1, and let \(M_\varphi \) be a deterministic finite transition system defining the same language as \(\varphi \). As above, \(M \models \varphi \) if \(L(M_A) \subseteq L(M_\varphi) \). Language containment can be decided by executing \(M_A \) (program) and \(M_\varphi \) (specification) in parallel and checking that for every step in \(M_A \) the corresponding step in \(M_\varphi \) exists. This approach is also used in specification-based testing, where a number of test runs \(\sigma \in L(M_A) \) is checked whether they conform to the specification, that is, \(\sigma \in L(M_\varphi) \). The test runs are either determined by the system under test, or selected by the specification according to some coverage strategy.

Safety properties can be used to characterize language containment for finitary transition systems just as \(\omega \)-regular properties for Büchi-automata (cf. Fact 4.2). For finitary transition systems, it is sufficient to check whether \(M_1 \models \varphi \) implies \(M_1 \models \varphi \) for all safety properties \(\varphi \) in order to establish \(M_1 \models M_2 \):

4.7. THEOREM. Let \(M_1 \) and \(M_2 \) be finitary transition systems. Then \(M_1 \models M_2 \) iff for all safety properties \(\varphi \), if \(M_2 \models \varphi \) then \(M_1 \models \varphi \).

Proof: Assume that \(M_1 \models M_2 \), and that \(M_1 \models \varphi \). Then there exists a word \(\sigma \) accepted by \(M_1 \) such that \(\sigma \not\in \varphi \). Since \(L(M_1) \subseteq L(M_2) \), this counter model is also in the language of \(M_2 \), hence \(M_2 \not\models \varphi \). For the other direction, since the set of all natural models generated from a finitary transition system is a safety property and by the fact that \(M_2 \models M_2 \) the assumption immediately reduces to \(M_1 \models M_2 \).

4.3. Simulation Relations

The above characterization results concentrate on containment between the \(\omega \)-languages generated by models and (linear time) formulas. However, there are two reasons to consider also weaker preorders between models than containment: firstly, for large nondeterministic transition systems language containment may not be easy to check. Secondly, sometimes it is desirable to formulate properties which depend on the structure of the system under consideration rather than on its behavior. Such properties may not be preserved even for systems generating the same language. For example, consider the two models \(M_1 \) and \(M_2 \) of Figure 5 over \(\mathcal{P} = \{ \} \) and \(R = \{ a, b, c \} \).
Clearly, \(L(\mathcal{M}_1) = L(\mathcal{M}_2) \), and therefore \(\mathcal{M}_1 \models \mathcal{M}_2 \). That is, if we observe sequences of transitions, then every possible behavior of \(\mathcal{M}_1 \) is also a possible behavior of \(\mathcal{M}_2 \). However, if we observe not only transitions which are taken, but also transitions which could be taken, then the behavior of \(\mathcal{M}_1 \) and \(\mathcal{M}_2 \) differs: if “possible continuations” are indicated by small light bulbs, then in the first system after performing \(a \) both the \(b \) and \(c \) lights will be lit, whereas in the second system only one of both is on. Formally, for every LTL-formula \(\psi \) it holds that \(\psi \) is sequence-valid in \(\mathcal{M}_1 \) iff \(\psi \) is sequence-valid in \(\mathcal{M}_2 \). For \(\varphi \equiv [a]([b] \lor [c] \lor) \), it holds that \(\mathcal{M}_2 \models \varphi \), but \(\mathcal{M}_1 \not\models \varphi \).

Given two models \(\mathcal{M}_1 = (U_1, I_1, w_1) \) and \(\mathcal{M}_2 = (U_2, I_2, w_2) \), we say that \(\mathcal{M}_1 \) is a submodel of \(\mathcal{M}_2 \) (denoted by \(\mathcal{M}_1 \subseteq \mathcal{M}_2 \)), if \(U_1 \subseteq U_2 \), \(I_1 = I_2 \upharpoonright U_1 \) (the restriction of \(I_2 \) to \(U_2 \)), and \(w_1 = w_2 \). Intuitively, a submodel consists of some parts of the original model. In the proof of Lemma 4.6 we constructed a special submodel which preserves all execution sequences. Generally, all temporal properties are preserved when a model is replaced by the generated submodel, i.e., the submodel consisting of all points reachable from the current point. However, usually properties are not preserved when a model is replaced by an arbitrary submodel. Instead of simply omitting parts of a model, it is better to collapse several points into a single point.

For any two models \(\mathcal{M}_1 = (U_1, I_1, w_1) \) and \(\mathcal{M}_2 = (U_2, I_2, w_2) \), a relation \(H \subseteq U_1 \times U_2 \) is called a simulation relation between \(\mathcal{M}_1 \) and \(\mathcal{M}_2 \) if

- \((w_1, w_2) \in H\),
- For all \(p \in \mathcal{P}, u \in U_1 \), and \(v \in U_2 \), if \((u, v) \in H\) then \(u \in I_1(p)\) iff \(v \in I_2(p)\),
- For all \(u \) and \(v \) such that \((u, v) \in H\) and all \(R \) and \(u' \) such that \((u, u') \in I_1(R)\) there is a \(v' \) with the property that \((v, v') \in I_2(R)\) and \((u', v') \in H\).

Figure 6 illustrates the third condition.

We say that \(\mathcal{M}_1 \) is simulated by \(\mathcal{M}_2 \), or \(\mathcal{M}_2 \) simulates \(\mathcal{M}_1 \) (denoted by \(\mathcal{M}_1 \models \mathcal{M}_2 \)), if there exists a simulation relation \(H \) between \(\mathcal{M}_1 \) and \(\mathcal{M}_2 \). Simulation relates a model \(\mathcal{M}_1 \) to an abstraction \(\mathcal{M}_2 \) of the model \(\mathcal{M}_1 \). It guarantees that every behavior of the model is also a possible behavior of the abstraction. However, since a point in the abstract model usually represents a set of points in the original model, the abstraction might have behaviors that have no counterpart in the original model. Thus, the term “simulation” is used as in “the PC simulates a gameboy” or “this program simulates the development of bacteria cultures”.

Figure 5: Two sequence-equivalent but branching-inequivalent Kripke-models
4.8. **Fact.** \(\vdash \) is a preorder on the class of all models.

Proof: The proof of reflexivity is immediate. For transitivity, note that the relational product of two simulation relations is again a simulation relation.

If \(\mathcal{M}_1 \subseteq \mathcal{M}_2 \), then \(\mathcal{M}_1 \vdash \mathcal{M}_2 \). Moreover, if \(\mathcal{M}_1 \vdash \mathcal{M}_2 \), then \(\mathcal{M}_1 \models \mathcal{M}_2 \); if \(\mathcal{M}_2 \) can simulate \(\mathcal{M}_1 \), then for every maximal run \(\sigma \) generated by \(\mathcal{M}_1 \) there exists a corresponding \(\sigma' \in \mathcal{M}_2 \).

A model is called **deterministic**, if for every \(w \in U \) and \(R \subseteq R \) there is at most one \(w' \in U \) such that \((w, w') \in I(R) \). (This definition is somewhat weaker than the definition of deterministic automata on page 1400.) For deterministic \(\mathcal{M}_2 \) also the converse holds: \(\mathcal{M}_1 \models \mathcal{M}_2 \) if \(\mathcal{M}_1 \vdash \mathcal{M}_2 \). This is true because for any word there is at most one path through a deterministic transition system. Deterministic models and properties are an important special case. Whereas for many problems in nondeterministic transition systems an exponential search via backtracking is used, in the deterministic case the same problems can be solved with polynomial complexity.

4.9. **Lemma.** Let \(H \) be a simulation relation between \(\mathcal{M}_1 = (U_1, I_1, w_1) \) and \(\mathcal{M}_2 = (U_2, I_2, w_2) \), and \((w'_1, w'_2) \in H \). Then \((U_1, I_1, w_1) \vdash (U_2, I_2, w_2) \).

Proof: The proof is immediate from the definition of simulation relations.

A **modal box formula** is a formula not involving any diamond operator. More precisely, literals (propositions and negated propositions) and \(\bot, \top \) are modal box formulas, and if \(\varphi \) and \(\psi \) are modal box formulas, then \((\varphi \land \psi), (\varphi \lor \psi) \) and \([R] \varphi \) are modal box formulas. Similar to Lemmas 4.2 and 4.6, the following lemma relates simulations between models and preservation of modal box formulas:

4.10. **Lemma.** Let \(\mathcal{M}_1 = (U_1, I_1, w_1) \) and \(\mathcal{M}_2 = (U_2, I_2, w_2) \) be Kripke-models. \(\mathcal{M}_1 \vdash \mathcal{M}_2 \) implies that for all modal box formulas \(\varphi \), if \(\mathcal{M}_2 \models \varphi \) then \(\mathcal{M}_1 \models \varphi \).
Proof: The proof is by induction on φ. The base cases \bot, \top are trivial. For $p \in P$, the assumption $(w_1, w_2) \in H$ implies $w_1 \in I_1(p)$ iff $w_2 \in I_2(p)$. For boolean operators \land, \lor, the statement is an immediate consequence of the induction hypothesis. Finally, if $w_1 \not\models [R] \varphi$, then there is a $w'_1 \in U_1$ such that $(w_1, w'_1) \in I_1(R)$ and $w'_1 \not\models \varphi$. Since $M_1 \models M_2$, there is a $w'_2 \in U_2$ such that $(w_2, w'_2) \in I_2(R)$ and $(w'_1, w'_2) \in H$. Lemma 4.9 asserts that $(U_1, I_1, w'_1) \models (U_2, I_2, w'_2)$. According to the induction hypothesis, $w'_2 \not\models \varphi$. Therefore, $w_2 \not\models [R] \varphi$, which was to be proved. 2

This lemma makes it possible to check safety in the abstracted (small) model M_2 rather than in the original (large) model M_1: if M_1 violates a modal box formula, then this violation will also occur in M_2.

The above statement can be extended to more expressive logics. The logic **ACTL** [Long 1993, Clarke, Grumberg and Long 1994a, Clarke, Long and McMillan 1989, Josko 1993, Dams, Grumberg and Gerth 1994] is “CTL without E quantifier”. That is, literals and \top, \bot are **ACTL** formulas, and if φ and ψ are **ACTL** formulas, then $(\varphi \land \psi), (\varphi \lor \psi), A(\varphi U^+ \psi)$ and $A(\varphi W^+ \psi)$ are **ACTL** formulas, where $A(\varphi W^+ \psi) \equiv E(\neg \psi U^-(\varphi \lor \psi))$.

4.11. **Theorem.** Let M_1 and M_2 be Kripke-models and φ be an **ACTL** formula. If $M_1 \models M_2$ and $M_2 \models \varphi$, then $M_1 \models \varphi$.

Proof: Intuitively, this theorem is true because formulas in **ACTL** describe properties that are valid in all paths of a model. They cannot express the existence of a specific path in the model. If $M_1 \models M_2$, then every behavior of M_1 is a behavior of M_2. Thus every formula of **ACTL** that is valid in M_2 must also be valid in M_1.

Formally, the theorem is proved by induction on the structure of φ. Again, the only interesting cases are $A U^+ \varphi$ and $A W^+ \varphi$. We show the case of $\varphi \equiv A(\chi U^+ \psi)$. Note that $\neg A(\chi U^+ \psi) \iff (E(\neg \psi U^+(\chi \lor \psi)) \lor E G^+ \neg \psi)$ (cf. page 1387). Assume that $M_1 \models M_2$ and $M_1 \not\models \varphi$, and show that $M_2 \not\models \varphi$. If $w_1 \not\models A(\chi U^+ \psi)$, then in M_1 there is either a finite sequence of nodes $w_1^0, w_1^1, ..., w_1^n$, such that $w_1^0 \not\models \psi$ for $0 < i < n$, and $w_1^n \not\models (\chi \lor \psi)$, or a maximal path $w_1^1, w_1^2, w_1^3, ..., w_1^m$, such that $w_1^i \not\models \psi$ for all $i > 0$. Similar to the above, the induction hypothesis proves that a corresponding finite or infinite sequence $w_2^0, w_2^1, ..., w_2^n$ or $w_2^0, w_2^1, w_2^2, w_2^3, ..., w_2^m$, exists, such that $w_2^i \not\models \psi$ for $0 < i < n$, and $w_2^n \not\models (\chi \lor \psi)$, or $w_2^i \not\models \psi$ for all $i > 0$. Thus $w_2 \not\models A(\chi U^+ \psi)$.

In general the converse of the above lemma and theorem are not valid. Essentially, this is due to the same reason why Lemma 4.5 fails to hold for non-finitary transition system: consider the counterexample of Figure 7.

Both models have infinitely many branches from the root, one branch of length one, one branch of length two, one branch of length three, and so on. M_1 has an additional branch of infinite length. These two models cannot be distinguished by any modal formula:

4.12. **Lemma.** For any $\varphi \in \text{ML}$ it holds that $M_1 \models \varphi$ iff $M_2 \models \varphi$.
Figure 7: Two modally indistinguishable models

Proof: The statement is proved by induction on \(\varphi \). The crucial case is \(\varphi = \langle R \rangle \psi \), \(M_1 \models \varphi \), and the successor \(w_1' \) of \(w_1 \) for which \(w_1' \models \psi \) is on the additional infinite branch of \(M_1 \). Choose any branch of \(M_2 \) of length at least \(n \), where \(n \) is the number of modal operators in \(\varphi \). Denote the \(i \)-th point on the infinite branch of \(M_1 \) and on the chosen branch of \(M_2 \) by \(w_1^i \) and \(w_2^i \), respectively (where \(w_1^0 = w_1 \) and \(w_2^0 = w_2 \)). Then for all \(i \leq n \) and all sub-formulas \(\xi_i \) of \(\varphi \) with at most \((n - i)\) modal operators it holds that \(w_1^i \models \xi_i \) if \(w_2^i \models \xi_i \). This is proved by subinduction on \(n - i \): if \(n - i = 0 \), then it holds by definition of the models. If \(n - i > 0 \) and \(w_1^{i+1} \models \xi_{i+1} \) if \(w_2^{i+1} \models \xi_{i+1} \), then \(w_1^i \models \langle R \rangle \xi_{i+1} \) if \(w_2^i \models \langle R \rangle \xi_{i+1} \). Especially, since \(\varphi \) has \(n \) modal operators, \(w_1^0 \models \varphi \) if \(w_2^0 \models \varphi \).

In particular, Lemma 4.12 implies that for every modal box formula \(\varphi \), if \(M_2 \models \varphi \) then \(M_1 \models \varphi \). Yet, \(M_2 \) does not simulate \(M_1 \); assume a simulation relation \(H \) mapping the first node \(w \) of the infinite path of \(M_1 \) to any node \(w' \) of any finite path in \(M_2 \). Then \(H \) must map the successor of \(w \) to the successor of \(w' \), the successor of the successor of \(w \) to the successor of the successor of \(w' \), and so on. There are finitely many successors from \(w' \), but infinitely many successors from \(w \). Thus, after a finite number of steps, there will be nodes \(u \in M_1 \) and \(v \in M_2 \) such that \((u, v) \in H \), and \(u \) has a successor in \(M_1 \), but \(v \) has no successor in \(M_2 \).

This is a somewhat contrived counterexample. In “many” cases, the converse will hold. Recall that a model is called image finite, if every point has only finitely many successors.
4.13. Theorem. Let \(M_1 \) and \(M_2 \) be image finite Kripke models. Then \(M_1 \models M_2 \) iff for all modal box formulas \(\varphi \), if \(M_2 \models \varphi \) then \(M_1 \models \varphi \).

Proof: Assume that all modal box formulas holding in \(M_2 \equiv (U_2, I_2, w_2) \) are also valid for \(M_1 \equiv (U_1, I_1, w_1) \), and construct a simulation between \(M_1 \) and \(M_2 \). Define \(H \) by \((u, v) \in H \) iff for all modal box formulas \(\varphi \), if \(v \models \varphi \) then \(u \models \varphi \). Then \((w_1, w_2) \in H \) by definition, and \((u, v) \in H \) implies \(\mathcal{L}_1(u) = \mathcal{L}_2(v) \), since literals are modal box formulas. Assume \((u, v) \in H \) and \((u, u') \in I_1(R) \). We have to show that there is a \(v' \) such that \((v, v') \in I_2(R) \) and for all modal box formulas \(\varphi \), if \(u' \not| \varphi \) then \(v' \not| \varphi \). Assume for contradiction that for each \(v' \) with \((v, v') \in I_2(R) \) there is a \(\varphi_{v'} \) such that \(u' \not| \varphi_{v'} \) and \(v' \models \varphi_{v'} \). Since \(M_2 \) is image finite, \(\bigvee \varphi_{v'} \) exists and is a modal box formula. Moreover, for all such \(v' \), we have \(v' \models [R] \bigvee \varphi_{v'} \), which means \(v \models [R] \bigvee \varphi_{v'} \). This implies \(u \models [R] \bigvee \varphi_{v'} \) and therefore \(u' \models \bigvee \varphi_{v'} \). This is a contradiction to the assumption that \(u' \not| \varphi_{v'} \) for all \(\varphi_{v'} \).

We already mentioned that the above theorems can be used to reduce the complexity of model checking. To prove that \(M_1 \models \varphi \), it can help to find an appropriate abstraction \(M_2 \), and to prove \(M_1 \models M_2 \) and \(M_2 \models \varphi \). For more information, see [Bensalem, Boujani, Loiseaux and Sifakis 1992].

Extremely efficient algorithms are known to check language inclusion for deterministic finite automata [Hopcroft and Ullman 1979]. These algorithms can be used to check the simulation preorder for deterministic models. For nondeterministic finite models \(M_1 = (U_1, I_1, w_1) \) and \(M_2 = (U_2, I_2, w_2) \), to check whether \(M_1 \models M_2 \) we define a sequence of relations \(H^0, H^1, \ldots \) on \(U_1 \times U_2 \) as follows:

- \((u, v) \in H^0 \) iff for all \(p \in P \) it holds that \(u \in I_1(p) \) iff \(v \in I_2(p) \)
- \((u, v) \in H^{n+1} \) iff \((u, v) \in H^n \) and for all \(R \) and \(u' \in U_1 \) such that \((u, u') \in I_1(R) \) there is a \(v' \) with the property that \((v, v') \in I_2(R) \) and \((u', v') \in H^n \).

The intersection \(H^* \) of all \(H^n \) is the largest simulation relation between \(M_1 \) and \(M_2 \). That is, \(M_1 \models M_2 \) iff \((w_1, w_2) \in H^* \). Algorithmically, if \(H^n = H^{n-1} \), then \(H^* = H^n \) and the construction terminates. In other words, we construct the greatest fixed point of the one-step simulation relation. Since the structures are finite, there are only finitely many different \(H^n \). Thus, termination is guaranteed. In Figure 8, \(R(u) \) denotes the set \(\{u' \mid (u, u') \in I(R)\} \), and \(u \) is the first component of a tuple. In the next section, a more elaborate implementation of a similar algorithm for symmetric simulation relations is given, which is based on partition refinement.

5. Equivalence reductions

In this section, we consider symmetric preorders, i.e., equivalences, and equivalence transformations between models. There are various possibilities for defining equivalences on models. For any preorder \(\preceq \) from the preceding section, an equivalence can be defined by \(M_1 \simeq M_2 \) iff \(M_1 \preceq M_2 \) and \(M_2 \preceq M_1 \). In this way, the equivalence induced by the submodel ordering \(\subseteq \) is isomorphism. For \(M_1 \models M_2 \), the
procedure Sim_check (Model \((U_1, I_1, w_1) \), Model \((U_2, I_2, w_2) \)) =

\[H^{\text{new}} := \{(u,v) \mid u \in U_1, \ v \in U_2, \ \mathcal{L}_1(u) = \mathcal{L}_2(v)\} \]

repeat

\[H^{\text{old}} := H^{\text{new}}, \ H^{\text{new}} := \{\} \]

for all \((u, v) \in H^{\text{old}}\) do

\[\text{add} := \top; \text{for all } R \in \mathcal{R} \text{ do} \]

\[\text{if not } R(u) \subseteq ((R(u) \times R(v)) \cap H^{\text{old}}); \text{ then add} := \bot \]

\[\text{if add then } H^{\text{new}} := H^{\text{new}} \cup \{(u,v)\} \]

until \(H^{\text{new}} = H^{\text{old}}\);

if \((w_1, w_2) \in H^{\text{new}}\)

then print("\((U_1, I_1, w_1)\) is simulated by \((U_2, I_2, w_2)\)"")

else print("\(\text{There is no simulation between } (U_1, I_1, w_1) \text{ and } (U_2, I_2, w_2)\)"");

Figure 8: Algorithm for simulation checking

symmetric version is equality of the generated languages. Other model equivalences
are introduced by equivalence with respect to logical formulas, and by symmetric
simulations.

5.1. Bisimulations (\(p\)-morphisms)

A classical notion from modal logic is \(p\)-morphism [Segerberg 1968], [Segerberg 1971, p37] or bisimulation [Milner 1980, Park 1981]. A bisimulation is a relation \(\equiv\) between the universes of two Kripke-models \((U_1, I_1, w_1)\) and \((U_2, I_2, w_2)\) such that

- \(w_1 \equiv w_2\),
- if \(u \equiv v\), then \(u \in I_1(p)\) iff \(v \in I_2(p)\)
- if \(u \equiv v\) and \((u, u') \in I_1(R)\), then there exists \(v'\) such that \((v, v') \in I_2(R)\) and \(u' \equiv v'\).
- if \(u \equiv v\) and \((v, v') \in I_2(R)\), then there exists \(u'\) such that \((u, u') \in I_1(R)\) and \(u' \equiv v'\).

Two Kripke-models \(\mathcal{M}_1\) and \(\mathcal{M}_2\) are bisimilar (denoted by \(\mathcal{M}_1 \equiv \mathcal{M}_2\), if there exists a bisimulation between them. Figure 9 shows some examples of bisimilar models.

This example demonstrates the following statements:

5.1. FACT.

- Each model is bisimilar to one where duplicate states (which have the same input and output) are removed,
- Each model is bisimilar to its unfolding, and
• Each model is bisimilar to its reachable part.

If $\mathcal{M}_1 \equiv \mathcal{M}_2$, then $\mathcal{M}_1 \Vdash \mathcal{M}_2$ and $\mathcal{M}_2 \Vdash \mathcal{M}_1$; the other direction of this statement is not necessarily true. For example, each of the models in Figure 10 simulates the other one, but they are not bisimilar.

Another important equivalence relation between models is that of being indistinguishable by formulas of a certain logic. We say that the models \mathcal{M}_1 and \mathcal{M}_2 are equivalent with respect to the logic \mathcal{L} ($\mathcal{M}_1 \equiv_{\mathcal{L}} \mathcal{M}_2$) if for all well formed formulas of \mathcal{L} it holds that $\mathcal{M}_1 \models \varphi$ iff $\mathcal{M}_2 \models \varphi$. The relation \equiv_{FOL} is called elementary equivalence. Bisimulation relations are precisely those equivalences which preserve all modal formulas:

5.2. Lemma. Bisimilar models are modally equivalent: if $\mathcal{M}_1 \equiv \mathcal{M}_2$, then $\mathcal{M}_1 \equiv_{\text{ML}} \mathcal{M}_2$

The proof is by induction on the structure of φ, analogous to the proof of Lemma 4.10.

Hence, it is “safe” to substitute a model by a bisimilar one in a structured software development process: all multimodal formulas which are valid for the original model will remain valid for the substituted model. The converse of this lemma again requires image finiteness:
5.3. Theorem (Segerberg71). Image finite models are modally equivalent iff they are bisimilar: if \(M_1 \) and \(M_2 \) are image finite, then \(M_1 \equiv M_2 \iff M_1 \equiv_{ML} M_2 \).

Again, the proof is similar to the proof of Theorem 4.13 in the previous section. The only difference is that bisimulation is a symmetric relation.

In general, this theorem does not hold for more expressive logics. For finite Kripke-models, however, it can be lifted even to logics like possible \(\mu TL \). Given any formula \(\varphi \) which is positive in \(q \), and a natural number \(n \), we define \(\nu^q \varphi \triangleq \top \), and \(\nu^{n+1}q \varphi \triangleq \varphi[q := \nu^n q \varphi] \). That is, \(\nu^n q \varphi \triangleq \varphi[q := \varphi] \cdots [q := \top] \).

5.4. Lemma. Let \(M \triangleq (U, I, w) \) be a finite model, where \(|U| = n \), and let \(\varphi \) be a monotonic \(\mu TL \) formula. Then \(M \models \nu q \varphi \iff M \models \nu^n q \varphi \).

Proof: One direction of this lemma follows from the fact that \(\nu q \varphi \) denotes a fixed point, i.e., \((\nu q \varphi \rightarrow \varphi[q := \nu q \varphi]) \). Since \(\varphi \) is monotonous, this implies \((\varphi[q := \nu q \varphi] \rightarrow \varphi[q := \nu q \varphi]) \). By chain reasoning, \((\nu q \varphi \rightarrow \varphi[q := \varphi] \cdots [q := \nu q \varphi]) \).

For the other direction, let \(\mathcal{F} \triangleq (U, I) \) be the frame on which \(M \) is based. Consider the sequence \(((\nu^q \varphi)(\nu^q \varphi))^n \) of sets of points. Clearly, \((\nu^q \varphi)(\nu^q \varphi)^n = \top^n = U \supseteq (\nu q \varphi)(\nu q \varphi)^n \). Since \(\varphi \) is monotonic (cf. Fact 3.8), \((\nu q \varphi)(\nu q \varphi)^n = (\nu q \varphi)^n ((\nu q \varphi)(\nu q \varphi)^n) \supseteq (\nu q \varphi)^n ((\nu q \varphi)(\nu q \varphi)^n) = (\nu q \varphi)^n \).

Continuing this argument, we conclude that \((\nu q \varphi)^n \) is a descending chain of sets. There are two possibilities: either there exists an \(i < |U| \) such that \((\nu q \varphi)^i = (\nu q \varphi)^i \), hence \((\nu q \varphi)^i \subseteq (\nu q \varphi)^i \), or \((\nu q \varphi)^i \subseteq \{\} \). In either case, the sequence stabilizes after at most \(|U| \) steps: \((\nu q \varphi)^i = (\nu q \varphi)^i \). As a consequence, \((\nu q \varphi \rightarrow \nu q \varphi) \) is universally valid in \(\mathcal{F} \).

Now assume that \(M \not\models \nu q \varphi \), and show that \(M \not\models \nu q \varphi \). According to the definition on page 1392, \((U, I, w) \not\models \nu q \varphi \) means that for all \(Q \subseteq U \) such that \(w \in Q \) there exists a \(v \in Q \) such that \((U, I, v) \not\models \varphi \), where \(I(q) = Q \). (*) Let \(Q = (\nu q \varphi)^{\alpha} \). If \(w \not\in Q \), then \((U, I, w) \not\models \nu q \varphi \) and we are done. If \(w \in Q \), then by (*) for some \(v \) it holds that \((U, I, v) \models \nu q \varphi \), and \((U, I, v) \not\models \varphi \), where \(I(q) = (\nu q \varphi)^{\alpha} \).

In other words, \((U, I, v) \not\models \varphi[q := \nu q \varphi] \), which means that \((U, I, v) \not\models \nu q \varphi \). Since \((U, I, v) \models (\nu q \varphi \rightarrow \nu q \varphi) \), this is a contradiction.

This lemma is important for model checking of \(\mu TL \) on finite Kripke models. Moreover, it allows to prove the following result.

5.5. Theorem. Finite models are monotonic \(\mu TL \)-equivalent iff they are bisimilar: if \(M_1 \) and \(M_2 \) are finite, then \(M_1 \equiv M_2 \iff M_1 \equiv_{\mu TL} M_2 \).

Proof: Trivially, finite models are also image finite. Any two models which are equivalent with respect to monotonic \(\mu TL \) are modally equivalent, since modal logic is a sublanguage of \(\mu TL \). Hence as an immediate consequence of Theorem 5.3, any two finite models which are \(\mu TL \)-equivalent are bisimilar.
For the other direction, assume that \(M_1 \models \varphi \) and \(M_2 \not\models \varphi \), where \(\varphi \) is a monotonic \(\mu TL \)-formula. Let \(n \overset{\approx}{=} \max(|U_1|, |U_2|) \), and \(\varphi^n \) be \(\varphi \) where every subformula \(\nu q \psi \) is replaced by \(\nu^n q \psi \). As a consequence of Lemma 5.4, \(M_i \models \varphi \) iff \(M_i \models \varphi^n \) for \(i = 1, 2 \). Therefore, \(M_1 \models \varphi^n \) and \(M_2 \not\models \varphi^n \). Since \(\varphi^n \) is a multimodal formula, \(M_1 \) and \(M_2 \) are modally inequivalent. Theorem 5.3 implies that \(M_1 \) and \(M_2 \) are not bisimilar.

5.6. Corollary. Any two finite Kripke-models which can be distinguished by a monotonic \(\mu TL \)-formula can also be distinguished by a multimodal formula: if \(M_1 \) and \(M_2 \) are finite, then \(M_1 \equiv_{\mu TL} M_2 \iff M_1 \equiv_{ML} M_2 \).

[Browne, Clarke and Grumberg 1988] proved that if two finite models can be distinguished by a formula of the logic \(CTL^* \), then they can be distinguished by a \(CTL \) formula. Every \(CTL^* \) formula has a positive \(\mu TL \) equivalent [Dam 1994] (on tree models, \(CTL^* \) can be translated into monadic second order logic, which is of the same expressiveness as \(\mu TL \)). Therefore this result can be obtained as a consequence of the above.

5.2. Distinguishing Power and Ehrenfeucht-Fraïssé Games

The previous theorems showed that logics with different expressiveness can have the same distinguishing capabilities. We wish to formalize these notions. A logic \(L_2 \) is said to be at least as expressive as \(L_1 \) (or \(L_1 \) is at most as expressive as \(L_2 \)) iff for any formula \(\varphi_1 \in L_1 \) there exists a formula \(\varphi_2 \in L_2 \) such that for all models \(M \) we have \(M \models \varphi_1 \) iff \(M \models \varphi_2 \). \(L_1 \) and \(L_2 \) have the same expressive power if \(L_1 \) is at least as expressive as \(L_2 \) and \(L_2 \) is at least as expressive as \(L_1 \). In other words, two logics have the same expressive power iff for any formula of one logic there is an equivalent formula from the other logic. For example, Theorem 2.4 states that on natural models, \(FOL \) and \(LTL \) have the same expressive power.

Logic \(L_2 \) is at least as distinguishing as \(L_1 \) (or \(L_1 \) is at most as distinguishing as \(L_2 \)) if any two models which are inequivalent with respect to \(L_1 \) are also inequivalent with respect to \(L_2 \). That is, \(L_2 \) at least as distinguishing as \(L_1 \) iff \(M_1 \equiv_{L_2} M_2 \) implies \(M_1 \equiv_{L_1} M_2 \). \(L_1 \) and \(L_2 \) have the same distinguishing power if \(L_1 \) is at most as distinguishing as \(L_2 \) and \(L_2 \) is at most as distinguishing as \(L_1 \). In other words, \(L_1 \) and \(L_2 \) have the same distinguishing power iff for all models \(M_1 \) and \(M_2 \) it holds that \(M_1 \equiv_{L_1} M_2 \) iff \(M_1 \equiv_{L_2} M_2 \).

Expressiveness is a finer equivalence relation on the class of all logics than distinguishability:

5.7. Fact. If \(L_1 \) is at most as expressive as \(L_2 \), then it is at most as distinguishing. If \(L_1 \) and \(L_2 \) have the same expressive power, then they have the same distinguishing power (but not vice versa).

Proof: Assume that for any formula \(\varphi_1 \in L_1 \) there exists an equivalent formula \(\varphi_2 \in L_2 \). Assume further two models \(M_1 \) and \(M_2 \) which are inequivalent with
respect to L_1, that is, for some $\varphi_1 \in L_1$ we have $M_1 \models \varphi_1$ and $M_2 \not\models \varphi_1$ or vice versa. According to the first assumption there exists $\varphi_2 \in L_2$ equivalent to φ_1. Therefore $M_1 \models \varphi_2$ and $M_2 \not\models \varphi_2$ or vice versa, which means that M_1 and M_2 are inequivalent with respect to L_2. The second statement follows by symmetry. As example of logics with equal distinguishing power but different expressive power, consider multimodal logic and positive μTL.

For any formula φ, we say that φ is preserved under bisimulations, if for all models $M_1 \not\equiv M_2$ it holds that $M_1 \models \varphi$ iff $M_2 \models \varphi$. A logic L is bisimulation invariant, if all well-formed formulas of L are preserved under bisimulations. Lemma 5.2 shows that multimodal logic is bisimulation invariant. In other words, if a property can be defined by a multimodal formula, then it is preserved under bisimulations. The same holds for more expressive logics like monotonic μTL:

5.8. Lemma. μTL is bisimulation invariant: if $M_1 \not\equiv M_2$, then for any positive μTL formula φ it holds that $M_1 \models \varphi$ iff $M_2 \models \varphi$.

In his thesis, van Benthem investigated the reverse direction, and gave a connection between bisimulations, first order and modal expressiveness (see [van Benthem 1983]). He showed that for first order formulas, bisimulation invariance implies multimodal definability:

5.9. Theorem (Expressive completeness of ML). For any first order formula φ (with one free variable) which is preserved under bisimulations there exists an equivalent multimodal formula.

Thus, exactly those first order formulas which are preserved under bisimulations can be translated into modal logic. [Janin and Walukiewicz 1996] extended this theorem for second order formulas and μTL, which is a converse to Lemma 5.8.

5.10. Theorem (Expressive completeness of μTL). Let φ be any $MSOL$ property. Then φ is preserved under bisimulations iff φ is definable by a positive μTL formula.

In particular, this result implies that every logic which is bisimulation invariant and has a semantical translation into $MSOL$ can be also translated into mTL. As a corollary, many propositional logics of programs (CTL^+, PDL, ...) which have been suggested can be translated into the μ-calculus.

Segerberg’s theorem 5.3 relates modal equivalence to bisimilarity. Bisimilarity can also be defined in terms of a so-called Ehrenfeucht-Fraïssé game [Fraïssé 1954, Ehrenfeucht 1961]: there are two players, Ann and Bob. They play on a board on which two Kripke-models are drawn. Ann’s goal is to show that these models are not bisimilar, whereas Bob’s goal is to show that they are bisimilar. (So, this is not really a fair game, since the outcome is predetermined by the shape of the board.)

Each player has an unlimited amount of pebbles which are numbered consecutively: $a_0, a_1, a_2, ...$ and $b_0, b_1, b_2, ...$. To start the game, each player places his first
pebble \(a_0, b_0 \) on the current point of one of the models. If the current points have a different label, Bob has lost immediately.

Thus, round 0 consists of placing \(a_0 \) and \(b_0 \) on the board. Similarly, round \(j \) consists of the placement of \(a_j \) and \(b_j \): Ann chooses any point \(w_0 \) on one of the models on which some pebble (say, \(a_i \) or \(b_i \) for \(i < j \)) had been placed previously, and puts her next pebble \(a_j \) on some point \(w_1 \) which is an \(R \)-successor of \(w_0 \). Bob then locates the \(i^{th} \) pebble (that is, \(b_i \) or \(a_i \), respectively) on the other model, say in point \(w'_0 \). He looks for a point \(w'_1 \) such that \(u'_0 \sim x \sim w'_1 \), and \(w_1 \) and \(w'_1 \) have the same label. If he can’t find such a point he has lost and the game ends; otherwise he chooses any such point and puts his next pebble \(b_j \) on it.

If the game continues forever, then Bob has won. Ann can force a win within \(n \) rounds, if she can place her pebble in such a way that Bob immediately loses the game, or if she can choose a point such that for each possible answer of Bob she can force a win within \(n - 1 \) rounds. Ann has a winning strategy if there is some \(n \) such that she can force a win within \(n \) rounds. Bob has winning strategy iff Ann does not have one; i.e., if in each round and for each possible move of Ann there is a response by Bob to continue the game.

Ehrenfeucht-Fraïssé games are a convenient way to imagine bisimulations.

5.11. Theorem. Ann has a winning strategy in this game iff the two models are not bisimilar; i.e., Bob has a winning strategy iff they are bisimilar.

Proof: From Bob’s winning strategy, it is easy to construct a bisimulation between the two models: \(w_1 \sim w'_1 \) iff Bob would have chosen \(w_1 \) or \(w'_1 \) as a reply to Ann’s choosing \(w'_1 \) or \(w_1 \), respectively. For the other direction, every bisimulation determines a winning strategy for Bob: he just replies by choosing any point which is related to the point chosen by Ann via the bisimulation relation.

It is easy to modify the rules of the game such that it captures the equivalence of two models with respect to other logical languages. For example, in a game for MSOL we allow both Ann and Bob in any move to place an arbitrary set of pebbles on one of the models on the board. Then the two models can be distinguished by a monadic second order formula iff Ann has a winning strategy.

5.3. Auto-bisimulations and the Paige/Tarjan Algorithm

In this subsection we show how to minimize a given Kripke-model with respect to bisimulation equivalence. Note that our definitions did not exclude bisimulations from a model to itself (auto-bisimulations); i.e., some points in a model can be related by a bisimulation to other points in the same model.

5.12. Lemma. The union of any number of auto-bisimulations on a model is again an auto-bisimulation.

Proof: This follows directly from the definition of bisimulation relations.
Thus, for any model, there exists a largest auto-bisimulation, namely, the union of all auto-bisimulations of this model. Additionally, the reflexive transitive symmetric closure of any auto-bisimulation is again an auto-bisimulation. Hence, for any auto-bisimulation \(\equiv \) there is a largest equivalence relation \(\equiv \) containing it \((\equiv \subseteq \equiv) \) which is again an auto-bisimulation. And, the largest auto-bisimulation must be an equivalence relation on the set of points of a model.

Given any model \(\mathcal{M} \equiv (U, \mathcal{I}, w_0) \), and any equivalence relation \(\equiv \) on \(U \). Define the quotient of \(\mathcal{M} \) with respect to \(\equiv \) to be the model \(\mathcal{M}^\equiv \equiv (U^\equiv, \mathcal{I}^\equiv, w_0^\equiv) \), where \(U^\equiv \) is the set of equivalence classes of \(U \) with respect to \(\equiv \), \(w_0^\equiv \) is the equivalence class of \(w_0 \), \(w^\equiv \in \mathcal{I}^\equiv(p) \) if there is some \(w \in \mathcal{I}(p) \) such that \(w \in \mathcal{I}(p) \), and \((w_1^\equiv, w_2^\equiv) \in \mathcal{I}^\equiv(R) \) if there are \(w_1 \in w_1^\equiv \) and \(w_2 \in w_2^\equiv \) such that \((w_1, w_2) \in \mathcal{I}(R) \).

5.13. Lemma. If the equivalence relation \(\equiv \) is an auto-bisimulation, then \(\mathcal{M} \equiv \mathcal{M}^\equiv \).

Proof: Define \(u \equiv v^\equiv \) iff \(u \equiv v \). That is, each point in the original model is mapped to its equivalence class in the quotient model. We have to show that for this relation the four conditions defining a bisimulation (cf. page 1414) hold. For the initial point, \(w_0 \equiv w_0^\equiv \) holds because \(w_0 \equiv w_0 \). Since \(\equiv \) is a bisimulation, \(u \equiv v \) implies \(\mathcal{L}(u) = \mathcal{L}(v) \). Thus if \(u \equiv v^\equiv \) then \(u \in \mathcal{I}(p) \) iff \(v \in \mathcal{I}(p) \). Furthermore, if \((u_1, u_2) \in \mathcal{I}(R) \) and \(u_1 \equiv v_1 \), then by definition \((u_1^\equiv, u_2^\equiv) \in \mathcal{I}^\equiv(R) \) and \(u_1 \equiv v_1 \). Therefore, \(u_1^\equiv = v_1^\equiv \), i.e., \((v_1^\equiv, u_2^\equiv) \in \mathcal{I}^\equiv(R) \). For the last condition, assume that \((v_1^\equiv, u_2^\equiv) \in \mathcal{I}^\equiv(R) \) and \(v_1^\equiv \equiv u_1 \). Then there exist \(w_1 \) and \(w_2 \) such that \(w_1 \equiv v_1 \) and \((w_1, w_2) \in \mathcal{I}(R) \) and \(u_1 \equiv u_2 \). Since \(\equiv \) is a bisimulation, there exists \((u_1, u_2) \in \mathcal{I}(R) \). From \(u_2 \equiv w_1 \) and \(u_2 \equiv w_2 \) we conclude that \(u_2 \equiv u_2 \), i.e., \(u_2 \equiv u_2^\equiv \). 2

The quotient of a model with respect to its largest auto-bisimulation can be regarded as a minimal representation of this model. In finite models, this minimal representation can be constructed very efficiently.

For any set of points \(P \subseteq U \), let \(\langle R \rangle P \equiv \{ w \mid \exists w' \in P. (w, w') \in \mathcal{I}(R) \} \). Given any partition of \(U \) into equivalence classes, call a component \(w^\equiv \) uniform, if for all \(p \in P \) it holds that \(w^\equiv \subseteq \mathcal{I}(p) \) or \(w^\equiv \cap \mathcal{I}(p) = \{ \} \). That is, \(w^\equiv \) is uniform if \(\mathcal{L}(w_1) = \mathcal{L}(w_2) \) for all \(w_1, w_2 \in w^\equiv \). A component \(w^\equiv \) is called stable with respect to \(P \), if for all \(R \) either \(w^\equiv \subseteq \langle R \rangle P \) or \(w^\equiv \cap \langle R \rangle P = \{ \} \). The partition is called stable, if all components are uniform and stable with respect to all components.

5.14. Theorem. The coarsest stable partition is the largest auto-bisimulation.

Proof: First, we show that any stable partition is an auto-bisimulation. Trivially, \(w_0 \equiv w_0 \). Since \(w^\equiv \) is uniform, \(u \equiv v \) implies \(\mathcal{L}(u) = \mathcal{L}(v) \). If \((u, u') \in \mathcal{I}(R) \), then \(u^\equiv \subseteq \langle R \rangle u^\equiv \), because \(u^\equiv \) is stable with respect to \(u^\equiv \). In other words, \(u^\equiv \subseteq \{ w \mid \exists u' \equiv u', (w, u') \in \mathcal{I}(R) \} \). Therefore, if \(u \equiv v \), then there is a \(v' \equiv u' \) such that \((v, v') \in \mathcal{I}(R) \). The symmetric condition is proved symmetrically. Vice versa, every auto-bisimulation defines a stable partition: to show that \(u^\equiv \) is stable with respect to \(v^\equiv \), assume that \(u_1 \equiv u_2 \in u^\equiv \). Since \(\equiv \) is a bisimulation, for every \((u_1, u_1') \in \mathcal{I}(R) \)
and \(u'_1 \in v^n \) there must be a \(u'_2 \equiv u'_1 \in v^n \) such that \((u'_2, u'_2) \in \mathcal{I}(R) \). Therefore, \(u^n \subseteq (R) v^n \) or \(u^n \cap (R) v^n = \emptyset \). If \(\equiv \) is the coarsest stable partition, then for any auto-bisimulation \(\equiv \) it holds that \(\equiv \subseteq \equiv \). Assuming for contradiction that \(u, v \) and \(\equiv \) exist such that \(u \not\equiv v \) and not \(u \equiv v \), according to Lemma 5.12 the union of \(\equiv \) and \(\equiv \) would be a stable partition coarser than \(\equiv \).

The following algorithm can be used to construct the coarsest stable partition:

- Start with the trivial partition consisting of only one component
- Repeat
 - Choose a component \(u^n_0 \) and a proposition \(p \in \mathcal{P} \);
 - Split \(u^n_0 \) into \(u^n_0 \cap \mathcal{I}(p) \) and \(u^n_0 \setminus \mathcal{I}(p) \)
 - Choose components \(u^n_0 \) and \(w^n_i \), and a relation \(R \in \mathcal{R} \);
 - Split \(u^n_0 \) into \(u^n_0 \cap (R) w^n_i \) and \(u^n_0 \setminus (R) w^n_i \)
 - until no new components can be obtained that way

The Paige-Tarjan algorithm [Paige and Tarjan 1987] given in Figure 11 is a sophisticated implementation of this idea; it maintains two partitions: a coarser one, \(C \), and a finer one, \(F \). All components in \(F \) are stable with respect to any component in \(C \). The nondeterministic choice in the above repeat-loop is replaced by a systematic split of the finer partition with respect to all components of the coarser partition. Initially, \(C \) is the trivial partition and \(F \) is the split of \(C \) w.r.t. all \(p \in \mathcal{P} \) and \(R \in \mathcal{R} \). Then, a \(w^n \in C \) is split into \(w^n_1 \in F \) and \(w^n_2 \triangleq w^n \setminus w^n_1 \). Any \(w^n_0 \in F \) is split into four parts: First, it is split with respect to \((R) w^n_0 \), and then again with respect to \((R) w^n_0 \).

In this split of \(u^n_0 \), either the last or the first three parts must be empty: since \(u^n_0 \) is stable with respect to \(C \), either \(u^n_0 \subseteq (R) w^n \) or \(u^n_0 \cap (R) w^n = \emptyset \) for all \(R \). If \(u^n_0 \subseteq (R) w^n \), then \((u^n_0 \setminus (R) w^n) \setminus (R) w^n = \emptyset \). If \(u^n_0 \cap (R) w^n = \emptyset \), then both \((u^n_0 \cap (R) w^n) \setminus \emptyset = \emptyset \) and \(u^n_0 \cap (R) w^n = \emptyset \); since \(w^n = w^n_1 \cup w^n_2 \), it holds that \((R) w^n = (R) w^n_1 \cup (R) w^n_2 \).

The overall complexity of the algorithm is \(O(m \cdot \log n) \), where \(n \) is the number of points in the original model, and \(m \) is the number of points (partitions) in the result.

6. Completeness

Logicians are interested in logical truths, i.e., in the set of formulas which are valid in all models of the logic. How does it help to know about the set of all valid formulas when we want to find out whether a particular formula \(\phi \) holds for a given model or theory? The answer is to encode the model or theory as a set of assumptions \(\Phi \) and check whether the formula in question follows from \(\Phi \).

In fact, a logic can be defined to be any set of well-formed formulas which is closed under provable consequence; and a theory is a set of well-formed formulas which is closed under semantical consequence.

Thus there are three notions of consequence involved here:
Figure 11: Paige-Tarjan algorithm for bisimulation minimization

- $\Phi \models \varphi$ if φ follows from Φ,
 i.e. if any model in which all formulas from Φ are valid also validates φ,
- $\Phi \vdash \varphi$ if φ can be proved from Φ,
 i.e. if there is a proof of φ which uses only assumptions from Φ, and
- $(\Phi \rightarrow \varphi)$ if φ is implied by Φ.

This is a statement of the object language which is only defined if Φ is a single
formula. To be liberal, we can identify a finite set of formulas $\Phi \triangleq \{\varphi_1, ..., \varphi_n\}$
with the conjunction $\Phi \trianglerighteq (\varphi_1 \land ... \land \varphi_n)$.

Note that $\Phi \models \varphi$ is different from $\mathcal{M} \models \varphi$. The notations $\models \varphi$ and $\vdash \varphi$ are short
for $\{\} \models \varphi$ and $\{\} \vdash \varphi$, respectively.

Of course, the semantical notion of \textit{validity} sometimes is restricted to certain
classes of models, e.g., to those satisfying certain axioms, or to natural or tree
models.

Also, the algorithmic notion of \textit{provability} sometimes is parameterized by a cer-
tain proof-system. In this section, we will use \textit{Hilbert-style} proof-systems, consisting
of a set of \textit{axioms} and \textit{derivation rules}. Although such proof systems are not very
practical, often they can illustrate the principles underlying completeness proofs.

Usually, axioms and derivation rules contain \textit{proposition variables} $q \in Q$ and a
substitution rule allowing consistent replacement of proposition variables with form-
ulas. Conceptually, proposition variables are not the same as propositions, though
many authors do not distinguish between these syntactic categories. A free propo-
sition variable in an axiom can be thought of more or less as if it were universally
quantified.
To complicate things even more, there are two notions of validity of a formula:
local validity \((U, I, w_0) \models \varphi\) (in a model, where the evaluation point is given), and
universal validity \((U, I) \models \varphi\) in a frame \((U, I)\). Traditionally, focus has been on
complete axiom systems for universal validity rather than for the local version;
proofs are much simpler. Thus, in this section we are interested in formulas which
are valid in all models at all points.

One of the major concerns after defining a logical language and its models is
to find an adequate proof-system for the logic, i.e. one which is both sound and
complete. That is, for any \(\Phi\) and \(\varphi\),

- if \(\Phi \vdash \varphi\), then \(\Phi \models \varphi\) (Soundness), and
- if \(\Phi \models \varphi\), then \(\Phi \vdash \varphi\) (Completeness).

It is obvious that any proof system should be sound: we don’t want to be able to
“prove” false statements. Usually is very easy to prove soundness. We just have to show
that the axioms are valid, and that all formulas which can be deduced from
valid formulas by the derivation rules are valid. Completeness is often much harder
to show, if not impossible. However, it is important to strive for completeness.
Firstly, we would like to make sure that any specification which is satisfied by
a program can be proved from the program axioms, provided the specification
expressible in the logic. Secondly, and more important, in many cases decision
approaches for automated verification can be obtained from the completeness proofs
or vice versa.

6.1. Deductions in Multimodal Logic

To illustrate the basic idea, we start with a simple deductive system for multimodal
logic. A number of similar proofs can be found in [Burgess 1984]. We use the
following axioms and rules:

\[
\begin{align*}
&\text{(taut)} \quad \text{propositional tautologies} \\
&\text{(MP)} \quad p, (p \rightarrow q) \vdash q \\
&\text{(N)} \quad q \vdash [\langle R \rangle q] \\
&\text{(K)} \quad \vdash ([\langle R \rangle (p \rightarrow q) \rightarrow ([\langle R \rangle p \rightarrow [\langle R \rangle q])]
\end{align*}
\]

Since this axiom system is based on the \([\langle R \rangle]\)-operator rather than the \(\langle R \rangle\)-operator, we
identify \(\langle R \rangle \varphi\) with \(\neg [\langle R \rangle \neg \varphi].\)

To prove \(\Phi \vdash \varphi\) we have to give a derivation of \(\varphi\) from the assumptions \(\Phi\), i.e.,
a sequence of formulas such that the last element of this sequence is \(\varphi\), and every
element of this sequence is either from \(\Phi\), or a substitution instance of an axiom,
or the substitution instance of the consequence of a rule, where all premises of the
rule for this substitution appear already in the derivation.

As an example, let us assume \((p \rightarrow q)\) and derive some consequences:
1. \((p \rightarrow q)\) (assumption)
2. \([R](p \rightarrow q)\) (1, N)
3. \(((R)(p \rightarrow q) \rightarrow ([R] p \rightarrow [R] q))\) (K)
4. \((R) p \rightarrow [R] q\) (2, 3, MP)
5. \(\neg q \rightarrow \neg p\) (1, taut)
6. \((R) \neg q \rightarrow [R] \neg p\) (5, as in 1-4)
7. \((\neg [R] \neg p \rightarrow \neg [R] \neg q)\) (6, taut)
8. \((\langle R \rangle p \rightarrow \langle R \rangle q)\) (7, \langle R \rangle \varphi \equiv \neg [R] \neg \varphi)

Lines (4) and (8) form the basis for an inductive proof of the following replacement and monotonicity rules:

\textbf{(repl)} \quad (p \leftrightarrow q) \vdash (\varphi(p) \leftrightarrow \varphi(q)), \quad \text{and}

\textbf{(mon)} \quad (p \rightarrow q) \vdash (\varphi(p) \rightarrow \varphi(q)), \quad \text{where} \ \varphi(q) \ \text{is positive in} \ q.

\textbf{(mon)} \ is a syntactical analog of Lemma 3.8. The requirement that \(\varphi(q)\) is positive in \(q\) means that every occurrence of \(q\) is under an even number of negation signs (cf. the definition on Page 1394). For example, \([R] q, \langle R \rangle q, \) and \((q \land [R](q \lor \langle R \rangle q))\) are positive in \(q\).

6.1. **Theorem** (Soundness of \(\text{ML}\) axiom system). If \(\Phi \vdash \varphi\) then \(\Phi \vDash \varphi\).

\textbf{Proof:} Soundness of \(\text{taut}\) and \(\text{MP}\) is immediate. \(\text{N}\) is the so called \textit{necessitation rule}. Its validity depends on the universal interpretation of validity: if some formula is valid in every point of a model, it is valid in every point which is the \(R\)-successor of some other point in that model. \(\text{K}\) is the classical \textit{Kripke}-axiom which holds for all normal modal logics. If in all accessible points \(p\) holds, and in all accessible points \(p \rightarrow q\) holds, then in all accessible points \(q\) must hold.

The classical way to prove this theorem is the so-called Henkin-Hasenjäger construction. A set \(\Psi\) of formulas is \textit{consistent with} \(\Phi\), if there is no finite subset \(\{\psi_1, \ldots, \psi_n\} \subseteq \Psi\) such that \(\Phi \vdash (\psi_1 \land \ldots \land \psi_n \rightarrow \bot)\). Given a set \(\Phi\) of assumptions and a formula \(\varphi\) which is consistent with \(\Phi\), we will construct a model in which \(\Phi\) is universally valid and \(\varphi\) is locally valid. Call a set \(w\) of formulas \textit{maximal}, if for any formula \(\psi\), either \(\psi\) or \(\neg \psi\) is in \(w\).

6.2. **Lemma** (Lindenbaum’s extension lemma). For any formula \(\varphi\) which is consistent with \(\Phi\) there exists a maximal consistent set \(w_0\) such that \(\varphi \in w_0\) and \(\Phi \subseteq w_0\).

\textbf{Proof:} Start with \(\Phi \cup \{\varphi\}\); for every formula \(\psi\) according to a fixed enumeration add either \(\psi\) or \(\neg \psi\) to \(w\), whichever is consistent with the set constructed so far.

The \textit{canonical model} for \(\Phi\) is \((U, I, w)\), where

- \(U\) is the set of maximal consistent sets which include \(\Phi\),
- \(I(R) \equiv \{w_0, w_1\} | q \in w_1 \implies \langle R \rangle q \in w_0\}, and
- \(I(p) \equiv \{w_0 | p \in w_0\}, and
- \(w\) is any element from \(U\) such that \(\varphi \in w\).
The following result is sometimes called the “truth” lemma. Intuitively, it states that any point in the canonical model contains exactly those formulas which are satisfied by this point.

6.3. Lemma (Truth lemma). Let \(\varphi \) be any formula and \(w \) be a maximal consistent set in the canonical model. Then \(\varphi \in w \) iff \((U,I,w) \models \varphi \).

Proof: The proof is by induction on the structure of \(\varphi \). In the inductive step, there is one interesting case. We must show that \(\langle R \rangle \varphi \in w_0 \) iff \((U,I,w_0) \models \langle R \rangle \varphi \). We first prove that if \((U,I,w_0) \models \langle R \rangle \varphi \) implies \(\langle R \rangle \varphi \in w_0 \). Since \(w_0 \models \langle R \rangle \varphi \), there exists a \(w_1 \) such that \(w_0 \models \varphi \) and \(w_1 \models \varphi \). By definition of \(R \), we have \(\langle R \rangle \varphi \in w_0 \) for all \(q \in w_1 \). Since \(w_1 \models \varphi \), the induction hypothesis implies \(\varphi \in w_1 \). Consequently, \(\langle R \rangle \varphi \in w_0 \).

For the other direction, assume that \(\langle R \rangle \varphi \models w_0 \). We have to show that there exists a maximal consistent set \(w_1 \) such that \((w_0,w_1) \in I(R) \) and \(\varphi \in w_1 \). First observe that the formula \(\vdash ((\langle R \rangle \varphi \land [R] \psi) \rightarrow \langle R \rangle(\varphi \land [R] \psi)) \) is derivable:

1. \([R](\psi \rightarrow \neg \varphi) \rightarrow ([R] \psi \rightarrow [R] \neg \varphi) \quad (\text{K}) \)
2. \(\neg R \neg \varphi \land [R] \psi \rightarrow \neg R([\psi \rightarrow \neg \varphi]) \quad (1, \text{taut}) \)
3. \(([R] \varphi \land [R] \psi) \rightarrow \langle R \rangle(\varphi \land \psi) \quad (2, \text{repl, taut}) \)

Recall that \([R] \varphi \) is a syntactical abbreviation of \(\neg \langle R \rangle \neg \varphi \). In line 3., we replaced \(\neg \neg \varphi \) by \(\varphi \) and \(\neg (\psi \rightarrow \neg \varphi) \) by \((\varphi \land \psi) \). This derivation can be generalized to obtain

\[\vdash ((\langle R \rangle \varphi \land [R] \psi_1 \land \cdots \land [R] \psi_n) \rightarrow \langle R \rangle(\varphi \land \psi_1 \land \cdots \land \psi_n)) \]

Because of this result, the set \(\{ \varphi \} \cup \{ \psi \mid [R] \psi \models w_0 \} \) must be consistent with \(\Phi \). Otherwise, by the definition of consistency on page 1424, there would exist a finite set \(\{ \psi_1, \ldots, \psi_n \} \) of formulas such that \([R] \psi_i \models w_0 \) for all \(1 \leq i \leq n \), and \((\varphi \land \psi_1 \land \cdots \land \psi_n \models \bot) \) must be derivable from \(\Phi \). Since \(\vdash ([R] \bot \rightarrow \bot) \), we would have \(\Phi \vdash ([R] \varphi \land \psi_1 \land \cdots \land \psi_n \rightarrow \bot) \). Therefore, \(\Phi \vdash ((\langle R \rangle \varphi \land [R] \psi_1 \land \cdots \land [R] \psi_n) \rightarrow \bot) \). Since \(\{ \langle R \rangle \varphi, [R] \psi_1, \ldots, [R] \psi_n \} \subseteq w_0 \), the set \(w_0 \) would be inconsistent with \(\Phi \), which is a contradiction.

Since \(\{ \varphi \} \cup \{ \psi \mid [R] \psi \models w_0 \} \) is consistent with \(\Phi \), there exists some maximal consistent extension \(w_1 \) of this set. Moreover, if \(\psi \models w_1 \), then \([R] \neg \psi \) cannot be in \(w_0 \) (otherwise, both \(\psi \) and \(\neg \psi \) would be in \(w_1 \)). Since \(w_0 \) is maximal, \(\psi \models w_1 \) implies \(\neg [R] \neg \psi \models [R] \psi \models w_0 \). From the definition of \(I(R) \), it follows that \((w_0,w_1) \in I(R) \). Since \(\varphi \models w_1 \), the induction hypothesis gives \((U,I,w_0) \models \varphi \). Together with \((w_0,w_1) \in I(R) \) we have \((U,I,w_0) \models \langle R \rangle \varphi \), which was to be shown.

6.4. Lemma (Satisfiability of consistent formulas). Every multimodal formula \(\varphi \) consistent with \(\Phi \) is satisfiable in some model validating \(\Phi \).

Proof: Since for the canonical model \((U,I,w) \) it holds that \(\Phi \subseteq w \) and \(\varphi \in w \), Lemma 6.3 asserts that \((U,I,w) \models \Phi \) and \((U,I,w) \models \varphi \). Thus every consistent formula is satisfied in its canonical model.
6.5. Theorem (Completeness). The deductive system for ML is complete:
If $\Phi \vdash \varphi$ then $\Phi \models \varphi$.

Proof: Without loss of generality, we can assume Φ to be consistent with itself: if Φ is inconsistent, then $\Phi \vdash \varphi$ holds trivially. If $\Phi \models \varphi$, then no model in which Φ is universally valid contains a point which satisfies $\{ \neg \varphi \}$; therefore with 6.4 it follows that $\{ \neg \varphi \}$ is inconsistent with Φ, hence $\Phi \vdash (\neg \varphi \rightarrow \bot)$, which is $\Phi \vdash \varphi$.

We now show how this proof can be extended for natural models. Recall that a model is called deterministic, if all accessibility relations $R \in \mathcal{R}$ are univalent: for any given point w there is at most one R-successor of w. The following axiom describes this property.

$$(\mathbf{U}) \vdash ((R \cdot q \rightarrow [R] q))$$

Soundness of this axiom in deterministic models is immediate: if there is any R-successor satisfying q, then all R-successors must satisfy q. In the completeness proof, axiom \mathbf{U} forces the canonical model to be deterministic: for every $w_0 \in U$ of the canonical model and every $R \in \mathcal{R}$ there can be at most one w_1 with $(w_0, w_1) \in I(R)$. To see why this is true, assume for contradiction that $(w_0, w_1) \in I(R)$ and $(w_0, w'_1) \in I(R)$. If $w_1 \neq w'_1$, then there must be a formula ψ such that $\psi \in w_1$ and $\neg \psi \in w'_1$. Therefore $\langle R \rangle \psi \in w_0$ and $\langle R \rangle \neg \psi \in w_0$. This is a contradiction to the consistency of w_0 from axiom \mathbf{U} it follows that if $\langle R \rangle \psi \in w_0$, then $\neg \langle R \rangle \neg \psi \in w_0$, since maximal consistent sets are closed under modus ponens. Thus, $\langle R \rangle \neg \psi \notin w_0$. Therefore, we have shown \mathbf{U} is sound and complete for deterministic models.

There are a number of other axioms which impose specific conditions on the canonical model. To investigate such connections is the topic of correspondence theory, see [van Benthem 1984]. Correspondences between modal axioms and relation algebraic expressions can be found in [Schlingloff and Heinle 1997]. (Such an expression is built from basic relation symbols with union, complementation, and transitive closure.)

As an example for the use of axiom (U) in verification, we prove

$$\{ (\text{on} \rightarrow \langle R \rangle \neg \text{on} \land [S] \bot), \ (\neg \text{on} \rightarrow \langle S \rangle \text{on} \land \langle R \rangle \neg \text{on}) \} \vdash [R] \langle S \rangle [S] \bot.$$

The assumptions can be seen as describing the actions of a semaphore with two states, on and \negon, which can be set with an S-operation when it is not on, and can be reset with an R-operation at any time. The semaphore cannot be set when it is in state on. We want to show that after a reset it is possible to set the semaphore once and only once; that is, for all points reachable with an R operation there exists an S successor from which no further S operation is possible.

1. on $\rightarrow \langle R \rangle \neg$on $\land [S] \bot$ (assumption)
2. \negon $\rightarrow \langle S \rangle$ on $\land \langle R \rangle \neg$on (assumption)
3. on $\rightarrow \langle R \rangle \neg$on (1, taut)
4. \(\neg \text{on} \rightarrow \langle R \rangle \neg \text{on} \quad (2, \text{taut}) \\
5. \langle R \rangle \neg \text{on} \quad (3, 4, \text{taut}) \\
6. \langle R \rangle \neg \text{on} \rightarrow \langle R \rangle \langle S \rangle \neg \text{on} \quad (U) \\
7. \langle R \rangle \neg \text{on} \quad (5, 6, \text{MP}) \\
8. \neg \text{on} \rightarrow \langle S \rangle \text{on} \quad (2, \text{taut}) \\
9. \langle R \rangle \neg \text{on} \rightarrow \langle R \rangle \langle S \rangle \text{on} \quad (8, \text{mon}) \\
10. \langle R \rangle \langle S \rangle \text{on} \quad (7, 9, \text{MP}) \\
11. \text{on} \rightarrow [S] \perp \quad (1, \text{taut}) \\
12. \langle R \rangle \langle S \rangle \text{on} \rightarrow [R] \langle S \rangle [S] \perp \quad (11, \text{mon}) \\
13. [R] \langle S \rangle [S] \perp \quad (10, 12, \text{MP}) \\

As we see, even in such simple examples it can be quite difficult to find a Hilbert-style proof "by hand"; therefore it is important to develop automatic proof methods. Algorithms for this purpose are the topic of Section 7.

Consider the case that the logic contains only one accessibility relation \(\mathcal{R} = \{ R \} \). Then each path through a deterministic canonical model forms a natural model: let the formula \(\varphi \) be consistent with all substitution instances of the axiom \((U) \). Consider a sequence \(\sigma \equiv (w_0, w_1, w_2, ...) \) of points in the (deterministic) canonical model for \(\varphi \) such that \(\varphi \in w_0 \) and \(w_i.Rw_{i+1} \) for all \(i \). Obviously, \(\sigma \) is a natural model which initially satisfies \(\varphi \). Therefore, with axiom \((U) \) each consistent formula is satisfiable in a natural model; in other words, \((U) \) is complete for monomodal logic in natural models. The same holds if we require univalence of the transition relation \(\mathcal{R} \equiv \bigcup \mathcal{R} \):

\[
\begin{align*}
\text{(N)} & \quad q \vdash \Box q \\
\text{(K)} & \quad (\Box (p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q)) \\
\text{(U)} & \quad (X q \rightarrow \Box q)
\end{align*}
\]

Together with \(\text{(taut)} \) and \(\text{(MP)} \), these axioms are sound and complete for the \(X \)-operator in natural models.

6.2. Transitive Closure Operators

A major difference between temporal and modal logic is that temporal logic has operators for the transitive closure of the transition relation. In order to motivate the discussion in the completeness proofs for \(\text{CTL} \) and \(\text{LTL} \), in this subsection we extend the above completeness proof to handle such operators. For simplicity, we first give the proof for the logic with operators \(X \) (or, equivalently \(E \cdot X \)) for the transition relation and \(F^t \) (or \(E \cdot F^t \)) for its reflexive transitive closure (plus derived operators \(\Box \varphi \equiv \neg X \neg \varphi \), \(G^t \varphi \equiv \neg F^t \neg \varphi \), etc.). The necessary generalizations for \(\text{CTL} \) and \(\text{LTL} \) are indicated at the end of this subsection.

Close inspection of the semantics of \(F^t \) reveals a fundamental problem, compared to the completeness proof given above. Consider the set \(\Phi \equiv \{ p, \Box p, \Box \Box p, \Box \Box \Box p, \ldots \} \). Then clearly \(\Phi \models G^t \varphi \). However, \(\Phi \not\models G^t \varphi \), since every proof of \(G^t \varphi \) from \(\Phi \) can use only a limited number of premises (proofs are finite sequences).
But there does not exist a finite subset \(\Phi_0 \subseteq \Phi \) such that the statement \(\Phi_0 \vdash G' \varphi \) holds.

Thus, the above completeness proof fails. For an arbitrary set \(\Phi \), it may not be possible to construct a maximal consistent extension, since we cannot apply an axiom to show the consistency of an infinite set of premises.

When dealing with second order concepts like transitive closure we have to limit ourselves to a weaker form of completeness. An axiom system is called weakly complete, if \(\Phi \models \varphi \) implies \(\Phi \vdash \varphi \) for all finite \(\Phi \).

In first order logic, the deduction theorem makes it possible to discard any finite set of assumptions: \(\psi \models \varphi \iff \vdash (\forall \psi \rightarrow \varphi) \), where \(\forall \psi \) is the universal closure of \(\psi \). In temporal logic, a similar deduction theorem holds:

6.7. **Theorem (Deduction theorem)**. \(\psi \models \varphi \iff \vdash (G' \psi \rightarrow \varphi) \).

Therefore, to prove weak completeness it is sufficient to prove that \(\models \varphi \) implies \(\vdash \varphi \). We use the following axiom system (in addition to modus ponens (MP) and propositional tautologies (taut)):

\[
\begin{align*}
\text{(N)} & \quad q \vdash \Box q \\
\text{(K)} & \quad \vdash (\Box (p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q)) \\
\text{(Rec)} & \quad \vdash (G' q \rightarrow (q \land \Box (G' q))) \\
\text{(Ind)} & \quad \vdash (p \rightarrow (q \land \Box p)) \rightarrow (p \rightarrow G' q)
\end{align*}
\]

Dually, the last axiom and rule can be written as

\[
\begin{align*}
\text{(Rec)} & \quad \vdash ((q \lor X F' q) \rightarrow F' q) \\
\text{(Ind)} & \quad \vdash ((q \lor X p) \rightarrow p) \rightarrow (F' q \rightarrow p)
\end{align*}
\]

(N) and (K) are “nexttime-versions” of the respective modal rule and axiom given above. In this subsection, we prove completeness for general Kripke structures (with a possibly nondeterministic accessibility relation), thus there is no need for the temporal version of (U). Axiom (Rec) and rule (Ind) are sometimes attributed to Segerberg. They reflect the definition of the transitive closure as the minimal transitive relation which includes all accessibility relations. (Rec) is the recursion axiom which can be used to unfold a \(G' \)-operator (cf. Subsection 3.2, Page 1395):

\[
G' \varphi \rightarrow (\varphi \land \Box (\varphi \land \Box (\varphi \land \ldots))).
\]

(Ind) is the induction rule which can be used to deduce a property \(G' \varphi \) from an invariant \(\psi \), i.e., from a formula \(\psi \) for which \((\psi \rightarrow \Box \psi) \) and \((\psi \rightarrow \varphi) \) are derivable.

6.8. **Lemma.** (Rec) and (Ind) are sound: \(\vdash \varphi \) implies \(\models \varphi \).

For the soundness of (Rec), observe that \(w \models G' q \) means that for all \(u \geq w \) it holds that \(u \models q \). Thus \(w \models q \), and for all \(v \succ w \) and \(u \geq v \) we have \(u \models q \), which means \(w \models \Box G' \varphi \).

For the soundness of (Ind), assume that \((p \rightarrow (q \land \Box p)) \) is universally valid in a frame \(F \triangleq (U, I) \), that is, for any \(w \in U \), if \(w \models p \), then \(w \models q \) and \(v \models p \) for all
$v \succ w$. Assume further that $w_0 \models p$, and show that $w \models q$ for all $w \geq w_0$. We show that $w \models p$ for all $w \geq w_0$. From this the claim follows since $w \models p$ implies $w \models q$. The proof is by induction on the length of the shortest path between w_0 and w. If this length is zero, then $w_0 = w$, and there is nothing to show. For the inductive step, assume that the shortest path from w_0 to w has $n + 1$ elements. Then there exists a predecessor $w' \prec w$ such that $w_0 \leq w'$, and the shortest path between w_0 and w' has n elements. From the induction hypothesis, $w' \models p$. Since $w' \prec w$, it follows that $w \models p$.

Next, we show that these axioms are complete for transitive closure. Up to the truth lemma, the proof is almost the same as for modal logic. But, we only use finite maximal consistent sets: we start with a single (finite) consistent formula φ for which we have to construct a model. The set $ESF(\varphi)$ of extended sub-formulas of φ (sometimes also called Fischer-Ladner closure, [Fischer and Ladner 1979]) is the following set of formulas:

- φ_1 and φ_2 are extended sub-formulas of $(\varphi_1 \rightarrow \varphi_2)$, (thus φ is an extended sub-formula of $\neg \varphi$)
- φ is an extended sub-formula of $X \varphi$,
- φ and $XF \varphi$ are extended sub-formulas of $F \varphi$,
- φ is an extended sub-formula of φ, and
- every extended sub-formula of an extended sub-formula of φ is an extended sub-formula of φ.

For any given φ, the set $ESF(\varphi)$ is finite. A consistent set of formulas is called finitely maximal, if it is maximal with respect to $ESF(\varphi)$; that is, for every extended sub-formula ψ of φ, either ψ or $\neg \psi$ is in the finitely maximal consistent set.

As in the infinite case, for any consistent formula φ there exists at least one consistent set w_0 which is finitely maximal with respect to $ESF(\varphi)$ such that $\varphi \in w_0$. Consider the following finite canonical model (U, I, w):

- U is the set of finitely maximal consistent sets,
- $I(\prec) \triangleq \{ (w_0, w_1) \mid \neg X q \in w_0 \implies \neg q \in w_1 \}$, and
- $I(p) \triangleq \{ w_0 \mid p \in w_0 \}$, and
- w is any element from U such that $\varphi \in w$.

Compare this with the canonical model for modal logic on Page 1424. Similar as in Lemma 6.3, for any extended sub-formula φ and finitely maximal consistent set w, the following statement holds:

6.9. Lemma (Truth lemma for transitive closure operators). $w \models \varphi$ iff $\varphi \in w$.

From this truth lemma, completeness follows exactly as in the multimodal case. Proof: The proof is by induction on φ. The case $\varphi = X \psi$ is proven almost exactly as in the completeness proof for modal logic. If $(U, I, w_0) \models X \psi$, then there exists a w_1 such that $w_0 \prec w_1$ and $w_1 \models \psi$. Assuming for contradiction that $X \psi \not\in w_0$, we have $\neg X \psi \in w_0$, since the set of extended sub-formulas is closed under (single) negation. From the definition of $I(\prec)$ we can infer that $\neg \psi \in w_1$, i.e., $\psi \not\in w_1$. According to the induction hypothesis, $w_1 \models \psi$, which is a contradiction.
In the other direction, assume that $\mathbf{X} \psi \in w_0$, and let w_1 be any finitely maximal consistent extension of $\{\psi\} \cup \{-\mathbf{X} \xi \in w_0\}$. Since $\psi \in w_1$, the induction hypothesis gives $(U, I, w_1) \models \psi$. According to the definition of $\mathcal{I}(\prec)$ it holds that $w_0 \prec w_1$. Therefore $(U, I, w_0) \models \mathbf{X} \psi$.

Thus, it remains to show that $\mathbf{F} \psi \in w_0$ iff $(U, I, w_0) \models \mathbf{F} \psi$. For one direction, assume that $\mathbf{F} \psi \not\in w_0$. We have to prove that $w_0 \not\models \mathbf{F} \psi$. In other words, if $w_0 \subseteq w_n$, then it has to be shown that $w_n \not\models \psi$. Note that $w_0 \subseteq w_n$ iff there is a finite path (w_0, w_1, \ldots, w_n) such that $w_i \prec w_{i+1}$ for all $i < n$. We show by induction on n that $\neg \mathbf{F} \psi \in w_n$, hence $\mathbf{F} \psi \not\in w_n$. For $n = 0$, there is nothing to show. For $n > 0$, the induction hypothesis guarantees that $\mathbf{F} \psi \not\in w_{n-1}$, i.e., $\neg \mathbf{F} \psi \in w_{n-1}$. Both $\mathbf{X} \mathbf{F} \psi$ and $\neg \mathbf{X} \mathbf{F} \psi$ are extended sub-formulas of $\mathbf{F} \psi$, therefore one of them must be in w_{n-1}. From axiom (Rec), the formula $\neg \mathbf{F} \psi \to \neg \mathbf{X} \mathbf{F} \psi$ can be derived. Consequently, $\neg \mathbf{X} \mathbf{F} \psi \in w_{n-1}$. Thus by the definition of $\mathcal{I}(\prec)$, we have $\neg \mathbf{F} \psi \in w_n$. Now we show that $w_n \not\models \psi$. Since axiom (Rec) derives $(\neg \mathbf{F} \psi \to \neg \psi)$ and $\neg \mathbf{F} \psi \in w_n$, the assumption $\psi \in w_n$ would contradict the consistency of w_n. Therefore, $\psi \not\in w_n$. According to the induction hypothesis, $w_n \not\models \psi$.

Now we prove that $\mathbf{F} \psi \in w_0$ implies $w_0 \models \mathbf{F} \psi$. For any finitely maximal consistent set w and any (finite) set W of such sets, let $\tilde{w} \triangleq \bigwedge \{\psi \mid \psi \in w\}$, and $\tilde{W} \triangleq \bigvee \{w \mid w \in W\}$. Furthermore, let $X_w \triangleq \{w' \mid w \prec w'\}$. An important step is to prove

$$(*) \quad \vdash (\tilde{w} \to \tilde{X}_w)$$

Since $\vdash ((\tilde{X}_w \land \tilde{X}_{\psi_2}) \to \tilde{X}(\psi_1 \land \psi_2))$, we can infer $\vdash (\bigwedge \{\tilde{X}_w \to \tilde{X} \bigwedge \{\psi\}\}$. Therefore, $\vdash (\tilde{w} \to \tilde{X} \bigwedge \{\neg \psi \mid \neg \mathbf{X} \psi \in w\})$. Since U is the set of all finitely maximal consistent sets, $\vdash U$ can be proven by propositional reasoning: for each φ and p, it is valid that $\varphi \vdash ((\varphi \land \varphi) \lor (\varphi \land \neg \varphi)$. Since \tilde{U} is the disjunction of all possible conjunction of positive and negative literals from \mathcal{P}, it is derivable from this formula. Therefore, $\vdash (\tilde{w} \to \tilde{X}(\tilde{U}))$. Together, this gives $\vdash (\tilde{w} \to \tilde{X}(\tilde{U} \land \bigwedge \{\neg \psi \mid \neg \mathbf{X} \psi \in w\})$. Consequently, $\vdash (\tilde{w} \to \tilde{X} \bigwedge \{\tilde{u} \land \{\neg \psi \mid \neg \mathbf{X} \psi \in w\} \mid u \in U\})$. If $w' \triangleq u \lor \neg \psi \lor (\neg \psi \in w)$ is inconsistent, then $\vdash (w' \to \bot)$. If w' is consistent, then $w \prec w'$ according to the definition of $\mathcal{I}(\prec)$, i.e., $w' \in X_w$. Therefore, $\vdash (\tilde{w} \to \tilde{X} \bigwedge \{w' \land \psi \in X_w\})$, which proves $(*)$.

Since there are only finitely many extended sub-formulas, the universe U is finite. Let $W \triangleq \{w_0, w_1, \ldots, w_n\}$ be the set $\{w' \in U \mid w_0 \leq w'\}$. From $(*)$, it follows that $\vdash (\bigvee \{w \mid w \in W\} \to \bigvee \{\tilde{X}_w \mid w \in W\})$. Furthermore, $\vdash (\bigvee \{\tilde{X}_w \mid w \in W\} \to \tilde{X} \bigwedge \{\tilde{X}_w \mid w \in W\})$. Since $\{X_w \mid w \in W\} \subseteq W$, it holds that $\vdash (\bigvee \{\tilde{X}_w \mid w \in W\} \to \tilde{X} \bigwedge \{\tilde{X}_w \mid w \in W\})$. Therefore,

$$(**) \quad \vdash (\tilde{w} \to \tilde{X} \bigwedge \{w \mid w \in W\})$$

Assume that $w_0 \not\models \mathbf{F} \psi$ and show that $\mathbf{F} \psi \not\models w_0$. From the assumption, $w \not\models \psi$ for all $w \in W$. As above, the induction hypothesis implies that $\psi \not\models w$ for all $w \in W$, i.e., $\neg \psi \in w$. Consequently, $(\tilde{w} \to \neg \psi)$ for all $w \in W$, which implies $\vdash (w \to \neg \psi)$. Together with $(**)$ we have $\vdash (w \to \neg \psi)$. Thus, by (Ind), $\vdash (w \to \neg (\neg \psi))$. Since $w_0 \in W$, it holds that $\vdash (w_0 \to \neg \psi)$. Therefore, $\vdash (w_0 \to \neg \mathbf{F} \psi)$. Since w_0 is consistent, $\mathbf{F} \psi \not\models w_0$. 2
6.10. Lemma. \((\mathbf{N}), (\mathbf{K}), (\text{Rec}), (\text{Ind})\) is complete: if \(\models \varphi\) then \(\vdash \varphi\).

Proof: The theorem follows from Lemma 6.9 similar as Theorem 6.5 follows from Lemma 6.3 for multimodal logic.

This completeness proof can easily be extended to \textbf{CTL} [Emerson and Halpern 1985]. The following axiom system (in addition to propositional logic) is sound and complete:

\[
\begin{align*}
(\mathbf{N}) & \quad q \vdash A \Box q \\
(\mathbf{K}) & \quad \vdash (A \Box (p \rightarrow q) \rightarrow (A \Box p \rightarrow A \Box q)) \\
(\text{RecEU}^+) & \quad \vdash (E X(q_2 \vee q_1 \land E(q_1 U^+ q_2)) \rightarrow E(q_1 U^+ q_2)) \\
(\text{RecAU}^+) & \quad \vdash (A X(q_2 \vee q_1 \land A(q_1 U^+ q_2)) \rightarrow A(q_1 U^+ q_2)) \\
(\text{IndEU}^+) & \quad \vdash (E X(q_2 \land p) \rightarrow p) \vdash (E(q_1 U^+ q_2) \rightarrow p) \\
(\text{IndAU}^+) & \quad \vdash (A X(q_2 \vee q_1 \land p) \rightarrow p) \vdash (A(q_1 U^+ q_2) \rightarrow p)
\end{align*}
\]

For \textbf{LTL}, proving completeness for natural models is more intricate, since we have to construct a natural model from the canonical model. The axiom system for the future fragment uses suitable versions of \((\mathbf{N}), (\mathbf{K}), (\text{Rec}), (\text{Ind})\) and \((\mathbf{U})\). For \textbf{LTL} with past operators, additional axioms are necessary which describe the relation between \(U^+\) and \(U^-\). Several elaborate proofs can be found in the literature [Prior 1957, Gabbay et al. 1980, Burgess 1984, Lichtenstein et al. 1985, Kröger 1987].

A sound and complete proof system for \textbf{qTL} was described in [Kesten and Pnueli 1995]. We just briefly indicate how the above axioms can be extended for \muTL:\n
\[
\begin{align*}
(\text{Recu}) & \quad \vdash (\nu q. \varphi \rightarrow \varphi[q := \nu q. \varphi]) \\
(\text{Indu}) & \quad (p \rightarrow \varphi[q := p]) \vdash (p \rightarrow \nu q. \varphi)
\end{align*}
\]

An equivalent formulation which is based on the least fixpoint operator is

\[
\begin{align*}
(\text{Recu}) & \quad \vdash (\varphi[q := \mu q. \varphi] \rightarrow \mu q. \varphi) \\
(\text{Indu}) & \quad (\varphi[q := p] \rightarrow p) \vdash (\mu q. \varphi \rightarrow p)
\end{align*}
\]

All recursion and induction axioms above can be obtained as special cases of these very general axioms. For their soundness, we refer to the Knaster-Tarski fixpoint properties in Corollary 3.9. The completeness proof can be adapted to show completeness for a certain subclass of positive \muTL formulas, the aconjunctive ones [Kozen 1983]. This restriction enforces that if \(\nu \psi_1\) and \(\nu s \psi_2\) are subformulas of \(\nu q \psi\) each containing an occurrence of the same variable \(q\), then no two occurrences of variables \(r\) and \(s\) are conjunctively related.

The problem of completeness of these axioms for all \muTL formulas was solved in [Walukiewicz 1995]. It can be shown that for any formula there exists an equivalent aconjunctive formula. Thereby it suffices to derive this aconjunctive formula from the axioms in order to prove any given formula.

In these proofs, there is a pattern which will frequently reappear in subsequent sections. An invariance is a negative occurrence of a least fixpoint operator, or a
positive occurrence of a greatest fixpoint operator (e.g., G^\ast, W^+, ν). Dually, an *eventuality* (F^\ast, U^+, μ etc.) is a positive occurrence of a least fixpoint operator, or a negative occurrences of greatest fixpoint operator. In the completeness proof, invariances are unfolded via the recursion axiom, whereas eventualities are fulfilled using the recursion axiom.

7. Decision Procedures

In this section we derive decision procedures for some of the logics introduced above. As shown by Büchi and Rabin [Büchi 1962, Rabin 1969], monadic second order logic on natural and tree models is decidable. Therefore, all logics which have a validity-preserving standard translation into MSOL or SnS (second order logic of n successors) are decidable. However, this proof does not yield efficient decision algorithms. In this section, we will develop such algorithms from the completeness proofs of the previous section. Given a set of assumptions Φ and a formula φ, we want to decide whether $\Phi \vdash \varphi$ or not. By completeness, $\Phi \vdash \varphi$ iff $\Phi \models \varphi$. Even though multimodal logic is complete, for arbitrary sets Φ of assumptions and a given formula φ it is not decidable whether $\Phi \models \varphi$. Therefore, we restrict attention to finite sets of assumptions. Hence we need an algorithm which, given a formula φ and a finite set of assumptions Φ, decides whether there is a model which globally validates Φ such that φ is satisfied in the initial point.

If such a model exists, then often the size of the canonical model for Φ and φ can be bounded by a function of the length of the formulas Φ and φ ("finite model property"). Therefore, many propositional modal and temporal logics are decidable: it is sufficient to check all models up to a certain size whether they are appropriate. However, this is not practical. In this section, we show how to construct a model effectively.

There are two main approaches. "Global" algorithms start with the largest possible model and shrink it to an appropriate size. "Local" algorithms start with a minimal model which is extended until it is a model for the formula. For technical reasons, global algorithms seem to be more adequate for the branching time approach, and local algorithms seem to be better suited for linear temporal logics.

7.1. Deciding Branching Time Logics

To decide whether a given multimodal formula φ is satisfiable with assumptions Φ, we try in a systematic way to construct the canonical model for $\Phi \models \varphi$. In the universe of this model, points are maximal consistent sets of formulas. Since we assume that the set Φ of assumptions is finite, it is sufficient to consider maximality with respect to all sub-formulas of Φ and φ. In the following, we assume that φ and Φ are given and write SF for the (finite) set of all of these sub-formulas. We use subsets of SF to represent maximal sets of sub-formulas. That is, a set $w \subseteq SF$ represents the maximal set $\{\psi \mid \psi \in w\} \cup \{\neg \psi \mid \psi \notin w\}$. A set $w \subseteq SF$ of
subformulas is called propositionally consistent, if
• \(\bot \notin w \), and
• if \((\psi_1 \rightarrow \psi_2) \in SF\), then \((\psi_1 \rightarrow \psi_2) \in w \) iff \(\psi_1 \in w \) implies \(\psi_2 \in w \).
That is, \((\psi_1 \rightarrow \psi_2) \in w \) iff \(\psi_1 \notin w \) or \(\psi_2 \in w \). Expanding the definitions it can be shown that
• if \(\neg \psi \in SF \), then \(\neg \psi \in w \) iff \(\psi \notin w \),
• if \((\psi_1 \land \psi_2) \in SF \), then \((\psi_1 \land \psi_2) \in w \) iff \(\psi_1 \in w \) and \(\psi_2 \in w \), and
• if \((\psi_1 \lor \psi_2) \in SF \), then \((\psi_1 \lor \psi_2) \in w \) iff \(\psi_1 \in w \) or \(\psi_2 \in w \).
Any propositionally consistent set is “consistent for propositional logic”: if we consistently replace any modal formula in \(w \) by a new proposition, then the resulting set of formulas is satisfiable in propositional logic. A satisfying interpretation is given by \(\mathcal{I}(p) \triangleq \text{true} \) iff \(p \in w \).

To construct the canonical model of a consistent formula, let the universe \(U \) initially be the set of propositionally consistent sets of sub-formulas which contain all assumptions. That is, \(U \triangleq \{ w \subseteq SF \mid \Phi \subseteq w \} \). The obvious choice for \(\mathcal{I}(p) \) then is \(\{ w \mid p \in w \} \). The initial interpretation of any \(\langle R \rangle \) operator is the universal relation \(U \times U \). The decision procedure iteratively deletes ‘bad arcs’ and ‘bad points’ until stabilization is reached. Bad arcs are pairs \((w_0, w_1) \) in \(\mathcal{I}(R) \) such that \(w_0 \) contains \([R] \psi \) but it is not the case that \(\psi \in w_1 \). More precisely, an arc \((w_0, w_1) \) is bad if for some sub-formula \(\langle R \rangle \psi \) it holds that \(\langle R \rangle \psi \notin w_0 \) and \(\psi \notin w_1 \). Bad points \(w_0 \) contain a formula \(\langle R \rangle \psi \), but there does not (or no longer) exist a tuple \((w_0, w_1) \) in \(\mathcal{I}(R) \) with \(\psi \in w_1 \). If upon termination there is a point \(w \) which was not deleted such that \(\varphi \in w \), it returns “satisfiable”, else it returns “unsatisfiable”.

7.1. Lemma. The modal logic decision procedure is sound: \(\varphi \) is satisfiable in some model which universally validates \(\Phi \) iff the procedure returns “satisfiable”.

Proof: For one direction, let \(\mathcal{M} = (U, \mathcal{I}, w_0) \) be the result of the above deletion procedure. That is, assume that \(\mathcal{M} \) does not contain a bad arc or bad point, and that \(w_0 \in U \) is some point with \(\varphi \in w_0 \). We show that \((U, \mathcal{I}) \models \Phi \) and \((U, \mathcal{I}, w_0) \models \varphi \).
Similar to the truth Lemma 6.3, for every \(w \in U \) and every \(\psi \in SF \) it holds that \(\psi \in w \) iff \((U, \mathcal{I}, w) \models \psi \). This is shown by induction on the structure of \(\psi \); for atomic propositions and boolean combinations of formulas the statement is just a consequence of the respective definitions. For modal subformulas, it follows from the deletion rules in the decision procedure: if \([R] \psi \in w \) then for all \(w' \in U \) such that \((w, w') \in \mathcal{I}(R) \) it must be the case that \(\psi \in w' \). This holds since \(\mathcal{M} \) does not contain any bad arcs. By the induction hypothesis, \(w' \models \psi \), and therefore \(w \models [R] \psi \). If \(\langle R \rangle \psi \in w \), then there is some \(w' \in U \) such that \((w, w') \in \mathcal{I}(R) \) and \(\psi \in w' \). This holds since \(\mathcal{M} \) does not contain any bad points. As above, it follows that \(w \models \langle R \rangle \psi \). Thus, the assumption \(\varphi \in w_0 \) implies that \(w_0 \models \varphi \). Moreover, since every \(w \in U \) contains \(\Phi \) we have shown that \(\varphi \) is satisfiable in a model which globally validates \(\Phi \).

For the other direction, assume that for some (finite or infinite) model \(\mathcal{M} = (U, \mathcal{I}, w_0) \) it holds that \(w_0 \models \varphi \), and \(w \models \varphi \) for all \(w \in U \). We have to show that
the above procedure terminates successfully. For any \(w \in U \), let \(w^w = \{ \psi \in SF \mid w \models \psi \} \). Since \(SF \) is finite, there are only finitely many such \(w^w \). Let the \textit{filtration} of \(M \) be \(M^w = \langle U^w, I^w, w^0 \rangle \), where

- \(U^w = \{ w \mid w = u^w \text{ for some } u \in U \} \),
- \((w_1, w_2) \in I^w(R) \) iff there are \(u_1, u_2 \in U \) such that \(w_1 = u_1^w \) and \(w_2 = u_2^w \) and \((u_1, u_2) \in I(R) \),
- \(w \in I^w(p) \) iff \(p \in w \), and
- \(w^0 = \{ \psi \in SF \mid w_0 \models \psi \} \).

Clearly, \(M^w \) is a submodel of the initial model of our decision algorithm. Moreover, no point or arc of \(M^w \) is ever removed by the decision procedure. Therefore, the algorithm terminates with a nonempty result. Since \(w_0 \models \varphi \), it holds that \(\varphi \in w^0 \).

Since the decision algorithm iterates over all of the points and sub-formulas, there are two ways to implement it. First, we can implement it by a search of all points using nested iteration for all sub-formulas of this point. The second technique is to use a bottom up search of all sub-formulas, where we check all points and arcs to see whether they are ‘bad’ with respect to this formula. In both cases, it is important to repeat the search after some deletions have taken place, until stabilization is reached. A pseudo-code description is given in Fig. 12. Recall that \(R(w) \) denotes the set of successors of point \(w \) with respect to relation \(R \). Furthermore, for any set of points \(U \) and formula \(\psi \), let \(U^\psi \) denote \(\{ w \in U \mid \psi \models w \} \).

Depending on the data structures used for the representation of sets, it may not be necessary to implement set operations by a traversal of all elements of the set. For example, all set operations which are used in the comment lines of the pseudo-code can be implemented directly with a BDD representation for \(U \) and \(R \) as described in Section 10.

In a concrete implementation of this algorithm, there is a tradeoff between computation time and space: for any sub-formula \(\psi \triangleq (\psi_1 \rightarrow \psi_2) \) and any point \(w \), it can be determined whether \(\psi \in w \) by deciding whether \(\psi_1 \notin w \) or \(\psi_2 \in w \). Hence, it is not necessary to represent a propositionally consistent set by the set of sub-formulas it consists of; boolean combinations of sub-formulas can be omitted. A point then is represented by

- the set of sub-formulas which are atomic propositions, and
- the set of sub-formulas which are of the kind \((R) \psi \).

If we use this representation, then we may have to calculate the value of boolean combinations of formulas from their constituent parts. This value is needed in order to determine whether the representation of a point is propositionally consistent with the assumptions.

We now show how to extend this algorithm to transitive closure operators. The recursion axiom for the \(F \)-operator can be written as follows: (cf. page 1428):

\[(\text{Rec}) \quad \vdash (\neg F' q \rightarrow \neg q \land \Box q \rightarrow F' q) \]

This axiom indicates that if \(F' \psi \notin w_0 \), then \(\psi \notin w_0 \) and for all \(w_1 \) such that \(w_0 \prec w_1 \) it should hold that \(F' \psi \notin w_1 \). Thus, in the model all points for which
procedure ML_sat (Formula \(\varphi \), Formulaset \(\Phi \)) =
/* Input \(\Phi \) and \(\varphi \), determine if \(\varphi \) satisfiable with global assumptions \(\Phi \) */
\(U := \{ w \subseteq SF \mid \Phi \subseteq w, \bot \notin w \} \);
/* delete propositionally inconsistent points */
for all \(\psi = (\psi_1 \rightarrow \psi_2) \in SF \) do
/* \(U := U \cap ((U_{\psi_1} \setminus U) \cup (U_{\psi_2} \cap U_{\psi_1}) \cap (U_{\psi_1} \setminus U_{\psi_2})) \) */
for all \(w \in U \) do
 if \((\psi \in w \wedge \psi_1 \in w \wedge \psi_2 \notin w) \lor (\psi \notin w \wedge (\psi_1 \notin w \lor \psi_2 \in w)) \)
 then \(U := U \setminus \{ w \} \);
\(R := U \times U \);
repeat until stabilization
for all \(\psi = (R) \psi_1 \in SF \) do
/* delete bad arcs */
/* \(R := R \cap ((U_{\psi_1} \times U) \cup (U \times (U \setminus U_{\psi_1}))) \) */
for all \((w_0, w_1) \in R \) do
 if \(w_0 \notin U \lor w_1 \notin U \lor (\psi \notin U \wedge \psi_1 \in w_1) \)
 then \(R := R \setminus \{ (w_0, w_1) \} \);
/* delete bad points */
/* \(U := (U \setminus U_{\psi_1}) \cup (U \cap \{ w \mid (R(w) \cap U_{\psi_1}) \neq \{ \} \}) \) */
for all \(w \in U \) do
 if \((\psi \in w \wedge \forall w' \in R(w) \ (\psi_1 \notin w')) \) then \(U := U \setminus \{ w \} \);
if \(U_{\psi} = \{ \} \)
then print(\(\varphi \), "is not satisfiable with assumptions", \(\Phi \))
else print(\(\varphi \), "and the assumptions", \(\Phi \), "are satisfiable in", \(U_{\psi} \))

Figure 12: Modal logic decision algorithm

\(F' \psi \notin w_0 \) and \(\psi \in w_0 \) have to be deleted. Similarly, ‘bad arcs’ \((w_0, w_1) \) are those for which \(F' \psi \notin w_0 \) and \(F' \psi \in w_1 \).

In modal logic, a ‘bad point’ was defined to be one which contains \((R) \psi \), but no \(R \)-successor contains \(\psi \). For transitive closure operators, however, it is not sufficient to delete all points \(w_0 \) for which \(F' \psi \in w_0 \), \(\psi \notin w_0 \) and no successor contains \(F' \psi \). There might be a closed loop of points all of which contain \(F' \psi \), but no point containing \(\psi \) is reachable from the loop. A point is bad, if it contains \(F' \psi \), but does not fulfill this eventuality, i.e., no reachable point \(w_n \) contains \(\psi \). To check this condition, we need another iteration: for each sub-formula of the form \(F' \psi \) we iteratively mark all points which can reach a point containing \(\psi \). We initially mark all points which contain \(\psi \). We then continue to mark all points which have a marked successor. After stabilization all formulas \(F' \psi \) in unmarked points are unsatisfied and the respective points can be deleted. The algorithm, which is an
extension of the algorithm in Figure 12, is given in Figure 13. For a correctness proof and an extension to CTL, see [Emerson and Sistla 1984, Emerson 1990]

7.2. Satisfiability Algorithms for Natural Models

The branching time decision procedures described in the previous subsection construct a “most general” model for any satisfiable formula. For any sub-formula, all propositionally consistent sets are traversed. The number of propositionally consistent sets of sub-formulas is exponential in the length of the formula; therefore, with an explicit representation of sets these algorithms are limited to “small” formulas.

Natural models for linear time logics are sequences of points. Each point determines a propositionally consistent set of sub-formulas, namely the set of those sub-formulas which are valid in this point. Often, the number of different propositionally consistent sets determined by a specific linear-time model is small, compared to the number of all propositionally consistent sets. Thus, in the decision procedure it can be more appropriate to build a model incrementally:

- Start with some initial point, and
- iteratively choose the next point for the constructed sequence.

In this way, only those propositionally consistent sets have to be stored which actually appear in the model. Of course, in the worst case all propositionally consistent sets will be traversed; however, we can expect a better average-case behavior.

This procedure involves a nondeterministic choice. Therefore, it is implemented using backtracking search. Similar to the presentation in the previous subsection, we first give an algorithm for modal logic before considering operators which involve recursion. Since we are aiming at natural models, we use deterministic monomodal

Figure 13: marking algorithm for transitive closure
logic, that is, modal logic with a single accessibility relation R for which axiom U is required (cf. page 1423).

We want to decide whether a formula φ is satisfiable in a natural model globally validating the assumptions Φ. We start with the set W of all propositionally consistent extensions of $\Phi \cup \{\varphi\}$. That is, $w \in W$ iff

- $\varphi \in w$,
- $\Phi \subseteq w$,
- $\bot \notin w$, and
- for all sub-formulas $\psi_1 = (\psi_1 \rightarrow \psi_2)$ it holds that $\psi \in w$ iff $\psi_1 \in w$ implies $\psi_2 \in w$.

We choose some $w_0 \in W$ and try to construct a model with w_0 as initial point. At level i in the construction, we are given a propositionally consistent set w_i. If it does not contain any formula $\langle R \rangle \psi$, we are finished. In this case, we have found a finite model of length i with final point w_i. Otherwise, we construct the set

$$w_i^R \triangleq \{ \psi \mid \langle R \rangle \psi \in w_i \} \cup \{ \neg \psi \mid \neg \langle R \rangle \psi \in w_i \} \cup \Phi$$

We refer to $\{ \psi \mid \langle R \rangle \psi \in w_i \}$ as the positive future obligations and to $\{ \neg \psi \mid \neg \langle R \rangle \psi \in w_i \}$ as the negative future obligations of w_i. Thus, w_i^R is the set of all future obligations of w_i (with respect to R), plus the global assumptions. We then build the set S of all propositionally consistent extensions of w_i^R. Since there are only finitely many subformulas of $(\Phi \land \varphi)$, the set S is finite. If w_i^R is not propositionally consistent, then $S = \{ \}$. In this case, we backtrack to level $i - 1$ (or report failure, if $i = 0$). Otherwise, we choose some $w_{i+1} \in S$ as successor of w_i and continue ad infinitum. If we hit upon a point which is already contained in the constructed submodel $w_0 \ldots w_i$, then the infinite cyclic model $w_0 \ldots w_i(w_{i+1} \ldots w_i)^\omega$ initially satisfies φ and globally satisfies Φ. Since there are only finitely many maximal propositionally consistent sets, the construction must terminate. A pseudocode description of this algorithm is given in Figure 14.

In this algorithm, there is some redundant calculation.

- Firstly, whenever we backtrack from a point, there cannot be a successful continuation from this point. Therefore, we can add all points which are popped from the stack to a list M. If procedure depth_first_search is called with an argument which is contained in M, it can backtrack immediately.

- Secondly, we already noted that it is not necessary to represent a propositionally consistent set by an enumeration of all sub-formulas it consists of. It is sufficient to mark for every proposition variable and for every sub-formula starting with an $\langle R \rangle$-operator whether they are contained in the maximal consistent set.

- Thirdly, in the calculation of the set S of possible successors of a point, it is sufficient to consider propositionally consistent sets which are subsets of $(pos \cup neg \cup \Phi)$. That is, for sub-formulas ψ of φ which are neither future obligations of w nor sub-formulas of global assumptions from Φ, it is not necessary to fix their value in the successor w'. Both possible extensions, where $\psi \in w'$ or $\psi \notin w'$, are propositionally consistent and will lead to the same result. This improvement
procedure M_sat_lin (Formula \(\varphi \), Formula set \(\Phi \)) =
 \(W := \{ w \subseteq SF \mid \varphi \in w, \Phi \subseteq w, w \text{ propositionally consistent } \}; \)
 \(\text{Stack} := \{ \} \);
 for all \(w \in W \) do depth_first_search\((w) \);
 print(\(\varphi \), “is unsatisfiable with assumptions”, \(\Phi \));

procedure depth_first_search\((w) \) =
 if \(w \in \text{Stack} \) then print(\(\varphi \), \(\Phi \), “satisfiable by”, \(\text{Stack} \)); exit;
 push(\(w \), \(\text{Stack} \));
 \(\text{pos} := \{ \psi \in SF \mid \langle R \rangle \psi \in w \} \);
 \(\text{neg} := \{ \psi \in SF \mid \langle R \rangle \psi \notin w \} \);
 if \(\text{pos} = \{ \} \) then print(\(\varphi \), \(\Phi \), “satisfiable by”, \(\text{Stack} \)); exit;
 \(S := \{ w \subseteq SF \mid \text{pos} \subseteq w, w \cap \text{neg} = \{ \}, \Phi \subseteq w, w \text{ prop. consistent } \} \);
 for all \(w' \in S \) do depth_first_search\((w') \);
 pop(\(\text{Stack} \));

Figure 14: Modal logic decision algorithm for linear models

can be implemented for example by using a three-valued characteristic function for sub-formulas and propositionally consistent sets (contained, not contained, don’t care) in the representation of points.

In Figure 15 we give a set of tableau rules for monomodal logic on deterministic models. The tableau rules can be seen as an implicit formulation of the algorithm in Figure 14, where the above improvements are included by definition. Similar tableau rules for modal logics can be found in [Fitting 1983] and for temporal logics in [Wolper 1985].

\[
\begin{align*}
\text{\((\to) \)} & \quad \frac{\Gamma, (\psi_1 \to \psi_2)}{\Gamma, \neg \psi_1, \Gamma, \psi_2} & \frac{\Gamma, (\neg \to)}{\Gamma, \neg (\psi_1 \to \psi_2)} \\
\text{\((\bot_1) \)} & \quad \frac{\Gamma, \psi, \neg \psi}{*} & \frac{\Gamma, \bot}{*} \\
\text{\(((R)) \)} & \quad \frac{\Gamma, \langle R \rangle \varphi_1, ..., \langle R \rangle \varphi_n, \neg \langle R \rangle \psi_1, ..., \neg \langle R \rangle \psi_m}{\Phi, \varphi_1, ..., \varphi_n, \neg \psi_1, ..., \neg \psi_m} & \frac{\Gamma}{[R]} & \frac{\Gamma}{[R]} & \frac{\Gamma}{[R]} & \frac{\Gamma}{[R]} & \frac{\Gamma}{[R]}
\end{align*}
\]

Figure 15: Tableau rules for monomodal logic on deterministic models

In these rules, \(\Gamma \) denotes any set of formulas, and \(\Phi \) is the set of global assumptions. The double line in rules \(((R)) \) and \(([R]) \) indicates a transition from one point in the constructed model to the next, and the star indicates that a branch is closed. Each tableau rule allows to derive zero, one or two sets of formulas from any set of formulas. Additional regulations are:
• Rule \((\to)\) can only be applied if \(\psi_2 \neq \bot\).
• Rules \((\{R\})\) and \(([R])\) can only be applied if no other rule is applicable.
• Rule \((\{R\})\) can only be applied if no other \(\langle R \rangle \varphi\) or \(\neg \langle R \rangle \psi\) is in \(\Gamma\).
• Rule \(([R])\) can only be applied if no \(\langle R \rangle \varphi\) is in \(\Gamma\).

A tableau is a finite tree of sets of formulas such that

• The root of the tableau is \(\Phi \cup \{\varphi\}\), and
• The children of each node are constructed according to some tableau rule.

A leaf is called closed, if it consists of the symbol \(*\). It is called open, if it consists of a subset of formulas of some other node on the path from the root to this leaf. (In particular, if rule \((\{R\})\) regenerates the root, the new leaf is open. Also, any empty node constructed by rule \(([R])\) is open.) A tableau is completed, if any leaf is closed or open. A completed tableau is successful, if it contains an open leaf.

There is a strong connection between the tableau method and the local satisfiability algorithm sketched above. The propositional tableau rules systematically generate all necessary propositionally maximal consistent extensions of a given set of formulas, and the modal rules fix the structure of the accessibility relation(s) in the generated model graph.

For any given root, there are several different tableaus, since we did not specify any order in which the rules have to be applied. Nevertheless all these tableaus are equivalent: if there is some successful tableau for \(\varphi\) and \(\Phi\), then every completed tableau for it is successful.

7.2. Theorem. \(\varphi\) is satisfiable with assumptions \(\Phi\) iff \(\Phi \cup \{\varphi\}\) has a successful tableau.

Proof: For one direction, assume that there is some natural model \(M \triangleq (\langle w_0, w_1, w_2, \ldots \rangle, \mathcal{I}, w_0)\), where \(w_0 \models \varphi\) and \(w_i \models \Phi\) for every \(i > 0\), and show that there is a completed tableau for \(\varphi\) and \(\Phi\) with an open leaf. Equivalently, assume that any completed tableau for \(\varphi\) and \(\Phi\) is given, and show that it contains an open leaf. We construct a sequence of tableau nodes \(n_i\), and associate with any \(n_i\) a point \(w(n_i)\) in the model. As an invariant of this construction, we show that for all formulas \(\psi \in n_i\) it holds that \(w(n_i) \models \psi\).

Initially \(n_0\) is the root of the tableau, with \(w(n_0) \triangleq w_0\). Since \(w_0 \models \varphi\) and \(w_0 \models \Phi\), the invariant is satisfied. Given any tableau node \(n_i\) with \(w(n_i) = w_j\), no closing rules can be applicable, because this would contradict the invariant. Assume the child \(n_{i+1}\) of \(n_i\) is constructed by rule \((\neg \to)\) or \((\top)\). Then \(w(n_{i+1}) \triangleq w_j\), and the invariant is preserved. If two children of \(n_i\) are constructed by rule \((\to)\), then any one of them is chosen which preserves the invariant, and again \(w(n_{i+1}) \triangleq w_j\). If \(n_i\) has a child obtained by rule \((\langle R \rangle)\), then \(w(n_{i+1}) \triangleq w_{j+1}\). The specific formulation of the rule guarantees that the invariant is preserved. Since the tableau is finite, and we can never apply one of the closing rules, we must hit an open leaf sooner or later.
For the other direction, we have to show that from any completed tableau with open leaves we can construct a model. The construction is similar to above. We consider the unfolding of the tableau. This is the tree arising from the repeated substitution of any open leaf with the subtableau rooted at the node subsuming this open leaf. In particular, an empty node generated by rule (\(\langle R \rangle\)) can be replaced with any node on the path from the root to this node. If the tableau contains open leaves, then the unfolding contains infinite paths. In the unfolding, call any node whose child is constructed by rule (\(\langle R \rangle\)) or (\(\langle R \rangle\)) a pre-state. It can be shown that the sequence of pre-states of any infinite path from the root constitutes an infinite model.

As an example for the tableau construction, consider the semaphore from page 1426. A linear time modelling of the transitions is given by

\[\Phi \triangleq \{(\text{on} \rightarrow r \land \langle R \rangle \lnot \text{on}), \ (\lnot \text{on} \rightarrow r \land \langle R \rangle \lnot \text{on} \lor s \land \langle R \rangle \text{on}, \ \lnot (r \land s)\}. \]

Here, \(r\) and \(s\) denote the semaphore-operations “reset” and “set”, respectively. We prove that after a reset the semaphore can be set only once:

\[\varphi \triangleq (r \rightarrow \langle R \rangle(s \rightarrow \langle R \rangle(s \rightarrow \bot))). \]

To show that \(\Phi \models \varphi\), we construct the tableau with root \(\Gamma \triangleq \Phi \cup \{\lnot \varphi\}\) and show that it is closed. The tableau is given in Figure 16.

In this tableau, we omitted boolean decompositions. All leaves are closed because they contain both \(r\) and \(s\). This is a contradiction to the assumption \(\lnot (r \land s)\) expressing that only one action is performed at a time.

Tableaux for LTL

We now extend these methods to linear time temporal logic. For simplicity, we restrict attention to the operators \(X\) and \(F^*\). The algorithms are similar to the modal logic case described above. To decide whether a formula \(\varphi\) is satisfiable in a natural model, we apply the same depth-first search algorithm as sketched in Figure 14, where \(X\) replaces \(\langle R \rangle\), and extended sub-formulas (ESF) are used instead of sub-formulas (SF). (Recall that both \(\psi\) and \(X F^* \psi\) are extended sub-formulas of \(F^* \psi\).)

There are two further modifications. Firstly, assume we are given a sub-formula \(F^* \psi\) and a node \(w\) such that one of the following holds.

- \(F^* \psi \in w\) and \(\psi \notin w\) and \(XF^* \psi \notin w\), or
- \(F^* \psi \notin w\), and \(\psi \in w\) or \(XF^* \psi \in w\).

In this case, we can discard node \(w\). Even though it may be propositionally consistent, it does not respect the recursion axiom

\[\vdash F^* \psi \leftrightarrow \psi \lor XF^* \psi. \]

Thus, this node cannot appear as a point in the model.
\[
\begin{array}{c}
\Phi, r, \varphi_1 \quad (\text{where } \varphi_1 \triangleq \langle R \rangle (s \wedge \langle R \rangle s)) \\
on, r, \langle R \rangle \neg on, \varphi_1 \\
\Phi, \neg on, s, \langle R \rangle s \\
r, s, \ldots \\
\Phi, s, on \\
s, on, r, \langle R \rangle \neg on \\
\end{array}
\]

Figure 16: Tableau for \(\Phi \) and \(r \rightarrow [R] (s \rightarrow [R] (s \rightarrow \bot)) \).
Secondly, when the depth-first-search finds a node \(w \) which is already on the stack, it would be preliminary to report a success. Consider the set of nodes \(\{ w_0, w_1, \ldots, w_n \} \), which are on the path from \(w \) to \(w \). It could be the case that there is some sub-formula \(F \psi \), such that each node contains both \(F \psi \) and \(X F \psi \), but none of them contains \(\psi \). That is, the eventuality \(\varphi \) is required but not fulfilled in \(w_0, \ldots, w_n \). The fulfillment of \(F \varphi \) is “postponed forever” from each \(w_i \) to the next in a cyclic manner.

However, we cannot discard \(w_0, w_1, \ldots, w_n \), because they might contribute to a satisfying model. Consider the following situation:

![Diagram of a cyclic graph with nodes](image)

We assume that all nodes in this picture contain \(F p \) and \(F q \). The only node containing \(p \) is \(w_3 \), and the only node containing \(q \) is \(w_4 \). When the backtracking search encounters \(w_1 \) as child of \(w_3 \), it finds that in the loop \(w_1, w_2, w_3 \) the proposition \(q \) is required but not fulfilled. Thus it backtracks to \(w_2 \) and finds \(w_4 \) as second child. This time, in the loop \(w_0, w_1, w_2, w_4 \) the proposition \(p \) is required but not fulfilled. However, both \(p \) and \(q \) are satisfied in the model \((w_0, w_1, w_2, w_3, w_1, w_2, w_4)^\omega\).

Thus, when the depth-first-search finds a backward arc, it has to search the strongly connected component of nodes of the current node. A strongly connected component (SCC) is a set \(W \) of points such that for all \(w_1, w_2 \in W \), if \(w_1 \neq w_2 \), then there is a path from \(w_1 \) to \(w_2 \) and back. An SCC \(W \) is called terminal, if for all \(w \in W \), \(w' \notin W \), it is not the case that \(w \prec w' \). It is called self-fulfilling, if all required formulas are fulfilled, i.e., if for any \(w \in W \) and \((\varphi_1 U' \varphi_2) \in w \) there exists a \(w' \in W \) such that \(\varphi_2 \in w' \). For the decision algorithm, the depth-first-search graph has to be partitioned into strongly connected components. The given formula is satisfiable iff a self-fulfilling SCC is reachable from some initial node.

We postpone the algorithmic formulation of this partitioning to the next section, where the same algorithm is given in the context of model checking. Instead, we sketch the necessary modifications in the tableau construction. As additional rules to those of Figure 15, we add:
(F') \frac{\Gamma, F' \psi}{\Gamma, \psi} \frac{\Gamma, X F' \psi}{(-F') \frac{\Gamma, -F' \psi}{\Gamma, -\psi, -XF' \psi}}$

To deal with unfulfilled eventuality formulas, a backward loop can only be regarded as open, if for any F' ψ which occurs in any w_i in the loop, there is a w_j in the loop such that ψ ∈ w_j (loop condition). If the loop condition is not met, the unfolding of the tableau has to continue until all nodes of the SCC are contained in the loop. In this case, the respective branches are closed.

As an example for the loop condition, we show transitivity of ≤:

\[\vdash (F' F' p \rightarrow F' p) \]

The root of the tableau is marked with the negation of this formula, i.e. with F' F' p and −F' p.

\[
\frac{F' F' p, \neg F' p}{\neg F' p, F' p, \neg F' p} \quad \frac{X F' F' p, \neg F' p}{X F' F' p, \neg p, \neg XF' p} \quad \frac{XF' F' p, \neg p, \neg XF' p}{F' F' p, \neg p, \neg F' p}
\]

There is a close connection between tableaus for temporal logics and ω-automata. The pre-states in the tableau (i.e., nodes immediately above a double line) can be seen as states of a generalized Büchi-automaton. The set of open leaves are the accepting states, and the recurring states are determined as follows: for any sub-formula φ ≡ F' ψ it must hold that φ is infinitely often not contained in an accepting run, or ψ is contained infinitely often. This can be formulated as generalized Büchi-acceptance condition on the states [Clarke, Grumberg and Hamaguchi 1997]. The formula then is satisfiable if the language of the corresponding automaton is nonempty, and it is valid if this language is Σω (the set of all finite and infinite strings over Σ). Therefore, the decision problem for LTL can be regarded as an instance of the language problem of generalized Büchi automata [Wolper 1985, Emerson 1985, Vardi and Wolper 1986, Kurshan 1994]. In Vardi [1995] other embeddings of tableau-based satisfiability procedures for temporal logics into decision algorithms for ω-automata, based on alternating automata, are described.

8. Basic Model Checking Algorithms

In this section, we will show how the most commonly used model checking procedures can be obtained from the above decision procedures.
Given a model \mathcal{M} and a formula φ, the model checking problem is to decide whether $\mathcal{M} \models \varphi$. In principle, this can be done by encoding \mathcal{M} as a set of assumptions (“premisses” or “program axioms”) Φ, and deciding whether $\Phi \vdash \varphi$. However, some experiments will quickly convince the reader that a naïve approach of doing so is doomed to failure. Usually, the program axioms all have a very special form, such as

$$(\text{state}_i \rightarrow (X\text{succ}_1 \lor \cdots \lor X\text{succ}_n))$$

in a linear time modelling, or

$$(\text{state}_i \rightarrow (\langle a_1 \rangle \text{succ}_1 \land \cdots \land \langle a_n \rangle \text{succ}_n))$$

in a branching time approach. The decision procedure in general can not take advantage of this special form of the assumptions and will in every step break down all assumptions to its basic propositional components. This results in a very inefficient behavior; usually only very small systems can be verified and debugged that way.

Therefore, model checking algorithms avoid the encoding of the models as a set of program axioms; they use the models directly instead. Model checking determines whether a given specification formula is satisfied in a given Kripke-model, i.e., whether a tree or natural model satisfying the formula can be generated from it.

There are two variants of this task, depending on whether the initial or universal definition of satisfaction of a formula in a model is used. In the usual definition, a Kripke-model $\mathcal{M} \triangleq (U,I,w_0)$ is given, which consists of universe U, accessibility relation(s) defined by I, and current point $w_0 \in U$, and we have to check whether the formula φ is satisfied: $(U,I,w_0) \models \varphi$. In the universal definition, we are given a frame $\mathcal{F} \triangleq (U,I)$ consisting of universe and interpretation, and want to know whether the formula is satisfied in all models based on this frame: $(U,I) \models \varphi$ if for all $w_0 \in U$ it holds that $(U,I,w_0) \models \varphi$. Equivalently, we want to know whether $\varphi^\mathcal{F} = \{ w \in U \mid (U,w) \models \varphi \}$ is the set of points satisfying φ.

Of course, any algorithm which calculates $\varphi^\mathcal{F}$ can also be used to decide whether $(U,I,w_0) \models \varphi$ holds: $w_0 \models \varphi$ iff $w_0 \in \varphi^\mathcal{F}$. Vice versa, if we have an efficient algorithm to decide whether $w_0 \models \varphi$, we can calculate $\varphi^\mathcal{F}$ by an iteration on all states.

The model checking problem has two parameters: model \mathcal{M} and formula φ. Algorithms which iterate on the structure of φ and in each step traverse the whole of \mathcal{M} are sometimes called global. Algorithms which iteratively extend the checked part of \mathcal{M} and in each step determine the truth of each sub-formula of φ are sometimes called local. Although the theoretical worst-time complexity is not influenced by this choice, the average case behavior may differ significantly.

In principle, the three axes (branching/linear, universal/initial, global/local) are independent. In practice, however, for branching time logics mostly global algorithms for universal validity are used, whereas for linear time logics local algorithms for initial validity have been suggested.
8.1. Global Branching Time Model Checking

Given a Kripke frame $\mathcal{F} = (U, I)$ and a multimodal formula φ, the set $\varphi^\mathcal{F} \triangleq \{ w \in U \mid w \models \varphi \}$ of points validating φ can be calculated by a recursive descent on the structure of φ:

- If p is an atomic proposition, then $p^\mathcal{F} \triangleq I(p)$.
- $\bot^\mathcal{F} \triangleq \{ \}$.
- $(\varphi \rightarrow \psi)^\mathcal{F} \triangleq (U \setminus \varphi^\mathcal{F}) \cup \psi^\mathcal{F}$.
- $((R) \psi)^\mathcal{F} \triangleq \{ w \in U \mid \exists w' \in \psi^\mathcal{F}, (w, w') \in I(R) \}$.

This algorithm seems to be just a trivial reformulation of the semantical definition for the logical operators. However, there are some important observations.

- Firstly, $((R) \psi)^\mathcal{F}$ can be calculated from $\psi^\mathcal{F}$ in two ways: we can check for each $w \in U$, whether the intersection of $\psi^\mathcal{F}$ and $R(w)$ is nonempty. Alternatively, we can calculate $\bigcup \{ R^{-1}(w') \mid w' \in \psi^\mathcal{F} \}$, where $R^{-1}(w') \triangleq \{ w \mid (w, w') \in I(R) \}$ is the inverse image of point w under the relation R. This inverse image calculation can be accomplished by a traversal of all arcs $(w, w') \in I(R)$: if $w' \in \psi^\mathcal{F}$, then $w \in ((R) \psi)^\mathcal{F}$.

- Secondly, to avoid recalculation of common subformulas, we use a table, where for each sub-formula ψ the set $\psi^\mathcal{F}$ is stored. The size of $\psi^\mathcal{F}$ can be of small order of magnitude as $|U|$. Thus, we need an efficient data structure for large sets of points.

- Thirdly, the overall complexity of this algorithm is linear in the number of different sub-formulas and in the size of the model. However, even for infinite models which are given by some symbolic description, e.g., Petri nets or Turing machines, some model checking problems can be decidable [Andersen 1994, Gurov, Berezin and Kapron 1996, Burkart and Espanol 1997]. In such cases, $\psi^\mathcal{F}$ can be of infinite size, and must be represented by a symbolic description as well.

Similar to the above modal logic procedure, the CTL model checking algorithm proceeds by marking each point with the set of sub-formulas which are valid for this point. Suppose we have already marked the set of points satisfying ψ_1 and the points satisfying ψ_2. To label the set of points satisfying $\varphi \triangleq E(\psi_2 U^+ \psi_1)$ or $\varphi \triangleq A(\psi_2 U^+ \psi_1)$, we use the fixpoint unfoldings

$$E(\psi_2 U^+ \psi_1) \leftrightarrow EX(\psi_1 \lor \psi_2 \land E(\psi_2 U^+ \psi_1))$$

$$A(\psi_2 U^+ \psi_1) \leftrightarrow AX(\psi_1 \lor \psi_2 \land A(\psi_2 U^+ \psi_1))$$

For $\varphi \triangleq E(\psi_2 U^+ \psi_1)$, we label all points with φ which have a successor that is labelled with ψ_1, or with ψ_2 and also φ. This process is repeated until stabilization is reached. For $\varphi \triangleq A(\psi_2 U^+ \psi_1)$, note that $AX \chi \leftrightarrow (EX \top \land A \Box \chi)$. Thus, we label all points with φ which have at least one successor, and for which all successors are labelled with ψ_1, or with ψ_2 and also φ. Again, this process must be repeated.
procedure CTL_check (Model (U, I, w_0), Formula φ) =
if $w_0 \in \text{eval}(\varphi)$
then print(“φ is satisfied at w_0 in (U, I)”)
else print(“φ not satisfied at w_0 in (U, I)”);

function eval (Formula φ): Pointset =
case φ of
 p : return $I(p)$;
 ⊥ : return $\{\}$;
 $(\psi_1 \rightarrow \psi_2)$: return $U \setminus \text{eval}(\psi_1) \cup \text{eval}(\psi_2)$;
 $E(\psi_2 \; U \; \psi_1)$: $E1 := \text{eval}(\psi_1)$; $E2 := \text{eval}(\psi_2)$; $E := \{\}$;
 repeat until stabilization
 $E := E \cup \{w \mid (\text{succ}(w) \cap (E1 \cup (E2 \cap E))) \neq \{\}\};$
 return E;
 $A(\psi_2 \; U^* \; \psi_1)$: $E1 := \text{eval}(\psi_1)$; $E2 := \text{eval}(\psi_2)$; $E := \{\}$;
 repeat until stabilization
 $E := E \cup \{w \mid \{\} \neq \text{succ}(w) \subseteq E1 \cup (E2 \cap E)\};$
 return E;

function succ (Point w): Pointset = return $\{w' \mid (w, w') \in I(\neg \varphi)\}$;

Figure 17: naïve CTL model checking algorithm

until no new points can be marked. The procedure is comparable to the marking algorithm in Figure 13. A recursive formulation of this algorithm is given in Fig. 17.

Since the Kripke-model has a finite number of points, each repeat in the algorithm stabilizes after at most $|U|$ passes. In the worst case, each pass searches the whole model ($|U|^2$ transitions), hence the complexity is linear in the number of different sub-formulas, and cubic in $|U|$.

This bound can be improved if the search is organized better. In [Clarke, Emerson and Sistla 1986], an algorithm is given which is linear in the size of the model as well. For the EF^+-operator, the problem of marking all points for which $\text{EF}^+ \varphi$ holds, given the set of point satisfying φ, is equivalent to the inverse reachability problem: given a set of points, mark all points from which any finite path leads into the given set. Assuming that for any two points we can decide in constant time whether they are connected by an arc, this can be done with time complexity quadratic in the number of points.

The algorithm given in Fig. 18 calculates the set Source of all points from which any point in given set Target is reachable. In this algorithm, every point enters the set Search in the while loop at most once. Moreover, all set operations can be performed in time linear in the size of these sets, i.e., in the number of points; thus the overall complexity is quadratic in $|U|$ or linear in the size of the Kripke-model.
function reach (Pointset Target): Pointset =
 Source := {}; Search := Target;
 while Search ≠ {} do
 Search := pred (Search) \ Source;
 Source := Source \ Search
 enddo;
 return Source;
function pred (Point w): Pointset = return \{w' | \(w', w\) \in I(\cdot)\};

Figure 18: Inverse reachability calculation

For the \(\mathbf{E} \mathbf{U^+}\)-operator, this idea can be refined to give an evaluation procedure of linear complexity. The \(\mathbf{A} \mathbf{U^+}\)-operator can be expressed by

\[
\mathbf{A}(\psi_2 \mathbf{U^+} \psi_1) \leftrightarrow \neg(\mathbf{E}(\neg \psi_1 \mathbf{U^+} (\neg (\psi_1 \land \psi_2)) \lor \mathbf{E} \mathbf{G^+} \neg \psi_1)
\]

Thus, we only need a procedure marking all points for which \(\mathbf{E} \mathbf{G^+} \varphi\) holds. This can be done as follows:

- restrict the model to those states satisfying \(\varphi\)
- find the maximal strongly connected components in the restriction
- mark all points in the original model from which a nontrivial SCC or a point without successors can be reached by a path in the restricted model.

These operations can be accomplished with time complexity which is quadratic in \(U\). Thus, the overall complexity of CTL model checking is linear in the size of the formula and in the size of the model.

Fairness Constraints

Some automated model checkers for \(\text{CTL}\) (for example, SMV [McMillan 1993] and SVE [Dingel and Filkorn 1995]) allow to specify a set of constraints \(\Psi\) together with the Kripke-model. These constraints are assumed to hold in the whole model; i.e., they restrict the model to those parts where they are valid. This use of constraints is somewhat different from the assumptions in the previous sections, which were used to constrain the set of possible models. For example, an \(\omega\)-automaton can be regarded as a Kripke-model, together with global eventuality and fairness constraints (accepting and recurring states). Constraints can be formulated in the same language in which the formula to be checked is specified; however, “mixed” approaches have been suggested [Josko 1993], where e.g. the constraints are described in \(\text{LTL}\) and the property is described in \(\text{CTL}\).

As an example for the use of such constraints, often the path-quantifiers \(\mathbf{A}\) and \(\mathbf{E}\) are restricted to fair paths. Simple fairness constraints are of form \(\mathbf{F}^+ \psi\), where \(\psi\) is a boolean combination of propositions. For example, the condition \(\mathbf{F}^+ \top\) specifies that each run must be infinite. As another example for a simple fairness constraint,
we might want to restrict our attention to execution sequences in which every
component is always eventually scheduled. Streett fairness constraints are of form
\((G' F' \psi_1 \rightarrow G' F' \psi_2)\) and are useful to restrict attention to strongly fair sched-
ulers; if a component infinitely often requests a resource, it will be granted infinitely
often. Historically, different fairness constraints were discussed in [Lehmann, Prü
eli and Stavi 1981, Quelle and Sifakis 1982]. A comprehensive treatment of fairness
concepts and proofs is given in [Francez 1986].

The above algorithm can be modified to deal with such fairness constraints by
building the tableau of the LTL-assumption and checking the CTL-formula on the
product of Kripke-model and tableau. The complexity increases by a factor which
depends on the type of LTL-formulas in the assumption. For more information,
see [Emerson and Lei 1986, Kupferman and Vardi 1996, Emerson, Jutla and Sistla
1993, Clarke, Grumberg and Long 1993].

8.2. Local Linear Time Model Checking

For a given Kripke-model \(M = (U, I, w_0)\) and CTL-formula \(\varphi\), the relation \(M \models \varphi\)
holds iff the maximal tree generated from \(M\) at \(w_0\) satisfies \(\varphi\). For linear time logics,
\(M \models \varphi\) is interpreted by sequence-validity. That is, we want to check whether every
maximal sequence generated from \(M\) at \(w_0\) satisfies \(\varphi\). Equivalently, we have to
decide whether \(\neg \varphi\) is satisfiable in some natural model generated from \(M\). In some
sense, this is a more complex question than the one for branching time, because a
whole set of natural models has to be checked. Hence, we cannot simply mark a
point in the Kripke-model with the set of linear-time formulas which are valid for
this point: for example, \(F' \psi\) can be valid for one of the generated sequences, and
not valid for another one.

We first consider sequence-validity of modal logic with a single accessibility re-
lation \(R\). Given a Kripke-model \(M = (U, I, w_0)\) and a modal formula \(\varphi\), we want
to determine whether there is a maximal sequence generated from \(M\) at \(w_0\) which
satisfies \(\varphi\) in \(w_0\). This is done by a depth-first-search in the product of the set of
propositionally maximal consistent sets of sub-formulas and the set of points in the
model.

Formally, an atom \(\alpha\) is any pair \((w, m)\), where \(w \in U\) is a point, and \(m \subseteq SF(\varphi)\)
is a propositionally consistent set of sub-formulas. An atom is admissible, if \(w\) and
\(m\) agree on the interpretation of propositions. That is, if \(p \in SF(\varphi)\), then \(p \in m\) iff
\(w \in I(p)\).

An initial atom is any admissible atom \(\alpha = (w_0, m_0)\), where \(w_0\) is the current
point of \(M\), and \(\varphi \in m_0\). We define a relation \(X_R\) between admissible atoms:
\(X_R((w, m), (w', m'))\) holds iff the following conditions are met:
1. \((w, w') \in I(R)\),
2. if \(\langle R \rangle \psi \in SF(\varphi)\) and \(\psi \in m'\), then \(\langle R \rangle \psi \in m\),
3. if \(\langle R \rangle \psi \in m\), then \(\psi \in m'\), and
4. some \(\langle R \rangle \psi \in m\).
The first condition reflects the fact that the steps in the generated sequence are predetermined by the Kripke-model. The second condition is imposed by the semantics of the (R)-operator. The third condition is a reformulation of the axiom (U) and the corresponding tableau rule $(\langle R \rangle)$ on page 1438. The fourth condition corresponds to the tableau rule $(\langle R \rangle)$: it allows the generated sequence to be finite when no $(R)\psi$ is contained in a node.

Now we can construct a forest of atoms as follows:

- initial nodes are all initial atoms
- any node α has as children all α' such that $X_R(\alpha, \alpha')$

Since for any finite Kripke-model there are only finitely many atoms, each branch in this forest can be made finite by appropriate backward arcs. As in the tableau definition, a leaf is called open, if it has no (R) formulas in its first component (m); otherwise, it is closed.

An accepting path through the resulting structure starts with any initial node and is either infinite or ends with an open leaf. Any accepting path is a sequence generated from the Kripke-model which satisfies the given formula $\neg \varphi$, thereby forming a counterexample to the specification φ.

To implement the search for an accepting path, we perform a depth-first search with backtracking from the set of initial atoms to all of its successors. In order to be able to terminate loops in this search, we have to store all atoms which were encountered previously. Though there are several possibilities to represent such a set of atoms, the method of choice seems to be to employ a hash table. It is not necessary to use all components of m as hash indices, since the value of propositions is determined by w, and boolean combinations of formulas can be recovered from their constituent parts. Therefore, it is sufficient to store only the value of (R)-subformulas.

In general, since we are only looking for some counter-model, we can terminate the search if a counter-model is found. Although in the worst case (if no counter-model exists) the whole forest must be searched, it is possible to find errors very quickly by an appropriate ordering of the depth-first search successors.

In the depth-first search, we have to remove closed atoms from the list of possible loop points. A better way is to mark these nodes as closed while backtracking; then the search will not recurse again if such an atom reappears. Also all other improvements mentioned on page 1438 can be used for this algorithm.

Extensions for LTL

We have seen that the local model checking algorithm for modal logic is almost the same algorithm as the local tableau decision procedure. Similarly, the local model checking for LTL is very close to its respective satisfiability algorithm. For simplicity, in this subsection we restrict attention to the future fragment of LTL.

In the definition of $X_R((w, m), (w', m'))$, we replace (R) by X and require in addition:

5. if $F^\ast \psi \in SF(\varphi)$ then $F^\ast \psi \in m$ if $\psi \in m$ or $XF^\ast \psi \in m$

This requirement corresponds to the recursion axiom $\vdash F^\ast \psi \leftrightarrow \psi \lor X F^\ast \psi$. As in
the case of modal logic, we try to thread an accepting path through the graph of atoms which arises from this definition. However, we can only accept those paths in which all eventualities F^ψ are fulfilled. Since we can not guarantee that several eventualities are simultaneously fulfilled in some single loop, we have to calculate the strongly connected components of the reflexive transitive closure of \mathcal{R}. An SCC W of atoms is called self-fulfilling, if for any F^ψ in some $\alpha \in W$ there exists some $\alpha' \in W$ with $\psi \in \alpha'$. Any atom which does not contain positive future obligations $X \psi$ is a trivial SCC, because it is a terminal node in the atom graph. Such a node forms a self-fulfilling SCC, because the above condition (5.) guarantees that for any $F^\psi \in \alpha$, also $\psi \in \alpha$. The given formula φ is satisfiable in \mathcal{M} iff there exists a self-fulfilling SCC which is reachable from some initial atom. In this case, a natural model for φ generated by \mathcal{M} is given by any sequence of atoms from an initial atom which ends in a terminal atom or infinitely often passes through all atoms of a self-fulfilling SCC.

For U^ψ-operators, each positive occurrence $(\psi_1 U^\psi_2)$ in some $\alpha \in W$ is an eventuality which has to be fulfilled at some point; thus the SCC W is defined to be self-fulfilling, if it is nontrivial and for any $(\psi_1 U^\psi_2)$ in some $\alpha \in W$ there exists some $\alpha' \in W$ with $\psi_2 \in \alpha'$, or it is trivial and does not contain any $(\psi_1 U^\psi_2)$.

To construct maximal SCCs, two different algorithms have been suggested (see, e.g. [Aho, Hopcroft and Ullman 1974]). For model checking, Tarjan’s algorithm [Tarjan 1972] is particularly well-suited, since it enumerates the strong components of a graph during the backtrack from the depth-first search. If a maximal SCC W is found, all required and fulfilled eventualities in all nodes of W can be collected. W is self-fulfilling if all required eventualities are fulfilled. Thus model checking can be performed “on-the-fly” during the enumeration of the reachable atoms of the model. An appropriate depth-first–search LTL model checking algorithm is given in 19.

In this algorithm, the function children constructs for a given atom α the set of all possible successor atoms according to the transition relation of the Kripke-model and to the fixed point definition of the until-operator. One way to implement this function is to represent atoms by bitstrings which contain one bit for each proposition $p \in P$ and one bit for each sub-formula $(\psi_2 U^\psi_1) \in SF(\varphi)$. New atoms are included into a hash table, which contains one bitstring for each atom. For each entry into the hash table, the function children returns a list of pointers to the hash table. For more information on bitstate hashing techniques and state space caching, see [Courcoubetis, Vardi, Wolper and Yannakakis 1992, Holzmann 1995, Godefroid, Holzmann and Pirotton 1995].

The procedure depth_first_search realizes Tarjan’s algorithm and the test whether an SCC is self-fulfilling. It recursively builds all atoms reachable from a given atom α. When the procedure backtracks, α is the root of a maximal SCC iff there are no atoms β in the subtree below α such that α is also in the subtree of β. In this case, the maximal SCC containing α consists of all nodes in the subtree below α, and this maximal SCC can be checked for acceptance. table is implemented as a hash table from atoms to natural numbers. table[\alpha] contains
procedure LTL_check (Model \(\mathcal{M} \), Formula \(\varphi \)) =
 Nat depth_first_count := 0; /* number of recursive call */
 Atomset stack := {}; /* Stack of searched atoms */
 Natarray table; /* Hashtable from atoms to natural numbers */
 Atomset init := \{\(\alpha \mid \alpha \) is an initial atom of \(\mathcal{M} \) and \(\varphi \)\};
 for all \(\alpha \in \text{init} \) do depth_first_search(\(\alpha \));
 print("\(\varphi \) is not satisfiable in \(\mathcal{M} \)\);

procedure depth_first_search (Atom \(\alpha \)) =
 if (table [\(\alpha \)] = UNDEFINED) then /* \(\alpha \) is a new atom */
 Nat dnumber := depth_first_count; /* save current count */
 depth_first_count := depth_first_count + 1;
 table[\(\alpha \)] := dnumber; /* initialize with current depth */
 push(stack, \(\alpha \));
 Atomset succ := children(\(\alpha \));
 for all (\(\beta \in \text{succ} \)) do
 depth_first_search(\(\beta \));
 table[\(\alpha \)] := min(table[\(\alpha \)], table[\(\beta \)]); /* \(\beta \) above \(\alpha \)? */
 if (table[\(\alpha \)] = dnumber) then /* \(\alpha \) is the root of an SCC */
 Formulaset required := \{\}, fulfilled := \{\};
 \(\beta := \text{pop}(\text{stack}); \)
 table[\(\beta \)] := MAXNAT;
 required := required U \{\(\psi_1 \mid (\psi_2 U^+ \psi_1) \in \beta \}\};
 fulfilled := fulfilled U \{\(\psi \mid \psi \in \beta \}\};
 until (\(\alpha = \beta \)); /* all elements of SCC are popped */
 if required \(\subseteq \) fulfilled /* SCC is self-fulfilling */
 then print("\(\varphi \) satisfiable in \(\mathcal{M} \)\); exit;

function children (Atom (\(w, m \))) : Atomset =
 if \(\{ (\psi_2 U^+ \psi_1) \mid \psi_1 \in m \} = \{\} \) then return \{\} /* no future obligations */
 else return \{ (\(w', m' \) \mid \(w \prec w' \), \((\psi_2 U^+ \psi_1) \in m \) if \(\psi_1 \in m' \) or \(\psi_2 \in m' \) and \((\psi_2 U^+ \psi_2) \in m' \})\}

Figure 19: Depth-first-search LTL model checking algorithm

- UNDEFINED, as long as atom \(\alpha \) has not occurred,
- the depth-first-number of \(\alpha \), when \(\alpha \) is first encountered,
- the depth-first-number of the first encountered atom belonging to the same strongly connected component as \(\alpha \), after return from the recursive call, and
- MAXNAT (any value for which \(\min(n, \text{MAXNAT}) \) is always \(n \)), after the maximal strongly connected component containing \(\alpha \) has been analyzed.

To check whether an SCC is self-fulfilling, during its enumeration two sets are built:
required contains the union of all eventualities which are required, and fulfilled contains the union of all eventualities which are fulfilled in the atoms of this SCC. The SCC is self-fulfilling if required \(\subseteq \text{fulfilled}. \)

The main program calls depth-first-search for all initial atoms, where for an initial atom \((w_0, m_0)\)

1. \(w_0\) is the current point of \(M\), and
2. \(m_0 \subseteq SF(\varphi)\) is any propositionally consistent set such that \(\varphi \in m_0\).

If during the construction of the atom graph a maximal self-fulfilling SCC is found, the algorithm reports success; if the whole graph is searched without success we know that the formula is not satisfiable, and the program terminates with this result.

This algorithm is exponential in the number of \(U^\ast\)-formulas, because every set of such sub-formulas determines a propositionally consistent set. It is linear in the size of the Kripke-model. In general, it can be shown that the problem of LTL-model checking (including past-operators) is PSPACE-complete in the size of the formula and NLOGSPACE in the size of the model (see [Sistla and Clarke 1986, Lichtenstein and Pnueli 1985]). The exponential complexity in the length of the formula usually is not very problematic, because specification formulas tend to be rather short. The linear complexity in the size of the model is a more serious limiting factor, since in the worst case (i.e., if the formula is unsatisfiable) all atoms have to be traversed. Current technology limits the applicability of such algorithms to models with approximately \(10^5 - 10^6\) reachable atoms. In Section 11 we will discuss approaches which try to overcome this limit.

8.3. Model Checking for Propositional \(\mu\)-Calculus

Both the local and the global model checking algorithms can be easily adapted to \(\mu\text{TL}\). Global model checking for \(\text{CTL}\) unfolds the fixpoint definition of the \(A U^\ast\) and \(E U^\ast\) operators. If we restrict our attention to continuous \(\mu\text{TL}\)-formulas (see below), then this idea can be used to obtain a global model checking algorithm for these formulas. Moreover, as we will discuss in Section 10, this algorithm can be efficiently implemented using BDDs (see [Burch, Clarke, McMillan, Dill and Hwang 1992]).

According to the Knaster-Tarski theorem proved in Section 3.2,

\[
(U, I, w) \models v q \varphi \iff w \in \bigcup\{Q \mid Q \subseteq \varphi^\mathcal{F}\{q := Q\}\}
\]

\[
(U, I, w) \models u q \varphi \iff w \in \bigcap\{Q \mid \varphi^\mathcal{F}\{q := Q\} \subseteq Q\}
\]

A function \(f : 2^U \to 2^U\) is called union-continuous, if \(f(\bigcup_{i \in I}\{x_i\}) = \bigcup_{i \in I}f(x_i)\) for any index set \(I\). If the functional defined by \(\varphi\) is union-continuous, then the fixpoints can be obtained as

\[
v q \varphi = \lim_{n \to \omega} \varphi^n(\top)
\]
\[\mu q \varphi = \lim_{k \to \omega} \varphi^k(\bot) \]

If \(U \) is finite, then every monotonic function is union-continuous. Moreover, according to Lemma 5.4, on finite models it is sufficient to consider the limit up to the cardinality of the universe:

\[\nu q \varphi = \lim_{k \leq |U|} \varphi^k(\top) \]

\[\mu q \varphi = \lim_{k \leq |U|} \varphi^k(\bot) \]

Consequently, for finite domains model checking of positive \(\mu TL \) can be performed by extending the naïve global algorithm. The result is depicted in Figure 20.

```
function eval (Formula \( \varphi \)): Pointset =
case \( \varphi \) of
  p : return \( I(p) \); /* interpretation of proposition \( p \) */
  q : return \( v(q) \); /* valuation of proposition variable \( q \) */
  \( \bot \) : return \{ \};
  (\( \psi_1 \to \psi_2 \)) : return \( U \setminus \text{eval}(\psi_1) \cup \text{eval}(\psi_2) \);
  (R)\( \psi \) : return \( R^{-1}(\text{eval}(\psi)) \);
  \( \nu q(\psi) \) : \( H := U \);
    repeat until stabilization
      \( H := \text{eval}(\psi[q := H]) \);
    return \( H \);
  \( \mu q(\psi) \) : \( H := \{ \};
    repeat until stabilization
      \( H := \text{eval}(\psi[q := H]) \);
    return \( H \);
```

Figure 20: naïve global branching time \(\mu TL \) model checking algorithm

Since every repeat in this algorithm can iterate up to \(|U| \) times, the complexity is of order \(|\varphi| \cdot |U|^{|q_d(\varphi)} \), where \(q_d(\varphi) \) is the depth of nesting of fixpoint operators in \(\varphi \). This high complexity is due to the fact that the computation of any inner fixed point formula has to be restarted from scratch for every new iteration of an enclosing fixed point operator. For example, consider the CTL-formula \(\text{EF}(p_1 \land \text{EF}^* p_2) \).

\[\mu TL(\text{EF}(p_1 \land \text{EF}^* p_2)) = \mu q_1(Xq_1 \lor (p_1 \land \mu q_2(Xq_2 \lor p_2))) \]

This formula is alternation-free: in the inner fixed point formula \(\mu q_2(Xq_2 \lor p_2) \) there is no occurrence of \(q_1 \). Therefore, in the evaluation of \(\mu q_1 \), this formula has a constant value. For such formulas, model checking can be done with linear time complexity [Emerson et al. 1993, Cleaveland and Steffen 1993]. In contrast, consider the \(\mu TL \) formula

\[\mu q_1(p_1 \land \mu q_2(Xq_1 \lor Xq_2 \lor p_2)) \]
Here the inner formula $\mu q_2(Xq_1 \lor Xq_2 \lor p_2)$ is re-evaluated for every new iteration of q_1. That is, if $\psi(q_1, q_2) \triangleq (Xq_1 \lor Xq_2 \lor p_2)^x$ and $\varphi(q_1) \triangleq (p_1 \land \mu q_2 \psi(q_1, q_2))^x$, we calculate $\mu q_1 \varphi(q_1)$ by iterating

$$\varphi^0 \triangleq \bot,$$

$$\psi^{0,0} \triangleq \bot,$$

$$\psi^{0,1} \triangleq \psi(\varphi^0, \psi^{0,0}) = (X \bot \lor X \bot \lor p_2),$$

$$\psi^{0,2} \triangleq \psi(\varphi^0, \psi^{0,1}) = (X \bot \lor X (X \bot \lor p_2) \lor p_2),$$

$$\psi^{0,3} \triangleq \psi(\varphi^0, \psi^{0,2}) = (X \bot \lor X (X \bot \lor X(X \bot \lor p_2) \lor p_2) \lor p_2)\lor p_2),$$

$$\ldots$$

$$\psi^{0,n+1} \triangleq \psi(\varphi^0, \psi^{0,n}) = \mu q_2(X \bot \lor Xq_2 \lor p_2),$$

$$\varphi^1 \triangleq \varphi(\psi^0) = (p_1 \land \mu q_2(X \bot \lor X q_2 \lor p_2)) = (p_1 \land \psi^{0,n}),$$

$$\psi^{1,0} \triangleq \bot,$$

$$\psi^{1,1} \triangleq \psi(\varphi^1, \psi^{1,0}) = (X (p_1 \land \mu q_2(X \bot \lor X q_2 \lor p_2)) \lor X \bot \lor p_2),$$

$$\psi^{1,2} \triangleq \psi(\varphi^1, \psi^{1,1}) = (X \varphi^1 \lor X \psi^{1,1} \lor p_2),$$

$$\ldots$$

and so on. A more sophisticated algorithm was given in [Emerson and Lei 1986]. Each sequence $\nu q_1 \ldots q_n$ or $\mu q_1 \ldots q_n$ of nested fixpoints of the same type can be calculated by a single loop. Since ψ is monotonic, and $\varphi^0 \subseteq \varphi^1$, we have $\psi^{0,n+1} \subseteq \psi^{1,n}$. To compute a least fixpoint, it is sufficient to start with any value below the result. Therefore, $\psi^{1,0}$ can be initialized with $\psi^{0,n}$ instead of \bot. Generally, when restarting the computation of an inner fixpoint of the same type, we can use the last approximation result as a starting value. Thus, the value of this inner fixpoint can increase at most $|U|$ times. The overall complexity of this improved algorithm is $(|\varphi| \cdot |U|)^{ad(\varphi)}$, where $ad(\varphi)$ is the alternation depth of different fixpoint operators in φ.

In [Long, Browne, Clarke, Jha and Marrero 1994] the authors observe that by storing even more intermediate values, the time complexity for evaluating fixpoint formulas can be reduced to $O(|U|^{ad(\varphi)+1})$. It can be shown that the complexity of model checking μTL is in NP \cap co-NP; however, no lower bound is known to date. For more information, see [Berezin, Clarke, Jha and Marrero 1996].
formula to be checked each μ and ν quantification binds a different proposition variable.

Since in [Stirling and Walker 1991] the μ-calculus is interpreted on branching structures, the tableau rules given in Figure 21 are nondeterministic. Any node marked $\Delta, w \models (\psi_1 \land \psi_2)$ has two children, where one is marked $\Delta, w \models \psi_1$ and the other $\Delta, w \models \psi_2$. For a node marked $\Delta, w \models (\psi_1 \lor \psi_2)$ there is only one child node which is either marked $\Delta, w \models \psi_1$ or $\Delta, w \models \psi_2$. Thus, for a given point w and formula φ, there are several nonequivalent completed tableaus; $w \models \varphi$ iff some of these tableaus is successful. A tableau is successful, if each leaf is successful. To turn the tableau method into a concrete model checking algorithm, we have to perform a depth-first search through all possible tableaus.

$$
\begin{align*}
\left(\forall_i\right) & \quad \frac{\Delta, w \models (\psi_1 \lor \psi_2)}{\Delta, w \models \psi_i \quad (i \in \{1, 2\})} \\
\left(\left[R\right]\right) & \quad \frac{\Delta, w \models [R] \psi}{\Delta', w' \models \psi} \\
\left(\mu\right) & \quad \frac{\Delta, w \models \mu q \psi}{\Delta', w \models \psi} \\
\left(\nu\right) & \quad \frac{\Delta, w \models \nu q \psi}{\Delta', w \models \psi} \\
\left(P\text{Var}\right) & \quad \frac{\Delta, w \models q}{\Delta, w \models \psi}
\end{align*}
$$

Figure 21: Tableau rules for branching time μTL

The additional regulations for the tableau rules in Figure 21 are:
• Rule $\left(\left[R\right]\right)$ can only be applied if $w' \in R(w)$.
• In rule $\left(\left[R\right]\right)$, it must hold that $R(w) = \{w_1, \ldots, w_n\}$.
• In rule $\left(\mu\right)$ and $\left(\nu\right)$, $\Delta' \equiv \Delta \cup \{q = \psi\}$.
• Rule $\left(P\text{Var}\right)$ can only be applied if $(q = \psi) \in \Delta$, and there is no ancestor node which is labelled $\Delta', w \models \psi$ (with the same w and ψ).

Intuitively, to check whether $\mu q \psi$ holds in point w, we record that q must be interpreted as a fixpoint of $\psi(q)$, and check whether ψ holds in w. Whenever we hit upon the proposition variable q in the further decomposition of $\psi(q)$, we can unfold this occurrence to ψ. However, to guarantee that the unfolding terminates, each proposition variable may be unfolded at most once in every branch of the tableau and every point of the model. Thus, for finite models each tableau is finite.

A tableau is maximal, if there is no leaf for which any rule is applicable. In a maximal tableau, a leaf $\Delta, w \models \psi$ is called successful, if
• $\psi = p \in \mathcal{P}$ and $w \in I(p)$, or $\psi = \neg p$ and $w \not\in I(p)$,
• $\psi = q \in \mathcal{Q}$, $q \not\in \Delta$, $w \in v(q)$, or $\psi = \neg q$, $q \not\in \Delta$, $w \not\in v(q)$, or
• $\psi = [R] \psi'$ and $R(w) = \{\}$ (Rule $\left([R]\right)$ produces no children),
• \(\psi = q \in Q \) and \(q \) was included in \(\Delta \) by rule (\(\nu \)).

In other words, a maximal tableau is not successful if it contains some unsuccessful leaf \(\Delta, w \models \psi \) which satisfies

• \(\psi = p \in P \) and \(w \notin I(p) \), or \(\psi = \neg p \) and \(w \in I(p) \),

• \(\psi = q \in Q, q \notin \Delta, w \notin v(q) \), or \(\psi = \neg q, q \notin \Delta, w \in v(q) \), or

• \(\psi = \langle R \rangle \psi' \) and \(R(w) = \{ \} \) (Rule (\(\langle R \rangle \)) not applicable),

• \(\psi = q \in Q \) and \(q \) was included in \(\Delta \) by rule (\(\mu \)).

With these definitions, soundness and completeness of the tableau decision method is stated in the following theorem, a proof of which can be found in [Stirling and Walker 1991].

8.1. Theorem. \(w \in \varphi^T \) iff there exists a successful tableau with root \(\{ \}, w \models \varphi \).

More efficient local model checking algorithms for fragments of \(\mu TL \) can be found in [Cleaveland and Steffen 1993, Bhat and Cleaveland 1996].

A somewhat different approach for model checking of \(\mu \)-calculus was suggested in [Mader 1992]. It is based on Gauss-elimination: proving a formula in this approach is similar to solving a system of linear inequalities.

9. Modelling of Reactive Systems

Up to now, we assumed that a system is given as a single Kripke-model. However, real-life systems usually are composed of a number of smaller subcomponents. Even if the target system is a single sequential machine, it is often advantageous to model it as a set of processes running in parallel:

• usually the functionality suggests a certain decomposition into modules; sequentialization is not the primary issue in the design;

• certain subcomponents (e.g. hardware components) actually are independent of the rest of the system and, therefore, conceptually parallel,

• the environment can be seen as a process running in parallel to the system;

• software-reusability and object-oriented design require modularity.

9.1. Parallel Programming Paradigms

Hence, we have to consider systems of parallel processes, that is, processes which are executed during the same time period, and the synchronization between these processes. We distinguish between two main paradigms of parallel systems: distributed systems, where the subcomponents are seen as spatially apart from each other, and concurrent systems, where the subcomponents use common resources such as processor time or memory cells.
Message Passing vs. Shared Variables
Consequently, there are two main paradigms for synchronization between parallel processes: via message passing (for distributed systems), and via shared variables (for concurrent systems).

Of course, there is no clear distinction between distributed and concurrent programs. It is not possible to formalize the concept of being spatially apart, since this is dependent on one’s own point of view: from the United States, all computers in a local area network in Europe can be regarded as a single system. From the processor’s viewpoint, a hard disk controller can be regarded as a remote subsystem. On the other side, every component of a distributed system shares some resource with some other component; if it were totally unrelated it would not make sense to regard it as being part of one system.

Consequently, from a certain point of view, passing a message between process A and B can be seen as process A writing into a shared variable which is read by B. On the other side, writing a shared variable can be seen as sending to all other processes which might use this variable the message that its value has changed. In fact, this transition from the message passing paradigm to an implementation via shared variables occurs in every network controller; and the transition from the shared variables paradigm to an implementation via message passing occurs in every distributed cache.

However, different paradigms produce different techniques; many parallel programming languages and many verification systems support only one of these two paradigms.

Synchronous vs. Asynchronous Systems
Another issue is the modelling of a process execution in time. In discrete processes a computation consists of a sequence of steps, whereas in continuous systems the value of state parameters changes gradually as time passes. Hybrid systems combine discrete and continuous components. Usually, the model of time which is used in verification is determined by the type of system under consideration.

For parallel systems of discrete processes, there are various ways to model their execution. Synchronous processing is characterized by the fact that in each step, every parallel component advances. For example, a circuit in which each gate switches at the pulse of a global clock can be seen as a synchronous system. In contrast, in an asynchronous execution in each step an arbitrary (nonempty) subset of all components proceeds. For example, a set of agents working independently and synchronizing via mailboxes is a typical asynchronous system. With synchronous processing, the transition relation of the system is the conjunction of the transition relations of the components, with asynchronous processing it is the disjunction.

If each process can perform an “idle” step at any time (“stutter”), then synchronous and asynchronous processing coincides. Both synchronous and asynchronous executions can be implemented by interleaving, where in each step at most one process is active. A typical example is a set of threads in a time-sharing operating system on a mono-processor machine. With interleaving execution, usu-
ally some fairness constraints are imposed on the scheduling to ensure that all processes can progress.

Related to the execution mode is the mode of interaction between parallel components. With synchronous communication, each component wishing to interact is blocked until all partners it requires are willing to participate in the communication. The information is then broadcast to all communication partners. With asynchronous communication each process decides whether it wants to wait at a certain point or not; usually some kind of buffering mechanism is used for messages which are not needed immediately.

Synchronous communication can be seen as a special case of asynchronous communication where the length of each buffer queue is limited to one, and each process decides to wait after writing into or before reading from that queue until the queue is empty or full again, respectively.

Vice versa, a buffer can be seen as a separate process in a synchronous system which is always willing to communicate with other processes. If the size of the buffer is unbounded, the system is not finite state. Even if their size is bounded, the buffers can be the biggest part of the modelling of an asynchronously communicating system.

9.2. Some Concrete Formalisms for Finite State Systems

Recall that a (labelled) transition system is a tuple \((\Sigma, S, \Delta, S_0)\), where

- \(\Sigma\) is a nonempty finite alphabet,
- \(S\) is a nonempty finite set of states,
- \(\Delta \subseteq S \times \Sigma \times S\) is the transition relation, and
- \(S_0 \subseteq S\) is the set of initial states.

A parallel transition system is a tuple \(T = (T_1, \ldots, T_n)\) of transition systems, such that \(S_i \cap S_j = \{\}\), for \(i < j\). The global transition system \(T\) associated with a parallel transition system \((T_1, \ldots, T_n)\) is defined by \(T = (\Sigma, S, \Delta, S_0)\), where

- \(\Sigma = \bigcup \Sigma_i\)
- \(S = S_1 \times \cdots \times S_n\)
- \(S_0 = S_{01} \times \cdots \times S_{0n}\), and
- \(((s_1, \ldots, s_n), a, (s'_1, \ldots, s'_n)) \in \Delta\) iff for all \(T_i\)
 - if \(a \in \Sigma_i\), then \(s_i, a, s'_i \in \Delta_i\), and
 - if \(a \notin \Sigma_i\), then \(s_i = s'_i\)

Thus, in a parallel transition system synchronization between components is by the common alphabet. The size of the state space of the global transition system is the product of the sizes of all parallel components.

An elementary Petri net is a tuple \(N = (P, T, F, s_0)\), where

- \(P\) is a finite set of places,
- \(T\) is a finite set of transitions \((P \cap T = \{\})\),
- \(F \subseteq (P \times T) \cup (T \times P)\) is the flow relation, and
- \(m_0 \subseteq P\) is the initial marking of the net.
A marking \(m \) of the net is any subset of \(P \). By \(\bullet t = \{ p \mid (p, t) \in F \} \) and \(t \bullet = \{ p \mid (t, p) \in F \} \) we denote the preset and the postset of transition \(t \), respectively. A transition \(t \) is enabled at marking \(m \) if \(\bullet t \subseteq m \) (all its input places are occupied at \(m \)) and \(t \bullet \cap m \subseteq \bullet t \) (all its output places are empty at \(m \), or they are also input places). Marking \(m' \) is the result of firing transition \(t \) from marking \(m \), if \(t \) is enabled at \(m \) and \(m' = (m \setminus \bullet t) \cup t \bullet \). In contrast to condition-event Petri nets [Reisig 1998], where each place can be occupied by an arbitrary number of tokens, elementary Petri nets inherently are finite-state.

For every elementary Petri net there is an associated transition system: the alphabet is the set of transitions, the state set is the set of markings, the initial state is the initial marking, and \((m, t, m') \in \Delta \) iff \(m' \) is the result of firing \(t \) from \(m \). The number of states of this transition system is exponential in the number of places of the net. Alternatively, for any elementary Petri net we can obtain a parallel transition system of the same order of magnitude: for each place \(p \) in the net there is a transition system with two states \(p^1 \) and \(p^0 \), denoting the fact that \(p \) is occupied or empty, respectively. For each \(t \in T \), we let \((p^1, t, p^0) \in \Delta \) iff \(p \in \bullet t \setminus \bullet t \) and \((p^0, t, p^1) \in \Delta \) iff \(p \in t \bullet \setminus t \bullet t \). Furthermore, \((p^1, t, p^1) \in \Delta \) iff \(p \in \bullet t \cap t \bullet t \). The language of the global transition system associated with this parallel transition system is the set of firing sequences of the net. Vice versa, every parallel transition system can be formulated as an elementary Petri net of the same order of magnitude. The construction is straightforward.

A shared variables program is a tuple \((V, D, T, s_0)\), where
- \(V = \{v_1, \ldots, v_n\} \) is a set of **program variables**,
- \(D = D_1 \times \cdots \times D_n \) is the **state space**, where each \(D_i = \{d_{i1}, \ldots, d_{in_i}\} \) is a finite domain for variable \(v_i \),
- \(T \subseteq D \times D \) is a **transition relation**, and
- \(s_0 = (d_{11}, \ldots, d_{n1}) \) is the **initial state**.

A state of a shared variables program is a tuple \((d_1, \ldots, d_n)\), where each \(d_i \in D_i \). Thus the number of states in a shared variables program is the product of the size of all domains. The transition relation \(T \) can be defined by a propositional formula \(\varphi_T \) with the set of atomic proposition \(P = \{ (x = y) \mid x, y \in (V \cup V' \cup \{D_i\}) \} \), where \(V' = \{v_1', \ldots, v_n'\} \). If \(s = (d_1, \ldots, d_n) \) and \(s' = (d_1', \ldots, d_n') \), then \((s, s') \in T \) iff \(\mathcal{I} = \varphi_T \), where \(\mathcal{I}(v_i) = d_i \) and \(\mathcal{I}(v'_i) = d'_i \).

Using relational semantics, a shared variables program can be obtained for almost all other models for concurrency. Therefore, shared variable programs are widely used to model reactive systems.

9.3. Example Applications

A Combinatorial Game

As a first example, we describe the use of model checking in a combinatorial search. Although this example is not very typical for real applications, it can demonstrate the capabilities and limits of present technology. A well-known puzzle from 1870
by the American Sam Loyd consists of a $h \times v$ grid in which there are $(h \cdot v) - 1$ numbered tiles and one blank space. A move consists in moving any tile into the position of the blank. The goal is to achieve a certain predetermined order on the tiles.

This puzzle can be described by a shared variables program as follows. For each tile there is a program variable which notes its horizontal and vertical position. Furthermore, there is a program variable move indicating whether the next move will be a shift up, down, left or right of the blank space. If the move would bring it out of the borders, nothing is changed; otherwise, its position is swapped with the respective adjacent tile.

```
MODULE main
DEFINE v := 3; h := 3;
VAR move: u,d,l,r;
  hpos: array 0..(h+1) of 1..h;
  vpos: array 0..(h+1) of 1..v;
ASSIGN
next(hpos[0]) := case
  (move=l) & (hpos[0]-1) : hpos[0] := hpos[0] - 1;
  (move=r) & (hpos[0]+h) : hpos[0] := hpos[0] + 1;
  1: hpos[0];
endcase;
next(vpos[0]) := case
  (move=u) & (vpos[0]-1) : vpos[0] := vpos[0] - 1;
  (move=d) & (vpos[0]+v) : vpos[0] := vpos[0] + 1;
  1: vpos[0];
endcase;
for all i:
  next(hpos[i]) := case
    (move=l) & (hpos[i]-1) & vpos[i]-vpos[0] & hpos[i]-hpos[0]+1 |
    (move=r) & (hpos[i]+h) & vpos[i]-vpos[0] & hpos[i]-hpos[0]-1 |
    1: hpos[i];
  endcase;
  next(vpos[i]) := case
    (move=u) & (vpos[i]-1) & hpos[i]-hpos[0] & vpos[i]-vpos[0]+1 |
    (move=d) & (vpos[i]+v) & hpos[i]-hpos[0] & vpos[i]-vpos[0]-1 |
    1: vpos[i];
  endcase;
init(vpos[0]) := i div h + 1; init(hpos[i]) := i mod h + 1;
DEFINE goal := \forall (vpos[i] - v - (i div h) & hpos[i] - h - (i mod h))
SPEC !EF goal
```

Figure 22: SMV Code for Loyds Puzzle
The SMV code corresponding to this description\(^6\) is shown in Figure 22. For \(h = 3\) and \(v = 3\), the internal representation of the transition relation takes about 3KB. There are \(4 \cdot (h \cdot v)! = 1.4 \cdot 10^6\) states, of which 50\% are reachable from any initial state. The specification claims that a certain final state is \textit{not} reachable; the model checker contradicts this claim by showing a sequence of moves (rcddlluur-
rk0rurk0rurk0r) which gives a solution to the puzzle. The solution is found within a couple of minutes on a 32 MB Pentium 133.

For \(h = 4, v = 3\), there are approximately \(10^6\) reachable states. Although the symbolic model checker detects rather quickly that some solution must exist, for the construction of a concrete solution sequence the state space has to be partitioned into strongly connected components. This requires several days of CPU time and approximately 1 GB RAM on a Sparc Ultra. For model checking applications, virtual memory is not very useful; if the representation of the reachable state space exceeds the available main memory, then constant swapping occurs. To find a solution for \(h = 4, v = 4\) by exhaustive state space exploration seems to be beyond the limits of present technology. In [Edelkamp and Reffel 1998], a combination of model checking and heuristic search is used to automatically construct solutions to this and other combinatorial games.

A Sequential Circuit

Our second example is from hardware verification. We consider a shift register for interfacing a parallel data bus. The register is from the 74x95 TTL family and is described in [Nowicki and Adam 1990]. It is used to exchange data between the bus and a serial device. It thus acts as parallel-serial converter and vice versa. A functional diagram of the register is given in Figure 23.

The register has a \textit{mode control} input \(mc\) to choose between parallel or serial access mode. For each mode, there is a corresponding input clock (\(pc\) and \(sc\)). Parallel loading is performed if \(mc\) is high and a \(pc\) clock pulse arrives. In this case, data is read from the bus into the associated flip-flops. The data appears at the \(Q\) outputs at the pulse of the \(pc\) clock.

For serial loading, mode control should be low. Data is input serially with every tick of the \(sc\) clock. At each pulse the state of all flip-flops is transferred one stage to the right. After \(n\) cycles, the data is positioned at the parallel output and can be sent to the bus by an \(oc\) command. A right shift occurs if the serial input \(inp\) is held low. By a sequence of \(n\) right shifts, data which has been obtained in parallel from the bus can be written serially to the \(out\) port.

The register is implemented with SR-bistables which have the following characteristic function. If both inputs are low, the bistable keeps its state. The output \(Q\) is set if input \(S\) is high, and reset if input \(R\) is high. If both \(S\) and \(R\) are high, then \(Q\) is undefined. This can be modelled by a nondeterministic internal choice between high and low output. The latch is triggered by a negative edge of the clock pulse. That is, a change of output occurs only at the time instant when the clock line

\(^{6}\text{In the actual SMV code, variable array bounds or indices, e.g., } vpos[i], \text{ are not allowed and have to be replaced by the respective constant values } vpos[1],vpos[2],...\)
Figure 23: A shift register for data bus interfacing

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>Q'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Q</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

goes from high to low. If the value of the clock line is part of the state space, then the clock value would be low in every new state. For an accurate state-based model (e.g., of an asynchronous circuit), we would have to include timing information of all gates. However, if the clock is only used as trigger, an event based modelling is more adequate: the high-to-low change of the clock line is considered as an event occurrence. In each state, this event may or may not occur. To prevent executions in which the input or output clocks are indefinitely blocked, we require infinitely many input and output clock ticks in every infinite run.

The model is just a representation of the circuit’s truth table, where the outputs are a boolean function of inputs and latch states. It can be derived automatically from any standard hardware description language; in fact, several model checkers
support such front-end translations. Correctness of parallel and sequential input is expressed by the following formulas, where \(n \) is the width of the data bus:

\[
AG'(mc \land pc \to \bigvee_{i=1}^{n} (bus[i] \leftrightarrow A((oc \to AXbus[i])U^+_{ic})))
\]

\[
AG'(-mc \land sc \to \bigvee_{i=2}^{n} (Q[i] \leftrightarrow A(Q[i-1] U^+_{ic})))
\]

Intuitively, these formulas assure that data which is input into the register remains there until a new input occurs. If the mode control is set to parallel and there is a tick of the parallel clock, then the data which is currently on bus \(i \) will be delivered at each tick of the output clock, until a new input occurs. If the mode control is set to serial, and there is a tick of the serial clock, then the latches will remain stable until the next input.

The SMV model checker can verify these formulas for a bus width of 32 bit in less than a second. Similar formulas can be used to verify that after a sequence of \(n \) sequential load operations, the correct data word will be put onto the bus on a subsequent output pulse.

If the connection structure of wires within the circuit is “well-behaved”, then automatic verification is successful even on much bigger circuits. A circuit is “well-behaved” if there exists an ordering of all wires such that the value of a wire only depends on the value of wires which are close in the ordering. For a formal definition of this condition see [McMillan 1993]. A large number of circuits with hundreds of storage places have been verified automatically in this way.
A Communication Protocol

The third example is a set of communicating processes within the operating system of a Siemens cellular phone. In this system, there are a number of basic processes communicating with one another by priority messages. Each of the processes implements a finite state machine, which is described by a set of SDL diagrams. Basically, a process waits in a certain state until it receives a message from some other process. It then performs some specified operations, sends a number of messages to other messages, and transitions to another state. Figure 25 shows part of the transition graph of a process and the corresponding SDL diagram. The displayed part is used to implement the following quote from the GSM international standard:

"Initially the mobile station looks for a cell which satisfies the suitability constraints by checking cells in descending order of received signal strength. If a suitable cell is found, the mobile station camps on it and performs any registration necessary."

A property to be verified is that the system never deadlocks:

\[A (G E F)_{\text{init}} \]

That is, no sequence of user actions can bring the phone into a state from where it cannot be reset. Since the number of merchandised units is expected to be very high, correctness is an important design issue. In this particular example, a number of potential problems in the design could be identified by model checking before the actual implementation took place [Schlingloff 1997].

In the model to be checked, there are five basic processes, plus the operating system kernel. There are approximately 50 different types of messages which can be sent by the processes, and each process has between 10 and 20 states. The operating system is responsible for the scheduling of processes according to a priority scheme, and for the storage and delivery of messages. Therefore, it has to maintain a buffer, in which for each process all messages are kept. The size of these buffers turns out to be the most important parameter in the verification. Basically, each buffer slot could be filled with every message; thus a combinatorial explosion similar to the one in our first example can occur. However, a buffer overflow almost certainly indicates an error in the implementation; for example, if some high-priority process keeps resending the same message, it will eventually fill up any bounded buffer. In the modelled system, a total number of 15-20 buffer slots was sufficient; a fairness assumption is used to select only those computations in which no buffer overflow occurs. Moreover, the buffer contents usually follows a regular pattern, therefore the above mentioned state explosion is avoided. In practical applications, an exponential growth in the number of reachable states almost certainly indicates an error. For buffers in which all messages have the same priority, the transition relation of a bounded buffer can be defined by the transition table in Figure 26.

In the right half of this table, an empty entry means that the respective program variable is set by the environment. An input value of nil in \(i\) indicates that there is no message to be sent; in this case the next value of \(i\) is determined by the sender. If this process has put a non-nil value \(x\) into \(i\), then this value is appended to the buffer, and \(i\) is reset to nil. The last line indicates a buffer overflow: if a message
Figure 25: Transition graph and SDL diagram
is to be sent with the message buffer already filled, \(i \) remains stable. Thus, the formula \(A \ G (i \neq \text{nil} \rightarrow X(i = \text{nil})) \) can be used to determine whether a buffer overflow can occur. If the output variable \(o \) is \(\text{nil} \) and there is a message to deliver, it is copied into \(o \). When the operating system delivers a message \(y \) from \(o \), it resets \(o \) to \(\text{nil} \).

The content of the buffer \(b \) is given as a sequence \(\langle x_1, \ldots, x_v \rangle \) of messages, where \(\langle \rangle \) denotes the empty buffer. There are various possibilities to model such sequences. In Figure 27 we show a modelling which uses \(n \) program variables \(b_1, \ldots, b_n \), such that \(b_1 \) contains the front element of the message queue, and incoming messages are appended into the smallest \(b_v \) which is empty (contains \(\text{nil} \) as value).

<table>
<thead>
<tr>
<th>(i)</th>
<th>(b)</th>
<th>(o)</th>
<th>(i')</th>
<th>(b')</th>
<th>(o')</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{nil})</td>
<td>(\langle \rangle)</td>
<td>(\text{nil})</td>
<td>(\langle \rangle)</td>
<td>(\text{nil})</td>
<td>---</td>
</tr>
<tr>
<td>(x)</td>
<td>(\langle \rangle)</td>
<td>(\text{nil})</td>
<td>---</td>
<td>(\text{nil})</td>
<td>---</td>
</tr>
<tr>
<td>(\text{nil})</td>
<td>(\langle x_1, \ldots, x_v \rangle)</td>
<td>(\text{nil})</td>
<td>(\langle x_1, \ldots, x_{v-1} \rangle)</td>
<td>(x_v)</td>
<td>---</td>
</tr>
<tr>
<td>(x)</td>
<td>(\langle x_1, \ldots, x_v \rangle)</td>
<td>(\text{nil})</td>
<td>(\langle x, x_1, \ldots, x_{v-1} \rangle)</td>
<td>(x_v)</td>
<td>---</td>
</tr>
<tr>
<td>(\text{nil})</td>
<td>(\langle \rangle)</td>
<td>(y)</td>
<td>---</td>
<td>(\langle \rangle)</td>
<td>---</td>
</tr>
<tr>
<td>(x)</td>
<td>(\langle \rangle)</td>
<td>(y)</td>
<td>---</td>
<td>(\text{nil})</td>
<td>(\langle x \rangle)</td>
</tr>
<tr>
<td>(\text{nil})</td>
<td>(\langle x_1, \ldots, x_v \rangle)</td>
<td>(y)</td>
<td>((v < n))</td>
<td>(\langle x, x_1, \ldots, x_v \rangle)</td>
<td>---</td>
</tr>
<tr>
<td>(x)</td>
<td>(\langle x_1, \ldots, x_v \rangle)</td>
<td>(y)</td>
<td>((v < n))</td>
<td>(\text{nil})</td>
<td>(\langle x, x_1, \ldots, x_v \rangle)</td>
</tr>
<tr>
<td>(x)</td>
<td>(\langle x_1, \ldots, x_v \rangle)</td>
<td>(y)</td>
<td>((v < n))</td>
<td>(x)</td>
<td>(\langle x, x_1, \ldots, x_v \rangle)</td>
</tr>
</tbody>
</table>

Figure 26: Transition relation of a bounded buffer

In this modelling, we rely on the fact that whenever \(b_j = \text{nil} \), then for all \(k \geq j \), also \(b_k = \text{nil} \). This assumption only holds for the reachable states of a buffer which is initially empty: there are many transitions from illegal, i.e., non reachable states to other illegal states in this model. In an explicit representation of the transition relation, one should try to avoid these redundant entries. Below, we discuss symbolic representations with BDDs. With such a representation, even though the size of...
the transition relation is much bigger than the transition relation restricted to the reachable states, its representation is much smaller. Since the value of each buffer slot depends only on its immediate neighbors, in fact the size of the representation is linear in the (fixed) number and width of the buffer slots. For modelling unbounded queues, efficient data structures are discussed in [Boigelot and Godefroid 1996, Godefroid and Long 1996].

10. Symbolic Model Checking

Model checking methods derive a great deal of their success from the efficiency of the data structures that are used. A propositional formula can be regarded as a boolean function, mapping an interpretation of the propositions into \{true, false\}. Since very powerful techniques exist for manipulation of such functions, it makes sense to represent temporal and predicate logic formulas as well as frames in terms of boolean functions. The general idea is to encode each domain element by a boolean sequence. Predicates and relations are then represented by their characteristic functions. Temporal operators are interpreted algorithmically according to their fixpoint definitions.

For any shared variables program, we can obtain an equivalent shared variables program which uses only binary domains of the form \(D = \{0, 1\}^n \). To do so, we use an arbitrary binary encoding of domain \(D_i \) and introduce for any program variable \(v_i \) over domain \(D_i \) \(k \) new binary program variables \(v_{i1}, \ldots, v_{ik} \), where \(k = \lceil \log_2(|D_i|) \rceil \). This encoding is comparable to the implementation of arbitrary data types on digital computers, where each bit can take only two values.

If all program variables \(V = \{v_1, \ldots, v_n\} \) of a shared variables program are over a binary domain, then any propositional formula \(\varphi \) over \(\mathcal{P} = \{v_1, \ldots, v_n\} \) describes a set of states of the program, namely the set of all propositional models (interpretations) which validate the formula. Here we assume the substitution 0 for \(\text{false} \) and 1 for \(\text{true} \). Vice versa, for any set of states there is a propositional formula describing this set. However, this formula is not uniquely determined; the problem of finding a shortest formula describing a given set of states is co-NP-hard.

The transition relation of a shared variables program with binary program variables \(V = \{v_1, \ldots, v_n\} \) can be represented as an ordinary propositional formula over \(\mathcal{P} = \{v_1, \ldots, v_n, v'_1, \ldots, v'_n\} \). If the transition relation is given as a propositional formula with equalities, we replace 0 by \(\perp \), and 1 by \(\top \), and \((v = v')\) by \((v \leftrightarrow v')^7\). For example, the formula

\[
v_1 = 0 \rightarrow ((v'_1 = 1) \land (v'_2 = v_2) \land (v'_3 \neq v_3))
\]

in this notation becomes

\[
\neg v_1 \rightarrow (v'_1 \land (v'_2 \leftrightarrow v_2) \land \neg (v'_3 \leftrightarrow v_3))
\]

\(^7 \text{Recall that } \perp \text{ and } \top \text{ are propositional formulas, false and true are truth values and 0 and 1 are domain elements.} \)
For a shared variables program with \(n \) program variables over binary domains the size of the state space is \(2^n \). Therefore e.g. the state space of a buffer of length 10 with values between 1 and 1000 is \(2^{100} \approx 10^{30} \). The \emph{reachable} state space is a subset of this state space, which can be of the same order of magnitude. The transition relation for this buffer consists of pairs of states and therefore has a size of approximately \(10^{60} \).

To perform global model checking on systems of this or bigger size, we need an efficient representation of large sets.

\textbf{10.1. Binary Decision Diagrams}

Clearly, a set could be represented by a table of boolean values. Containment of an element in such a set could then be calculated by selecting the appropriate element from the table. Another possible representation of a set is the explicit enumeration of its elements, e.g., as a list or array. However, these representations can be rather wasteful, since they pay no respect to the internal structure of the set. For example, given the domain \(D = \{0, 1, \ldots, 15\} \), the explicit enumeration of the set “all numbers which are even or bigger than 11” is

\[S = \{0, 2, 4, 6, 8, 10, 12, 13, 14, 15\} \]

The bitstring representation is

\[S = (1010101010101111). \]

These representations take \(O(|D| \cdot [\log_2(|D|)]) \) memory bits. Bitstrings provide extremely efficient (constant-time) access. In model checking applications, however, the space used by the data is usually more important than the execution time. So, it is desirable to have a concise data structure for representing large sets which still permits efficient access to the elements.

Given a binary encoding \(\vec{v} = v_1v_2v_3v_4 \) of the domain \(D \), the above explicit enumeration is

\[S = \{0000, 0010, 0100, 0110, 1000, 1010, 1100, 1101, 1110, 1111\} \]

This description corresponds to a propositional formula in disjunctive normal form. A much more succinct representation of the same set can be given by the formula

\[S = \{\vec{v} \mid v_4 = 0 \lor v_1 = 1 \land v_2 = 1\} \]

Usually it is hard to find a minimal propositional formula describing a given set of elements. Therefore attention is restricted to formulas in some normal form. A \textit{binary decision diagram} (BDD, [Bryant 1986, Bryant 1992]) is such a canonical form for a propositional formula. BDDs often are substantially more compact than traditional normal forms such as conjunctive or disjunctive normal form, and they can be manipulated and evaluated very efficiently. Hence, they have become widely used.
for a variety of applications in computer-aided design applications. Many present tools in symbolic simulation and verification of combinational logic and sequential circuits use a BDD library for manipulating large sets. The size of the BDD depends more on the structure of the represented set than on its cardinality. For example, the BDD representation of the empty set and the full set are both of constant size one. Because of this dependence on the structure of the represented object, the description of a system with BDDs is sometimes called a symbolic representation, and techniques using BDDs to represent objects are called symbolic techniques. Subsequently, we describe symbolic model checking. For an alternative introduction to BDDs and BDD based algorithms in automated theorem proving, see [Moore 1994]. The use of BDDs in checking language containment for ω-automata is described in [Touati, Brayton and Kusnhan 1991].

In model checking, binary decision diagrams are a preferred datatype for the representation of propositional formulas. They can be understood as an efficient implementation of binary decision trees. Usually, the BDD is much more succinct than the original decision tree. Efficiency is gained by sharing of subtrees and by elimination of unnecessary nodes.

Consider a three-place boolean connective ite (“if-then-else”), such that

$$\text{ite}(\varphi, \psi_1, \psi_2) \triangleq (\varphi \rightarrow \psi_1) \land (\neg \varphi \rightarrow \psi_2).$$

Equivalently, $\text{ite}(\varphi, \psi_1, \psi_2) \leftrightarrow ((\varphi \land \psi_1) \lor (\neg \varphi \land \psi_2))$. Then $(\varphi \rightarrow \psi) \leftrightarrow \text{ite}(\varphi, \psi, \top)$, hence all boolean operators can be expressed with ite, \bot, and \top. A formula ψ is said to be in tree form, if $\psi = \bot$, or $\psi = \top$, or $\psi = \text{ite}(v, \psi_1, \psi_2)$, where $v \in \mathcal{P}$ and ψ_1 and ψ_2 are in tree form. In other words, a formula ψ is in tree form, if it uses only ite, \bot, \top, and propositions, and, additionally, for every subformula $\text{ite}(\varphi, \psi_1, \psi_2)$ of ψ, the formula φ is an (atomic) proposition, and ψ_1 and ψ_2 are not propositions. A tree form formula can be drawn as binary decision tree, where for each subformula $\text{ite}(v, \psi_1, \psi_2)$ there is a node labelled v which has ψ_2 and ψ_1 as left and right child nodes, respectively.

Assume a linear ordering $< \mathcal{P}$ of propositions. A tree form formula is said to be in ordered tree form, if for every subformula $\text{ite}(v_1, \varphi_1, \varphi_2)$ of φ, and every subformula $\text{ite}(v_2, \psi_1, \psi_2)$ of φ_1 or φ_2, it holds that $v_1 < v_2$. An ordered tree form formula is called reduced, if it does not contain any redundant subformula $\text{ite}(v, \psi, \psi)$ (with equal second and third argument). The sequence of leaves of the formula tree in a reduced ordered tree form formula is called the logical spectrum of the formula. For any given ordering, the reduced ordered tree form is a normal form.

That is, for every propositional formula there is exactly one equivalent formula in reduced ordered tree form. This formula can be obtained by repeated application of the so-called Shannon expansion:

$$\varphi \leftrightarrow \text{ite}(v, \varphi[v := \top], \varphi[v := \bot]),$$

and boolean reductions like $\text{ite}(v, \psi, \psi) \leftrightarrow \psi$ and $(\bot \rightarrow \top) \leftrightarrow \top$.

For example, truth table and tree form formula for the above set are given in Figure 28. The reader should also compare the tree form formula to the tree given on the following page.
\[
\begin{array}{c|cccc|c}
 v_1 & v_2 & v_3 & v_4 & S \\
\hline
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\]

The reduced ordered tree form formula for the ordering \((v_1, v_2, v_3, v_4)\) of propositions is obtained by repeatedly replacing every redundant subformula \(\text{lte}(w, \psi)\) in the above tree form formula by \(\psi\):

\[
S = \text{lte}(v_1, \\
\text{lte}(v_2, \\
\text{lte}(v_3, \\
\text{lte}(v_4, T, T)), \\
\text{lte}(v_4, \perp, T))), \\
\text{lte}(v_3, \\
\text{lte}(v_4, \perp, T)), \\
\text{lte}(v_4, \perp, T)))
\]

In a reduced ordered tree form formula, there might be several identical subformulas. In order to further reduce the length of the formula, we introduce names for subformulas. An *abbreviated* formula is a formula over the extended alphabet \(\mathcal{P}_0 \equiv \mathcal{P} \cup \{\delta_1, \ldots, \delta_n\}\), together with a (nonrecursive) list of abbreviations \((\delta_1 \equiv \psi_1, \ldots, \delta_n \equiv \psi_n)\). In each abbreviation, \(\psi_i\) is an abbreviated formula \(\text{lte}(v, \varphi_1, \varphi_2)\) over the alphabet \(\mathcal{P}_i \equiv \mathcal{P} \cup \{\delta_1, \ldots, \delta_n\}\). The introduction of names for subformulas is comparable to the introduction of pointers in formula trees: an abbreviated formula can be drawn as a dag (directed acyclic graph), where each node represents a subformula or abbreviation. A formula is *maximally abbreviated*, if

1. no compound subformula \(\text{lte}(v, \varphi_1, \varphi_2)\) appears twice, and
2. no two abbreviations have the same right hand side.

For the above example, a maximally abbreviated formula is

\[
S = \text{lte}(v_1, \text{lte}(v_2, T, \delta), \delta), \text{ where } \delta \equiv \text{lte}(v_4, \perp, T)
\]

Figure 28: Truth table and tree form formula
In an implementation an abbreviation can be a pointer or array index to the corresponding subformula. A maximally abbreviated formula is in \textit{BDD form}, if for all subformulas $\text{lte}(v, \varphi, \psi)$, both φ and ψ are from \{ \bot, \top, δ_1, ..., δ_n \}. In the example, this normal form can be obtained by introducing further definitions:

$$S = \text{lte}(v_1, \delta_1, \delta_2), \text{ where } \delta_1 \triangleq \text{lte}(v_2, \top, \delta_2) \text{ and } \delta_2 \triangleq \text{lte}(v_4, \bot, \top)$$

Actually, a BDD form formula is given by a list of abbreviations ($\delta_i \triangleq \text{lte}(v, \varphi_i, \psi_i)$) and an entry point to this list. It can be drawn as a \textit{binary decision diagram}: for any $\delta \triangleq \text{lte}(v, \delta_1, \delta_2)$, draw a node labelled v with reference δ, which has the nodes referenced by δ_2 and δ_1 as left and right children, respectively. To illustrate these ideas with pictures, we give the binary decision tree for the above example S:

![Binary Decision Tree](image)

This tree is just a transcription of the truth table of S's characteristic function. It has many isomorphic subtrees. For any two isomorphic subtrees it is sufficient to maintain only one copy. We can replace the other one by a link to the corresponding subtree.

![Binary Decision Tree](image)

In the resulting structure, there are nodes for which both alternatives lead to the same subtree. These nodes represent redundant decisions and can be eliminated.
The resulting graph is the (ordered) binary decision diagram for this set with ordering \((v_1, v_2, v_3, v_4)\). Given a variable ordering, there is a canonical BDD for every formula. It can be constructed using the Shannon expansion in a simple recursive descent:

\[
\varphi(v_1, ..., v_n) \leftrightarrow \text{lte}(v_1, \varphi\{v_i := \top\}(v_{i+1}...v_n), \varphi\{v_i := \bot\}(v_{i+1}...v_n))
\]

This gives the unique binary decision tree for the chosen ordering. To obtain the BDD for \(\varphi(v_1, ..., v_n)\) we recursively calculate the BDD \(\delta_1\) for \(\varphi\{v_i := \top\}(v_{i+1}...v_n)\) and \(\delta_2\) for \(\varphi\{v_i := \bot\}(v_{i+1}...v_n)\). Upon backtrack, a new node \(\delta \triangleq \text{lte}(v, \delta_1, \delta_2)\) is added to the BDD. However, we do not create a new node if both branches in the recursion are equal (return a common result), or if an equivalent node already exists in the BDD. To check this latter condition, we implement the set of BDD nodes \(\delta \triangleq \text{lte}(v, \delta_1, \delta_2)\) as a hash table from \((v, \delta_1, \delta_2)\) to \(\delta\).

Each entry in the hash-table is a quadruple \((\delta, v, \delta_1, \delta_2)\); pointers to BDD nodes are represented as integer numbers. A BDD is identified by its topmost node, and 0 is a pointer to \(\bot\) and 1 is a pointer to \(\top\). That is, the type “Bdd” is defined as “Int”. Likewise, variable names are represented as integer numbers; for clarity we introduce the type “Bddvar” which is also defined as “Int”. Thus, for each BDD node \((\delta, v, \delta_1, \delta_2)\) in the hash table, \(\delta\) (of type “Bdd”) is the number of the BDD node, \(v\) (of type “Bddvar”) is the number of a BDD variable, and \(\delta_1\) and \(\delta_2\) (of type “Bdd”) are links to other BDD nodes. For each \((\delta, v, \delta_1, \delta_2)\) the hash table returns the pointer \(\delta\), if this node exists in the BDD.

The resulting algorithm is given in Figure 29. It takes as input a \(\text{PL}\) formula with \(\mathcal{P} = \{v_1, ..., v_n\}\) and calculates the table of BDD nodes and a pointer to the topmost node for the variable ordering \((v_1, ..., v_n)\).

In the BDD representation of sets, several operations can be performed very efficiently. Checking whether a given element \(w\) is contained in a set \(W \subseteq U\) is done in time \(O(\log |U|)\) by traversing the BDD of \(W\) according to the bitstring encoding \(\overline{w}\) of \(w\). Addition and deletion of elements as well as union and intersection of sets can be done by recursive descent. We now describe this procedure for the implication. Note that the lte-operator commutes with other boolean connectives:

\[
\text{lte}(p, \varphi_1, \varphi_2) \rightarrow \psi \leftrightarrow \text{lte}(p, (\varphi_1 \rightarrow \psi), (\varphi_2 \rightarrow \psi))
\]

\[
(\psi \rightarrow \text{lte}(q, \varphi_1, \varphi_2)) \leftrightarrow \text{lte}(q, (\psi \rightarrow \varphi_1), (\psi \rightarrow \varphi_2))
\]
function PL2BDD (Formula \(\varphi \)) : (Nodeset, Bdd) =
/* Calculates the BDD of \(\varphi \)
 as a set of nodes and a pointer to the topmost node */
Nodeset \(\text{table} := \{ \} \); /* Table of BDD nodes \((\delta, i, \delta_1, \delta_2) \) */
Bdd \(\text{max} := 1 \); /* Index of maximal table entry */
Bdd \(\text{result} := \text{BDD}(\varphi, 1) \); /* Index of topmost BDD node */
return (table, result);

function Bdd (Formula \(\varphi \), Bddvar \(i \)) : Bdd =
/* \(\varphi \) is the current subformula, \(i \) is the current BDD variable */
/* Return value is a pointer to the maximal BDD node */
if \(i > n \) then return \(\text{eval}(\varphi) \) /* \(\varphi \) is a boolean constant */
else \(\delta_1 := \text{BDD}(\varphi[v_i := \bot], i + 1) \); \(\delta_2 := \text{BDD}(\varphi[v_i := \top], i + 1) \);
if \(\delta_1 = \delta_2 \) then return \(\delta \)
else \(\text{max} := \text{max} + 1 \); \(\text{table} := \text{table} \cup \{ (\text{max}, i, \delta_1, \delta_2) \} \); return \(\text{max} \);

Figure 29: Transformation of propositional formulas into BDDs

Similar equivalences hold for \(\land, \lor, \) etc. We prove only the first one of these equivalences. Recall that \(\text{lte}(p, \varphi_1, \varphi_2) \) is defined by \(\text{lte}(p, \varphi_1, \varphi_2) \Leftrightarrow ((p \Rightarrow \psi_1) \land (\neg p \Rightarrow \psi_2)) \).

\[
(\text{lte}(p, \varphi_1, \varphi_2) \Rightarrow \psi) \Leftrightarrow ((p \land \neg \varphi_1) \lor \neg \psi) \\
\Leftrightarrow ((p \lor \neg \psi) \lor (\neg p \land \varphi_2)) \\
\Leftrightarrow (p \lor (\neg \varphi_1 \lor \neg \psi) \lor (\neg p \land \varphi_2)) \\
\Leftrightarrow \text{lte}(p, (\neg \varphi_1 \lor \neg \psi), (\neg p \land \varphi_2))
\]

Given BDDs for \(\varphi \) and \(\psi \), the BDD for \((\varphi \Rightarrow \psi) \) can be constructed as follows. Since \(\text{BDD}(\varphi) \) and \(\text{BDD}(\psi) \) can be either 0, 1, or \(\text{lte}(v, \delta_1, \delta_2) \), there are nine cases which have to be considered. If \(\text{BDD}(\varphi) \) is 0 or \(\text{BDD}(\psi) \) is 1, the resulting BDD is 1. If \(\text{BDD}(\varphi) \) is 1, the resulting BDD is \(\text{BDD}(\psi) \). If \(\text{BDD}(\varphi) \) is an internal node \(\text{lte}(v, \delta_1, \delta_2) \), and \(\text{BDD}(\psi) \) is the leaf 0, we use the equivalence:

\[
(\text{lte}(v, \delta_1, \delta_2) \Rightarrow \bot) \Leftrightarrow \text{lte}(v, (\delta_1 \Rightarrow \bot), (\delta_2 \Rightarrow \bot))
\]

Since \(\neg \varphi \equiv (\varphi \Rightarrow \bot) \), this means that the BDD for \(\neg \varphi \) is constructed from the BDD for \(\varphi \) by exchanging all leaves 0 and 1. The only remaining case is that both \(\text{BDD}(\varphi) = \text{lte}(v, \varphi_1, \varphi_2) \) and \(\text{BDD}(\psi) = \text{lte}(v, \psi_1, \psi_2) \) are internal nodes. There are three subcases:
1. $v = v'$: $(lte(v, \varphi_1, \varphi_2) \rightarrow lte(v, \psi_1, \psi_2)) \leftrightarrow lte(v, (\varphi_1 \rightarrow \psi_1), (\varphi_2 \rightarrow \psi_2))$
2. $v < v'$ in the order of variables:
 $$(lte(v, \varphi_1, \varphi_2) \rightarrow lte(v', \psi_1, \psi_2))$$
 $$\leftrightarrow lte(v, \varphi_1 \rightarrow lte(v', \psi_1, \psi_2), \varphi_2 \rightarrow lte(v', \psi_1, \psi_2))$$
3. $v > v'$ in the order of variables:
 $$(lte(v, \varphi_1, \varphi_2) \rightarrow lte(v', \psi_1, \psi_2))$$
 $$\leftrightarrow lte(v', lte(v, \varphi_1, \varphi_2) \rightarrow \psi_1, lte(v, \varphi_1, \varphi_2) \rightarrow \psi_2)$$

In all of these subcases, the BDD for $(\varphi \rightarrow \psi)$ is constructed by a recursive call according to the indicated equivalence. Again, upon backtrack a new node is created only if both links are different and no equivalent node exists so far. The algorithm is given in Fig. 30. Some BDD implementations use negated edges to avoid the recursive descent for $\neg \varphi$. Other implementations hash subformulas, such that certain recursive descents can be avoided all together. For more information, see [Brace, Rudell and Bryant 1990].

The complexity of the function BDD imp is linear in the size of the argument BDDs. In principle, all 16 two-argument boolean operations on BDDs can be implemented with linear complexity via this procedure. For example, the BDD for the intersection of two sets φ and ψ can be calculated from the BDDs of φ and ψ using the definition $(\varphi \land \psi) \leftrightarrow \neg(\varphi \rightarrow \neg \psi)$. In practice, however, most BDD libraries achieve a better performance by providing for each connective a special recursive procedure which takes symmetries and idempotences in the arguments into

```plaintext
function BDD $\text{imp}$ (Bdd $\varphi$, $\psi$) : Bdd =
    /* Calculates the BDD of $(\varphi \rightarrow \psi)$ from the BDDs of $\varphi$ and $\psi$ */
    if $\varphi = 0$ or $\psi = 1$ then return 1
    elseif $\varphi = 1$ then return $\psi$
    elseif $\psi = 0$ and $(\varphi, i, \varphi_1, \varphi_2) \in table_\varphi$
        then return new_node(i, BDD $\text{imp}$($\varphi_1, 0$), BDD $\text{imp}$($\varphi_2, 0$))
    else $(\varphi, i, \varphi_1, \varphi_2) \in table_\varphi$ and $(\psi, j, \psi_1, \psi_2) \in table_\psi$
        if $i = j$ then return new_node(i, BDD $\text{imp}$($\varphi_1, \psi_1$), BDD $\text{imp}$($\varphi_2, \psi_2$))
        elseif $i < j$ then return new_node(i, BDD $\text{imp}$($\varphi_1, \psi$), BDD $\text{imp}$($\varphi_2, \psi$))
        elseif $i > j$ then return new_node(j, BDD $\text{imp}$($\varphi, \psi_1$), BDD $\text{imp}$($\varphi, \psi_2$));

function new_node (Bddvar $i$, Bdd $\delta_1$, $\delta_2$) : Bdd =
    /* Returns a pointer to a new or existing BDD node */
    /* $i$ is the number of a BDD variable, $\delta_1$, $\delta_2$ pointers to BDD nodes */
    if $\delta_1 = \delta_2$ then return $\delta$
    elseif $\exists \delta : (\delta, i, \delta_1, \delta_2) \in table$ then return $\delta$
    else $max := max + 1$; table := table $\cup \{(max, i, \delta_1, \delta_2)\}$; return max;
```

Figure 30: Combination of BDDs
respect. [Bryant 1986] gives a uniform scheme to handle all 16 boolean connectives. In Fig. 31 this generic \texttt{BDD_apply} function is given; the idea of using a co-factoring function is from the BDD library by D. Long.

\begin{verbatim}
function \texttt{BDD_apply} (Fun o, Bdd \(\varphi \), \(\psi \)) : Bdd =
 /* Calculates the BDD of \(\varphi \circ \psi \) from BDDs of \(\varphi \) and \(\psi \) */
 if \(\varphi \in \{0,1\} \) and \(\psi \in \{0,1\} \) then return \(\varphi \circ \psi \)
 else \(m := \text{min_var} (\varphi, \psi) \):
 \((f_0, f_1) := \text{co_factor} (\varphi, m) \); \((g_0, g_1) := \text{co_factor} (\psi, m) \);
 \(\delta_1 := \text{BDD_apply} (o, f_0, g_0) \);
 \(\delta_2 := \text{BDD_apply} (o, f_1, g_1) \);
 return new node \((m, \delta_1, \delta_2) \);

function \texttt{min_var} (Bdd \(\varphi \), \(\psi \)) : Bddvar =
 /* Returns the minimal BDD variable in \(\varphi \) and \(\psi \) */
 if \(\varphi \in \{0,1\} \) and \((\psi, j, \psi_1, \psi_2) \in \text{table} \) then return \(j \)
 elsif \((\varphi, i, \varphi_1, \varphi_2) \in \text{table} \) and \(\psi \in \{0,1\} \) then return \(i \)
 elsif \((\varphi, i, \varphi_1, \varphi_2) \in \text{table} \) and \((\psi, j, \psi_1, \psi_2) \in \text{table} \) then return \(\text{min}(i, j) \);

function \texttt{co_factor} (Bdd \(\delta \), Bddvar \(m \)) : (Bdd, Bdd) =
 /* Returns two BDD pointers to combine */
 if \(\delta \in \{0,1\} \) then return \((\delta, \delta) \)
 else /* \(\delta, \delta_1, \delta_2 \) \in \text{table} */
 if \(i > m \) then return \((\delta, \delta) \) else return \((\delta_1, \delta_2) \);
\end{verbatim}

Figure 31: Applying arbitrary functions to BDDs

For a given boolean function, the size of the BDD depends critically on the ordering of the variables. For the example formula above (cf. page 10)

\[v_1 = 0 \rightarrow ((v'_1 = 1) \land (v'_2 = v_2) \land (v'_3 \neq v_3)) \]

and the variable ordering \((v_1, v_2, v_3, v'_1, v'_2, v'_3) \), the above algorithm yields the following BDD. (We omit all branches leading to negative leaves.)
For the variable ordering \((v_1, v'_1, v_2, v'_2, v_3, v'_3)\), however, we obtain the following much smaller BDD:

```
        v1
       / \  
      0   1
     /   /  \
    0   1   1
   /   /   / \
  0   0   0   1
```

This is a common phenomenon when working with BDDs. In general, a good heuristics is to keep “dependent” variables as close together in the ordering as possible [Fuji, Ootomo and Hori 1993, Enders, Filkorn and Taubner 1993]. For a more formal treatment in the context of sequential circuits, see [Bermann 1991, McMillan 1993]. Unfortunately, the problem of finding an optimal variable ordering is NP-hard [Bryant 1991]. Basically, for every possible ordering one has to construct the BDD and compare their sizes, which is not feasible. Automatic reordering strategies usually proceed by steepest ascend heuristics [Felt, York, Brayton and Vincentelli 1993, Rudell 1993, Bern, Meinel and Slobodová 1995].

10.2. Symbolic Model Checking for CTL

In [Burch, Clarke, McMillan, Dill and Hwang 1992], the term symbolic model checking was introduced for algorithms which use a BDD representation of the Kripke model (cf. Page 1467).

Assume that the transition relation is given as a BDD over the variables \((v_1, \ldots, v_n, v'_1, \ldots, v'_n)\), and for each \(p \in \mathcal{P}\) a BDD over \((v_1, \ldots, v_n)\) is given which represents the set \(T(p)\). We will show how the naïve CTL model checking algorithm in Fig. 17 on P. 1446 can be implemented directly with this representation.

Assume that \(\varphi\) is a propositional formula given as a BDD. Substitution \(\varphi\{v := b\}\) of a proposition \(v\) in \(\varphi\) by a constant value \(b \in \{\bot, \top\}\) can be done by assigning a pointer to the appropriate leaf (0 or 1) to each \(v\) node. Thus, the function that restricts some argument of a boolean function can be computed in time which is linear in the representation of the function. By using the substitution algorithm, boolean quantification \(\exists v \varphi\) can be reduced to restriction by

\[
(\exists v \varphi) \leftrightarrow (\varphi\{v := \bot\} \lor \varphi\{v := \top\})
\]

Of course, it would be inefficient to implement simultaneous quantification \(\exists \vec{w} \varphi\) on a set \(\vec{w} \triangleq (v_1 \ldots v_n)\) of variables by a sequence of such substitutions and disjunctions. Fig. 32 shows how to calculate \(\exists \vec{w} \varphi\) in a more direct way.

We now describe how to obtain a BDD representation of \(\varphi^F\) for any CTL formula \(\varphi\) from the given BDD representation of \(F\). The BDDs for \(\bot\) and \(p \in \mathcal{P}\)
```plaintext
function BDD_exists (SetOfBdVar w, Bdd φ) : Bdd =
/* w = \{w_1...w_n\} is a set of BDD variables, φ the BDD of a formula */
/* Result is a BDD for \exists w_1...\exists w_n \ φ */
if φ ∈ \{0,1\} then return φ
else /* (φ, i, φ_1, φ_2) ∈ table */
    δ_1 := BDD_exists(w, φ_1);
    δ_2 := BDD_exists(w, φ_2);
    if i ∈ w then return BDD_apply(or, δ_1, δ_2)
else return new_node(i, δ_1, δ_2);
```

Figure 32: Boolean quantification on BDDs

are trivial. The calculation of boolean composites of BDDs was described in the previous subsection. The evaluation of E U^+ and A U^+ involves computing a fixed point. This is done according to the iteration given in Figure 17. In the evaluation of E(ψ_2 U^+ ψ_1), we have to build the set \{w | \exists w'(w < w' ∧ w' ∈ (ψ'_2 ∪ ψ'_2 ∩ E))\}, where E is an intermediate result of the iteration. This formula is an instance of the scheme \{w | \exists w'((φ(w') ∧ ψ(w, w')))\}. Assume we are given a BDD for φ defined over the variables \(\bar{w} \triangleq (v_1, ..., v_n)\), and a BDD for ψ in the variables \((v'_1, ..., v'_n)\). The BDD for \(\exists w'((φ(w') ∧ ψ(w, w'))\), which uses variables \((v_1, ..., v_n)\), can be obtained as follows. We first rename all variables \(v_i\) in the BDD for φ by \(v'_i\). Then we intersect this BDD with the BDD for ψ to obtain a BDD over \((v_1, ..., v_n, v'_1, ..., v'_n)\). Finally, all primed variables are “thrown away” by existential quantification on \(w' \triangleq (v'_1, ..., v'_n)\). The case of A(ψ_2 U^+ ψ_1), where we have to calculate \{w | ∀ w'(w < w' implying w' ∈ (ψ'_1 ∪ ψ'_1 ∩ E))\}, is similar.

In fact, all of the above BDD operations for one iteration step can be performed during a simple BDD traversal, if \(v_i\) and \(v'_i\) are always kept together in the variable order. This so-called relational product algorithm is similar to the BDD_apply and BDD_exists algorithms in Figs. 31 and 32. Assume that we are given BDD representations of φ and ψ, where the variable ordering in the BDD for φ is \(w_1...w_n\) and in ψ it is \(v_1...v_n\), where \(w_i = v_{2i-1}\) and \(w'_i = v_{2i}\). Function relprod_BDD in Fig. 33 calculates the representation of \(\exists w'(φ\{\bar{w} := w'\}) ∧ ψ\). The result contains BDD variables \(v_{1o}...v_{2n-1}\); renaming to \(w_1...w_n\) can be done whenever a new node is created \((v_i = w_{i+1/2})\).

In theory, the complexity of the CTL model checking algorithm based on BDDs is not better than with an explicit representation. In practice, however, the BDD representation of large sets of points in realistic systems tends to be quite manageable. Moreover, the number of iteration steps required to reach a fixed point is often small (≤ 10^3). For hardware systems, that is, in the verification of sequential circuits, most states are reachable in very few steps, but the BDDs tend to grow exponentially in the first few steps. For software systems, especially if there is not much parallelism contained, the BDD often grows only linear with the number
function BDD_relprod (Bdd \varphi, \psi) : Bdd =
/* Calculates a BDD for \exists u'((\varphi(u')) \land \psi(w, u')) */
/* \varphi has variables 1..n and \psi has variables 1..2n */
/* Result contains BDD variables 1, 3, 5, ..., 2n - 1 */
if \varphi = 0 or \psi = 0 then return 0
else m := min_var \varphi, \psi; /* Substitution \{w := u'\} in \varphi */
\quad (f_0, f_1) := co_factor(\varphi, m \div 2); (g_0, g_1) := co_factor(\psi, m);
\quad \delta_1 := BDD_relprod(f_0, g_0); \quad \delta_2 := BDD_relprod(f_1, g_1);
if even(m) then return BDD_apply(\lor, \delta_1, \delta_2)
else return new_node(m, \delta_1, \delta_2);

function min_var \varphi (Bdd \varphi, \psi) : Bddvar /* Ass.: (\psi, j, \psi_1, \psi_2) \in table \psi */ =
/* Returns an appropriate variable number for BDD_relprod */
if \varphi \in \{0, 1\} then return j
else /* (\varphi, i, \varphi_1, \varphi_2) \in table \varphi */ return \min(2 \cdot i, j);

Figure 33: Relational product on BDDs (\exists u'((\varphi(u')) \land \psi(w, u')))

of steps, until the whole state space is traversed. The following picture shows the relation between the BDD size and number of steps in typical examples.

![Graph showing the relation between BDD nodes and steps](image)

$10^2 \cdot 10^{10}$

200 steps

$500 000$ BDD nodes

reachable states

10.3. Relational \(\mu\)-Calculus

The global algorithm for model checking the propositional \(\mu\)-calculus can be implemented with BDDs similar as the CTL algorithm above. The relational product algorithm can be used to calculate each single step in the fixpoint iteration of modal formulas. We now show how this technique can be extended to a richer
logical language which is closer to other programming paradigms. We use a relational \(\mu \)-calculus similar to the one presented in [Park 1974]. In computer science, [Chandra and Harel 1980] were the first to use similar fixed point operators for the specification of queries in relational databases. In contrast to these papers, we do not use function symbols; they could be added easily to this framework as special relations. Informally, the relational \(\mu \)-calculus can be seen as first order predicate logic with an additional recursion operator. More information on the logical properties of this calculus can be found in [Vardi 1982, Immerman 1986, Gurevich and Shelah 1986, Dawar, Lindell and Weinstein 1996].

A (typed) structure \(S \) consists of a collection of disjoint sets called domains, and a collection of relations over these domains. (In some textbooks, structures are called algebras.) Elements of the domains are called objects. Models for propositional temporal logics can be regarded to be special structures with a single domain \(U \), unary predicates \(P \subseteq U \) and binary relations \(R \subseteq U \times U \) on this domain.

A signature \(\Sigma = (D, R) \) consists of a finite set \(D \) of domain names, and a finite set \(R \) of relation symbols. Associated with each relation symbol is its type \(\tau \), which is a sequence of domain names. Unary relation symbols are called predicate symbols.

An interpretation \(I \) for a signature \(\Sigma \) on a structure \(S \) is a mapping \(I : \Sigma \rightarrow S \) assigning a nonempty domain \(I(D) \) for each domain name \(D \) and a relation of appropriate arity for each relation symbol. That is, if \(\tau(R) = (D_1, \ldots, D_n) \), then \(I(R) \subseteq (I(D_1) \times \cdots \times I(D_n)) \). If the interpretation of a predicate symbol \(P \) is a singleton set, we say that \(P \) is a constant.

Given a signature \(\Sigma \), let \(\mathcal{V} \) be a set of variables, each of which is either an individual variable or a relation variable. Again, we assume that each variable has an appropriate type. In the relational \(\mu \)-calculus, there are two more syntactic categories: well-formed formulas and relation terms of type \(\tau \). Assuming that the symbols \((, \), \(\bot, \rightarrow, =, \exists, \mu \) and \(\lambda \) are not in the signature, a well formed formula \(\varphi \) is built according to the following syntax:

- \(\bot, (\varphi \rightarrow \psi) \), where \(\varphi \) and \(\psi \) are well formed formulas,
- \((x_1 = x_2) \), where \(x_1 \) and \(x_2 \) are individual variables of the same type,
- \(\exists x \varphi \), where \(\varphi \) is a well formed formula, and \(x \) is an individual variable, or
- \(\rho \cdot x_1 \ldots x_i \), where \(\rho \) is a relation term of type \((D_1, \ldots, D_n) \) (see below), and \(x_i \) is an individual variable of type \(D_i \) for all \(i \leq n \).

In first order logic, a relation term is just a relation symbol from the signature. In second order logic, a relation term can either be a relation symbol or a relation variable \(q \in \mathcal{Q} \). In the relational \(\mu \)-calculus, more complex relations can be specified via \(\lambda \)-abstraction and \(\mu \)-recursion. In this calculus, a relation term \(\rho \) of type \((D_1, \ldots, D_n) \) is

- a relation symbol \(R \) or relation variable \(X \) of type \((D_1, \ldots, D_n) \),
- \(\lambda x_1 \ldots x_n \varphi \), where \(\varphi \) is a well formed formula and each \(x_i \) is an individual variable of type \(D_i \), or
- \(\mu X \rho \), where \(X \) is a relation variable of type \((D_1, \ldots, D_n) \), and \(\rho \) a relation term of the same type which is positive in \(X \).

As in the propositional case, in this definition \(\rho \) is defined to be positive in \(X \),
if every occurrence of X is under an even number of negation signs. Positiveness ensures that the functional defined by ρ is monotonic in the lattice of values for X and thus the least fixpoint of the functional exists.

A variable valuation v is a mapping assigning an object $v(x) \in D$ to every individual variable x of type D, and a relation $v(X) \subseteq D_1 \times \cdots \times D_n$ to every relation variable X of type (D_1, \ldots, D_n). A relational model $\mathcal{M} = (S, I, v)$ for the signature Σ consists of a structure S, an interpretation I, and a variable valuation v. Similar to first order and temporal logics, we say that the model $\mathcal{M} = (S, I, v)$ is based on the frame $\mathcal{F} = (S, I)$. Any relational model $\mathcal{M} = (S, I, v)$ determines an object $x^\mathcal{M}$ for every individual variable x, a relation $\rho^\mathcal{M}$ of appropriate type for each relation term ρ, and a unique truth value $\varphi^\mathcal{M} \in \{\text{true, false}\}$ for any formula φ. This denotation of variables and formulas is defined in the usual way:

- $x^\mathcal{M} \triangleq v(x)$, if $x \in \mathcal{V}$ is an individual variable,
- $\bot^\mathcal{M} \triangleq \text{false}$,
- $(\varphi \rightarrow \psi)^\mathcal{M} = \text{true}$ iff $\varphi^\mathcal{M} = \text{true}$ implies $\psi^\mathcal{M} = \text{true}$,
- $(x_1 = x_2)^\mathcal{M} = \text{true}$ iff $x_1^\mathcal{M} = x_2^\mathcal{M}$; i.e., iff x_1 and x_2 denote the same object in S,
- $(\exists x \varphi)^\mathcal{M} = \text{true}$ iff $\varphi^{(s, I, v')} = \text{true}$ for some valuation v' which differs from v at most in x,
- $(\rho \ x_1 \ldots x_n)^\mathcal{M} = \text{true}$ iff $(x_1^\mathcal{M}, \ldots, x_n^\mathcal{M}) \in \rho^\mathcal{M}$,
- $R^\mathcal{M} \triangleq I(R)$, if R is a relation symbol,
- $X^\mathcal{M} \triangleq v(X)$, if X is a relation variable,
- $(\lambda x_1 \ldots x_n \varphi)^\mathcal{M} \triangleq \{ (d_1, \ldots, d_n) \mid \varphi^\mathcal{F}(d_1, \ldots, d_n) = \text{true} \}$, where $\varphi^\mathcal{F}(d_1, \ldots, d_n) \triangleq \varphi^{(s, I, v')}$ and v' differs from v only in the assignment of d_i to x_i for $1 \leq i \leq n$; i.e., $((\lambda x_1 \ldots x_n \varphi))^\mathcal{M}$ is the relation consisting of all tuples of objects for which φ is true, and
- $(\mu X \rho)^\mathcal{M} \triangleq \{ Q \mid \rho^\mathcal{F}(Q) \subseteq Q \}$, where $\rho^\mathcal{F}(Q) \triangleq \rho^{(s, I, v')}$, and v' differs from v only in $v'(X) = Q$; i.e., $(\mu X \rho)^\mathcal{M}$ is the least fixpoint of the functional $\rho^\mathcal{F}$.

The relational operators λ and μ are similar to the operators used in λ-calculus and in denotational semantics. In fact, we could define well formed formulas to be object terms of the special type $\{\text{false, true}\}$. Relation terms could then be defined as function terms with boolean result, and the λ abstraction builds such a function term from a boolean object term.

The relational μ-calculus extends first order logic in a similar way as the propositional μ calculus extends modal logic. In fact, the standard translation from modal logic into first order logic can be trivially extended into a standard translation from propositional into relational μ calculus. In addition, the relational μ calculus offers some restricted form of non-monadic second order quantification. It contains classical first-order logic as a sublanguage. Note, however, that in the relational μ-calculus there is no λ-abstraction on relation variables. This would result in a second-order calculus. In contrast to second order logic, there is no μ-calculus formula expressing that domain D is finite [Park 1974]. On the other hand, the minimization operator can be expressed in second order logic similar as in the propositional case.
(cf. Page 1392):

\[\mu X(\rho \vec{x}) \leftrightarrow \forall X(\forall \vec{x}(\rho \vec{x} \rightarrow X \vec{x}) \rightarrow X \vec{x}) \]

Since the induction axiom for arithmetic can be formulated as a least fixpoint formula, the natural numbers have a categorical theory in the relational \(\mu \)-calculus (for details, see also [Park 1974]). Therefore, the set of valid formulas is not recursively enumerable, and its expressiveness lies properly in between first and second order logic.

The \(\mu \)-recursion operator can be used to give recursive definitions of boolean functions, similar to the use of recursion in functional and logic programming. As an example, the addition-relation on natural numbers can be defined from the constant \(Z \) (zero) and the successor relation \(S \) by \(\mu X(\lambda xy.x+y = z \lor \exists w(Sux \land Syw)) \). All recursive functions of arithmetic can be defined in this way; therefore, on infinite domains, the relational \(\mu \)-calculus has the expressive power of Turing machines. On finite domains, the model checking problem is polynomial in the size of the structure. Therefore, only those functions are definable which can be computed with time complexity polynomial in the size of the structure ([Chandra and Harel 1980]). For a restricted converse of this statement, see [Vardi 1982, Immerman 1986].

Given a finite relational frame \(\mathcal{F} \equiv (S, I) \) and a relational term \(\rho \) or formula \(\varphi \), model checking can be used to determine the denotation \(\rho^\mathcal{F} \) or \(\varphi^\mathcal{F} \), respectively. In [Burch, Clarke, McMillan, Dill and Hwang 1992], a symbolic model checking algorithm for the relational \(\mu \)-calculus is given (see Figure 34). Assume for simplicity that each domain is binary: for non-binary domains the algorithm can be extended by an appropriate encoding. In the frame, the interpretation \(I \) of a relation of type \((D_1, \ldots, D_n)\) is represented by a BDD with variables \(v_1, v_2, \ldots, v_n \).

A term or formula with free individual variables \(x_1, \ldots, x_m \) is represented as a BDD with additional BDD variables \(x_1, \ldots, x_m \). A relation variable is represented by its name; each BDD node can contain (the name of) a relation variable as one of its successors. In other words, each BDD node is a tuple \((\delta, i, \delta_1, \delta_2)\), where \(\delta \) is the name of this node, \(i \) is a variable from the set \(\{v_1, \ldots, v_n, x_1, \ldots, x_m\} \), and each \(\delta_j \) is one of the BDD constants 0 or 1, a name of another BDD node, or the name of a relation variable. Substitution of a relation variable with a relation in a BDD can be done by a simple BDD traversal.

The model checking algorithm is divided into two functions, \texttt{BDD.form} and \texttt{BDD.term}, which recurse over the structure of the formula and term. \texttt{BDD.form} inputs a formula \(\varphi \) and (the BDD representation of) the interpretation \(I \) in frame \(\mathcal{F} \), and returns a BDD which is satisfied by a given valuation \(v \) iff \((S, I, v) \models \varphi \). The first five cases in the function derive directly from the respective semantic definitions and should require no explanation. The last case, application of a relation term \(\rho \), uses the function \texttt{BDD.term}(\(\rho, I \)) to find a representation of the relational term \(\rho \) (under the interpretation \(I \)), then substitutes the argument variables \(x_1, \ldots, x_n \) for the place-holder variables \(v_1, \ldots, v_n \), producing a BDD which is satisfied iff \(\rho \) holds for \(x_1, \ldots, x_n \).

The function \texttt{BDD.term} takes as arguments a relational term \(\rho \) and the BDD rep-
representation of the interpretation I. It returns a BDD which represents the relation
term in the manner described above. The first and second case in the definition of
BDD_term, a relation symbol or relation variable, simply return the BDD repre-
sentation of the relation in the interpretation or the name of the relation variable,
respectively. The third case, λ-abstraction, produces a BDD with variables $v_1, \ldots,
\ldots, v_n$, substituted for the variables v_1, \ldots, v_n. This is the representation for an
n-ary relation which holds iff its arguments satisfy the formula φ when assigned to x_1,
\ldots, x_n. The most interesting case is the last: the fixed point operator μ. To find the
fixed point of a relational term with respect to a free relation variable X we use
the standard technique for finding the least fixed point of a monotonic functional
in a finite domain. First we evaluate $\text{BDD_term}(\rho, I)$ to get a BDD r for ρ. Then we
compute the fixed point by a series of approximations X^0, X^1, \ldots, beginning with
the empty relation (which is represented by the BDD constant 0). To compute the
BDD X^{i+1} from X^i we substitute all occurrences of the variable X in the BDD r
with X^i. Since the domain is finite and ρ is positive in X, the series must converge
to the least fixed point (cf. Lemma 5.4 and Section 8.3). Convergence is detected

```plaintext
function BDD_form (Formula $\varphi$, Interpretation $I$) : Bdd =
   /* Calculates the BDD of formula $\varphi$ in the interpretation $I$ */
   case $\varphi$ of
   $x \in V$: return lte(x, 1, 0);
   ($x_1 = x_2$): return lte(x_1, lte(x_2, 1, 0), lte(x_2, 0, 1));
   $\bot$: return 0;
   ($\varphi_1 \rightarrow \varphi_2$): return BDD_imp(BDD_form($\varphi_1$, $I$), BDD_form($\varphi_2$, $I$));
   $\exists x \varphi$: return BDD_exists(x, BDD_form($\varphi$, $I$));
   $\mu x_1 \ldots x_n. \varphi$: return BDD_term($\mu$, $I$){$x_1 := x_1$} ... {$v_n := x_n$};

function BDD_term (RelationalTerm $\rho$, Interpretation $I$) : Bdd =
   /* Calculates the BDD of term $\rho$ in the interpretation $I$ */
   case $\rho$ of
   $R \in R$: return $I(R)$ /* pointer to BDD for $R$ */;
   $X \in V$: return $X$ /* name of $X$ */;
   $\lambda x_1 \ldots x_n. \varphi$: return BDD_form($\varphi$, $I$){$x_1 := v_1$} ... {$x_n := v_n$};
   $\mu X \rho$: $r := BDD\_term(\rho, I)$; return BDD_lfp($r$, 0);

function BDD_lfp (Bdd $r$, Bdd $X^i$) : Bdd =
   /* Fixpoint iteration of BDD $r$ for $\rho$ with substitution $\{X := X^i\}$ */
   $X^{i+1} := r\{X := X^i\}$;
   if $X^{i+1} = X^i$ then return $X^i$
   else return BDD_lfp($r$, $X^{i+1}$);
```

Figure 34: Symbolic evaluation of formulas and terms
when $X^{i+1} = X^i$. In this case, X^i is the BDD for $\mu X \rho$. Note that testing for convergence is easy, since with a hash-table implementation of BDD nodes equality can be determined in constant time (cf. the algorithm in Fig. 29).

The μke model checker [Biere 1997] is one of the first tools for model checking the relational μ-calculus. For each non-binary domain, an appropriate binary encoding is generated automatically. The model is given in a C-like input language. It is compiled automatically into an internal BDD representation. Since μke uses several sophisticated heuristics for the allocation of BDD variables, its performance is comparable to more specialized systems like SMV.

11. Partial Order Techniques

With symbolic methods we try to tackle the complexity problem which arises from the parallel composition of modules by using the BDD data structure which can handle very large sets. Partial order methods, on the other hand, try to avoid the generation of large sets: they only generate a minimal part of the state space which is necessary to evaluate the given formula.

Several variants have been suggested: stubborn sets ([Valmari 1990]), sleep sets ([Godefroid 1990, Godefroid and Wolper 1991, Godefroid and Pirottin 1993]), interleaving and ample sets [Katz and Peled 1988, Peled 1993], and others. Subsequently, we describe an algorithm for partial order model checking of linear time temporal logic properties which is based on [Yoneda, Nakade and Tohma 1989, Valmari 1990].

For an overview of other methods, see [Clarke, Grumberg, Mina and Peled 1999].

Partial order methods for branching time logics and symbolic methods have been investigated in [Gerth, Kuiper, Peled and Penczek 1995, Alur, Brayton, Henzinger, Qadeer and Rajamani 1997]. A somewhat different approach to partial order model checking by unfolding of Petri nets was suggested in [McMillan 1992, Esparza 1994].

The interleaving definition of parallel program semantics determines the state space of the global system to be the product of all state spaces of its parallel components. This can lead to wasteful algorithms. In general, each (nondeterministic) execution of a program generates a partial order, where points are ordered by causality. In interleaving semantics this partial order is represented by the set of all of its interleaving sequences.

For example, the following elementary Petri net represents a system with two processes synchronizing via t_0 and t_3:

![Petri net](image)

This system generates the following partial order:
Some of the interleaving sequences are
\[
t_0 < t_{11} \rightarrow t_{12} \rightarrow t_3 < t_0 < t_{11} \rightarrow t_{12} \rightarrow t_3 < \ldots
\]
However, it may not be necessary to consider all of these interleavings to determine, e.g., the truth value of the formula \(G^+ F^+ t_3 \). The main idea of partial order methods is to try to inspect only some "representative" interleaving sequences for the formula in question. Thus, we do not alter the semantics to deal with "real" concurrency (where independent transitions can occur at the same time), and we do not extend the logic to be able to express partial order properties. On the contrary, we will limit the expressiveness of temporal logic and use the partial order to improve the efficiency of model checking.

11.1. Stuttering Invariance

Given an elementary Petri net \(N \) and a formula \(\varphi \), we want to find whether there exists a run \(\rho \) of \(N \) satisfying \(\varphi \). In general, there are infinitely many runs through the system; therefore we partition them into a finite number of equivalence classes, such that the existence of a satisfying run \(\rho \) implies that every element of the equivalence class \([\rho]\) satisfies \(\varphi \). Thus we only have to check a finite number of equivalence classes, and a coarser partition yields a better algorithm.

To do so, we need a stuttering invariant temporal logic. Consider a formula with the atomic propositions \(\{ p_1, \ldots, p_k \} \subseteq P \). Two natural models \(M \) and \(M' \) are strongly equivalent with respect to \(\{ p_1, \ldots, p_k \} \), if they are of the same cardinality, and for all \(i \geq 0 \) and all \(p \in \{ p_1, \ldots, p_k \} \) we have \(w_i \in I(p) \) iff \(w'_i \in I'(p) \). A point \(w_{i+1} \) in \(M \) is stuttering w.r.t. \(\{ p_1, \ldots, p_k \} \), if for all \(p \in \{ p_1, \ldots, p_k \} \) we have \(w_i \in I(p) \) iff \(w_{i+1} \in I(p) \). For any model \(M \triangleq (U, I, w_0) \), define the stutter-free kernel \(M' \) w.r.t. \(\{ p_1, \ldots, p_k \} \) to be the model obtained by eliminating all stuttering states from \(M \). More formally, \(M' \) contains all non-stuttering points from \(M \), and \(w \preceq w' \) in \(M' \) iff \(w \preceq w' \) in \(M \), or there are stuttering points \(w_1, \ldots, w_n \) such that \(w \preceq w_1 \preceq \cdots \preceq w_n \preceq w' \) in \(M \). Two models \(M_1 \) and \(M_2 \) are stuttering equivalent w.r.t. \(\{ p_1, \ldots, p_k \} \), if their stutter-free kernels are strongly equivalent w.r.t. \(\{ p_1, \ldots, p_k \} \).

A formula \(\varphi \) is stuttering invariant or preserved under stuttering, if for any two models \(M_1 \) and \(M_2 \) which are stuttering equivalent with respect to the set of atomic propositions of \(\varphi \) it holds that \(M_1 \models \varphi \) iff \(M_2 \models \varphi \). A language is stuttering invariant, if all of its formulas are stuttering invariant.
In general, formulas involving the operator X are not stuttering invariant. For example, the formula Xp holds in the model $(\{w_0, w_1, w_2\}, I, w_0)$, where $I(p) = \{w_0, w_1\}$ and $w_0 \prec w_1 \prec w_2$, but not in the stuttering equivalent model $(\{w_0, w_2\}, I, w_0)$. The next-operator has always been a topic of discussions in temporal specification [Lamport 1983]. Most notions of refinement of systems do not preserve properties with next-operators. Recall that X is definable with U^*, but not with U (see Lemma 2.1 and Page 1379). Let $LTL - X$ be the logic built from propositions $p \in \mathcal{P}$, boolean connectives \bot, \rightarrow and the reflexive until operator U^*.

11.1. Lemma. Any $LTL - X$ formula is stuttering invariant.

Proof: Assume that ϕ is an $LTL - X$ formula, $M \equiv (U, I, w_0)$ a model and $M^o \equiv (U^o, I^o, w_0)$ the stuttering-free kernel of ϕ w.r.t. the propositions in ϕ. Furthermore, for any $w \in U$, let $w^o \in U^o$ be the maximal non-stuttering point such that $w^o \leq w$. We show that for any $w \in U$

\[(*) \quad (U, I, w) \models \phi \iff (U^o, I^o, w^o) \models \phi.\]

In particular, since $w^o_0 = w_0$, this implies that $M \models \phi$ iff $M^o \models \phi$. From this, the claim follows immediately: if M^o_1 and M^o_2 are strongly equivalent w.r.t. the atomic propositions of ϕ, then clearly $M^o_1 \models \phi$ iff $M^o_2 \models \phi$. If M_1 and M_2 are stuttering equivalent, then the stutter-free kernels M^o_1 and M^o_2 are strongly equivalent. Therefore, in this case $M_1 \models \phi$ iff $M^o_1 \models \phi$ iff $M^o_2 \models \phi$ iff $M_2 \models \phi$.

The proof of $(*)$ is by induction ϕ. For atomic propositions, $w_{i+1} \models p$ iff $w_i \models p$ for each point w_{i+1} which is stuttering w.r.t. $\{p, p_1, \ldots, p_k\}$. Therefore $w \models p$ iff $w^o \models p$. For boolean connectives the statement is obvious. For the U^*-operator, we treat only the case $\phi = F^* \psi = (\bigvee U^* \psi)$; the general case $\phi = (\psi \land U^* \psi_1)$ is similar. $(U, I, w_0) \models F^* \psi$ means that there is a $w_1 \geq w_0$ such that $(U, I, w_1) \models \psi$. By the inductive hypothesis, this is equivalent to the claim that for some $w_1 \geq w_0$, $(U^o, I^o, w^o_1) \models \psi$. This claim in turn holds iff for some $v_1 \in U^o$, $v_1 \geq w^o_0$ and $(U^o, I^o, v_1) \models \psi_1$. This means that $(U^o, I^o, w^o_0) \models F^* \psi$. Note that this proof is not valid for the F^*-operator, since it is possible that $w_1 > w_0$ but $w^o_1 = w_0$.

In [Peled and Wilke 1997], a converse to this lemma is proved:

11.2. Theorem. Any LTL formula which is stuttering invariant is expressible in $LTL - X$.

Stuttering invariance allows to group all stuttering equivalent runs into the same equivalence class, thereby reducing the average complexity of the model checking. Of course, the reduction will be better if ϕ uses fewer propositions. Usually, a given formula mentions only a small subset of the system, allowing the equivalence classes to be rather large. In particular, consider a system with two independent transitions t_1 and t_2 (a formal criterion of independence is given below). All runs which differ only in the interleaving of t_1 and t_2 are stuttering equivalent with respect to all atomic propositions not related to t_1 or t_2. Therefore, each $LTL - X$ formula not referring to t_1 and t_2 has the same truth value for all of these runs.
11.2. Partial Order Analysis of Elementary Nets

First, we need an appropriate stuttering-invariant restricted logical language to express “interesting” properties of elementary Petri nets. Recall that a state of the net is just a marking of its places. Thus, it is reasonable to use places as atomic propositions, where a proposition \(p \) is valid in a state iff the place \(p \) is marked in that marking.

Assume that we are given an elementary Petri net and an LTL formula describing a property of this net. Now, we define when two transitions are independent of one another. Firstly, independent transitions must neither disable nor enable each other; that is, if \(t_1 \) is enabled in \(s \) and \(s' \) is a successor of \(s \) with respect to the firing of \(t_1 \), then \(t_2 \) is enabled at \(s \) iff \(t_2 \) is enabled at \(s' \), and vice versa for \(t_2 \) firing. Secondly, if the independent transitions \(t_1 \) and \(t_2 \) are both enabled in \(s \), then they must be able to commute; that is, each execution obtained by first firing \(t_1 \) and then \(t_2 \) must be stuttering equivalent (w.r.t. the property under consideration) to one obtained by first firing \(t_2 \) and then \(t_1 \).

However, it is not practical to check these two properties for all pairs of transitions in all global states of the system. Therefore, we use a syntactic condition which ensures that some transition is independent from another one.

Call a set \(T \) of transitions persistent in \(s \), if whatever one does from \(s \) while remaining outside of \(T \) does not affect \(T \). Formally, \(T \) is persistent in \(s \) iff for all \(t \in T \) and all firing sequences \(t_0, t_1, \ldots, t_n, t \) such that \(t_i \notin T \) for all \(0 \leq i \leq n \) there exists a stuttering equivalent firing sequence starting with \(t \).

If \(T \) is persistent, we do not have to consider the firing of transitions outside of \(T \) when constructing the children of the given state in the depth-first-search: there will be a stuttering equivalent sequence constructed by the firing of some \(t \in T \).

However, this definition still is not effective. There is no efficient way to compute a minimal persistent set of transitions for a given state. Therefore, we compute an approximation. There is a tradeoff between the amount of time spent in the calculation of minimal persistent sets, and the reduction of the state space obtained. As a general strategy, some simple heuristics can gain a lot, and sophisticated methods don’t add too much.

We start with a single enabled transition \(T = \{ t \} \) and repeat until stabilization to add all transitions which can “interfere” with some transition in \(T \). Here “interfere” means that they can enable or disable, or cannot commute with some transition in \(T \).

Given any marking \(m \), firable transition \(t_f \) and disabled transition \(t \), we have to find a set of firable transitions such that the firing of any transition in this set could lead to the firing of \(t \) before \(t_f \). A set \(NEC(t, m) \) of transitions is necessary for \(t \) in \(m \), if \(NEC(t, m) = \{ t' \mid p \in t' \bullet \} \) for some \(p \in (\bullet \setminus m) \). We use a functional notation here, since \(NEC(t, m) \) is determined by the chosen heuristic strategy. Similarly, the set \(NEC^*(t, m) \) is defined to be any set of transitions containing \(t \) which is transitively closed under necessity; that is, for any \(t' \in NEC^*(t, m) \) such that \(t \) is disabled in \(m \) there exists a set \(NEC(t', m) \) of transitions necessary for \(t' \) such that \(NEC(t', m) \subseteq NEC^*(t, m) \). If \(t \) is disabled in \(m \), then \(t \) cannot fire
unless some transitions from $NEC^*(t, m)$ fire before.

If t is in conflict with t_f, then the firing of any transition in $NEC^*(t, m)$ could eventually enable t; therefore all transitions in $NEC^*(t, m)$ have to be fired as alternatives to the firing of t_f. But, there is still another class of dependent transitions. We want to obtain stuttering equivalence with respect to the atomic propositions in φ. Therefore, we have to take into account that φ might fix an order onto the firing of independent transitions. Usually, φ contains only a few propositions. Call a transition visible for φ, if $\bullet t \cup \bullet t$ contains any place p appearing in φ. If t is visible, the firing order with other visible transitions is important. A visible transition can be regarded to be in conflict with all other visible transitions. Define the conflict of t by

$$C(t) = \{t' \mid t' \cap t \neq \emptyset\} \cup \{t\}.$$

The extended conflict of t is just the conflict of t, if t is invisible; otherwise, it is the conflict of t plus all other visible transitions. Now a dependent set $DEP(t_f, m)$ of t_f is any set of transitions such for any t in the extended conflict of t_f there exists a set $NEC(t, m) \subseteq DEP(t_f, m)$.

Finally, the set of transitions which are fired should be transitive closed under dependency; thus, let $READY(m)$ be any (smallest) nonempty set of firable transitions, such that

$$DEP(t_f, m) \subseteq READY(m) \text{ if } t_f \in READY(m).$$

Correctness of this reduction method is guaranteed by the following theorem:

11.3. Theorem. For any firing sequence p of the net there exists a firing sequence p' generated only by firing ready transitions such that p and p' are equivalent with respect to all LTL $- X$ safety properties.

Consider the depth-first model checking algorithm for LTL in Figure 19. During the construction of the set of children of a state in the depth-first search we can neglect all firable transitions which are not ready. This can result in a considerable average case reduction; in fact, for examples with many concurrent and “almost” independent processes it can logarithmically reduce the state space which has to be traversed. Though the worst case complexity of constructing a ready set is cubic in the size of the net, in average examples it is only linear in the number of transitions.

The above construction can be extended to deal also with liveness and other linear temporal logic properties. To do so, we need to assure that whenever a state is reached for the second time, a different ready set is constructed, to make sure that no eventuality is delayed infinitely often. For a detailed exposition and an extension to real-time logics, see [Yoneda and Schlingloff 1997].

12. Bounded Model Checking

The model checking algorithms of the previous sections were based on the idea of calculating the greatest or least fixed point of a certain continuous function. Model
checking can also be done by translating temporal logic into classical logic and using well-established automated deduction methods. In particular, in Subsection 2.3 on Page 1381 we defined a translation FOL from linear temporal logic to first order logic. If the model to be checked is finite, then each first order existential quantifier can be replaced by a finite disjunction, and every universal quantifier can be replaced by a finite conjunction of variables. Moreover, as described in section 10, each finite model can be coded as a boolean combination of atomic formulas p(t) and t \rightarrow t'. Likewise, for sequence-validity, the condition that a finite set \{t_1, \ldots, t_n\} of points forms a maximal path in a model can be coded as such a formula.

Consider the conjunction of the propositional translation of the formula and the boolean encoding of the model. This is a formula which can be tested for satisfiability by standard SAT algorithms. In [Biere, Cimatti, Fujita and Zhu 1999, Biere, Cimatti and Zhu 1999], the term bounded model checking is introduced for checking sequence-validity of future LTL formulas with this approach. The execution sequences of a Kripke model are enumerated by increasing length and combined with the translation of the formula. These are converted into conjunctive normal form and tested for satisfiability by propositional theorem provers. With appropriate heuristics, in some cases this method turned out to give even better results than BDD based methods.

12.1. An Example

Before giving the technical details, we show an example. Consider the Kripke model in Fig. 35. There are four points in the model. Each point w is represented by two state variables, w \equiv (v_1, v_0), denoting the value of the high bit and the low bit, respectively. The initial state is (00). Thus the initial state predicate I(w) is defined as (\neg v_1 \land \neg v_0). The only terminal state is (11), thus the terminal state predicate T(w) is (v_1 \land v_0). The transition relation is represented by the formula R(w, w') \equiv (\neg v_1 \land \neg v_0 \land \neg v'_1 \land v'_0) \lor (\neg v_1 \land v_0 \land v'_1 \land \neg v'_0) \lor (v_1 \land \neg v_0 \land \neg v'_1 \land \neg v'_0) \lor (\neg v_1 \land \neg v_0 \land v'_1 \land v'_0).

Figure 35: A two-bit model
Suppose we are interested in the fact that any execution eventually reaches state (11). In LTL, this amounts to checking whether $F(v_1 \land v_0)$ is sequence-valid. Equivalently, we can check whether there is a maximal path in the model in which state (11) is never reached. That is, we check whether $G \neg(v_1 \land v_0)$ is satisfiable in the model. According to the definition, this is the case if there is a path in the model starting in an initial point and ending in a terminal point or in a cycle, such that every point on the path satisfies $\neg v_1$ or $\neg v_0$. In bounded model checking, we restrict our attention to paths of length k, that is, paths with $k + 1$ states. We start with $k = 0$, and increment k until a witness is found. Consider the case where k equals 2.

We name the $k + 1$ states as w^0, w^1, w^2. Since every state is encoded by two boolean variables, there are six propositional variables altogether: v_1^0, v_0^0, v_1^1, v_0^1, v_1^2, v_0^2. We now formulate a set of constraints on these variables in propositional logic which guarantee that the path $\sigma = (w^0, w^1, w^2)$ is indeed a witness for $G \neg(v_1 \lor v_0)$.

- First, σ must start in an initial point. This is expressed by $I(w^0)$ as described above: $\varphi_1 \triangleq (\neg v_1^0 \land \neg v_0^0)$
- Second, each w^{i+1} must be a successor of w^i according to the transition relation, i.e., $R(w^0, w^1) \land R(w^1, w^2)$ must hold. This expands to $\varphi_2 \triangleq (\neg v_1^0 \land \neg v_0^0 \land \neg v_1^1 \land v_0^1) \lor (\neg v_1^0 \land v_0^0 \land v_1^1 \land \neg v_0^1) \lor (v_1^0 \land \neg v_0^0 \land \neg v_1^1 \land \neg v_0^1) \lor (\neg v_1^0 \land \neg v_0^0 \land v_1^1 \land v_0^1) \land (\neg v_1^1 \land \neg v_0^1 \land \neg v_1^2 \land v_0^2) \lor (\neg v_1^1 \land v_0^1 \land v_1^2 \land \neg v_0^2) \lor (v_1^1 \land \neg v_0^1 \land \neg v_1^2 \land \neg v_0^2) \lor (\neg v_1^1 \land \neg v_0^1 \land v_1^2 \land \neg v_0^2)$
- Third, the path must be either terminal or end in a loop. That is, either $T(w^2)$ holds, or there must be a transition from w^2 to one of w^0, w^1 or w^2. The formula $\varphi_3 \triangleq T(w^2) \lor R(w^2, w^0) \lor R(w^2, w^1) \lor R(w^2, w^2)$ is expanded similar to φ_2.
- Fourth, $G \neg(v_1 \land v_0)$ must hold in the first point of the sequence, i.e., $\neg(v_1 \land v_0)$ must hold for w^0, w^1 and w^2. Therefore, $\varphi_4 \triangleq \bigwedge_{i=0}^{2} \neg (v_1^i \land v_0^i)$.

It is easy to see that there is a propositional model for $\varphi \triangleq \varphi_1 \land \varphi_2 \land \varphi_3 \land \varphi_4$ iff there is a maximal path consisting of three model states validating the given formula. Satisfiability of φ can be checked by SAT procedures like SATO [Zhang 1997] or Stålmarck’s algorithm [Stålmarck 1989, Stålmarck and Säf Lund 1990, Boršilv 1997]. Thus, by increasing the number of states allowed in the search, we get an alternative model checking procedure.

In this example, the formula is indeed satisfiable. The satisfying assignment corresponds to a counterexample that is a path from the initial point (00) over (01) to (10) followed by the loop from (10) to (00). If the transition from (10) to (00) is changed to point (11), then the original formula becomes unsatisfiable.

12.2. Translation into Propositional Logic

Assume that we are given a Kripke model M, an LTL formula ψ and a bound k. Subsequently, each w^i is a vector of $\lceil \log |M| \rceil$ boolean variables. We will construct a propositional formula in $w^0 \ldots w^k$ which is (propositionally) satisfiable iff there is a maximal path of length k in M validating ψ.

The initial and terminal state predicates \(I(w) \) and \(T(w) \) and the transition relation \(R(w, w') \) are given by \(\mathcal{M} \). The following propositional formula describes that the points to which the variables \(w^1 \ldots w^k \) refer form a maximal path in \(\mathcal{M} \):

\[
[\mathcal{M}]_k \overset{\triangleq}{=} I(w^0) \land \bigwedge_{i=1}^{k} R(w^{i-1}, w^i) \land \left(T(w^k) \lor \bigvee_{l=0}^{k} R(w^k, w^l) \right)
\]

Now we define the translation \([\psi]_k \) of a temporal formula \(\psi \) evaluated at point \(w^i \) in the sequence \((w^0 \ldots w^k) \). In general, the constraint imposed by the temporal specification depends on whether the path under consideration is terminating or not. Consider the formula \((\varphi \mathcal{U}^+ \psi) \) in a terminating path \((w^0 \ldots w^k) \). This formula holds in point \(w^i \) iff there is a \(i < j \leq k \) such that \(\psi \) holds at \(w^j \), and \(\varphi \) holds at all \(w^m \) such that \(i < m < j \). This can be translated by a disjunction over all possible positions \(w^j \) at which \(\psi \) eventually might hold, and a conjunction for each of these positions ensuring that \(\varphi \) holds for all points between \(w^j \) and \(w^i \). That is, in this case \(\left((\varphi \mathcal{U}^+ \psi) \right)_k \overset{\triangleq}{=} \bigvee_{j=i+1}^{k} (\psi_j^i \land \bigwedge_{m=i+1}^{j-1} \varphi_m^i) \).

Now consider the case that the path \((w^0 \ldots w^i \ldots w^k) \) ends with a loop from \(w^k \) to \(w^i \). The formula \((\varphi \mathcal{U}^+ \psi) \) is satisfied in \(w^i \) iff one of the following holds:

- as for terminating sequences, there exists some \(i < j \leq k \) such that \(\psi \) holds at \(w^j \), and \(\varphi \) holds at all \(w^m \) such that \(i < m < j \), or
- there exists some \(l \leq j \leq i \) such that \(\psi \) holds at \(w^j \), and \(\varphi \) holds at all \(w^m \) such that \(i < m \leq k \), and \(\varphi \) holds at all \(w^m \) such that \(l \leq m < j \).

Figure 36 visualizes these two possibilities.

![Figure 36: Two possibilities for “until” in a loop](image)

The definition of \([\psi]_k \) is by recursion on the structure of \(\psi \), where the current point \(i \) changes but the length of the path \(k \) stays the same. For this translation, let \(i \leq k \) be natural numbers, and let \(\bigvee_{j=i}^{l} \psi \overset{\triangleq}{=} \bot \) for \(l > i \).

- \([p]^i_k \overset{\triangleq}{=} p(w^i) \)
- \([\bot]^i_k \overset{\triangleq}{=} \bot \)
- \([(\varphi \rightarrow \psi)]^i_k \overset{\triangleq}{=} ([\varphi]^i_k \rightarrow [\psi]^i_k) \)
\[[\varphi U^+ \psi]_k^m = \bigvee_{i=0}^k ([\psi]_k^m \land \bigwedge_{i=0}^{k-1} [\varphi]_k^m) \lor \bigvee_{i=0}^k \left(\bigwedge_{i=0}^{k-1} [\varphi]_k^m \land R(w^k, w^i) \land \bigvee_{i=0}^{k-1} ([\psi]_k^m \land \bigwedge_{i=0}^{k-1} [\varphi]_k^m) \right) \]

For the last of these clauses, cf. Figure 36. Correctness of our translation can be stated as follows.

12.1. Theorem. There exists a maximal path of length \(k \) generated by \(M \) which initially validates \(\psi \) iff \([M]_k^m \land [\psi]_k^m \) is propositionally satisfiable. In other words, \(\psi \) is sequence-valid in \(M \) iff \([M]_k \rightarrow [\psi]_k^m \) is propositionally valid for all \(k \geq 0 \).

An upper bound for the length \(k \) of the path to be considered is \(|M| \times 2^{[\psi]} \) (for the complexity of LTL model checking, see Sect. 8.2). In principle, bounded model checking could be extended to other specification logics such as \(\mu TL \). In practice, however, the number of boolean propositions which are introduced tends to be too big for currently available SAT provers.

13. Abstractions

Even though BDD representations, partial order methods and SAT procedures allow to apply model checking to rather large systems, one of the main topics still is the size of the models. To verify an implementation of several thousands of lines of code by model checking, it is necessary to find a suitable abstraction.

13.1. Abstraction functions

Numerous authors have considered the problem of reducing the complexity of verification by using abstractions, equivalences, preorders, etc. For example, in [Graf and Steffen 1990] a method is described for generating a reduced version of the global state space, given a description of how the system is structured and specifications of how the components interact. In [Wolper 1986] it is demonstrated how to do model checking for programs which are data independent. The method described in [Kurshan 1989], which is based on \(\omega \)-language containment, was implemented in the COSPAN system [Har'El and Kurshan 1990, Kurshan 1994]. In this system, the user may give abstract models of the system and specification in order to reduce the complexity of the test for containment. To ensure soundness, the user specifies homomorphisms between actual and abstract processes. These homomorphisms are checked automatically. We describe a general framework elaborated in [Long 1993].

Traditionally, finite-state verification methods focus on the control flow of the system. Symbolic methods have made it possible to handle even some systems that involve nontrivial data manipulation, but the complexity of verification is often high. However, specifications of systems that include data paths usually involve fairly simple relationships among the data values in the system. For example, the correctness of a communications protocol might be independent of the particular
data transmitted, provided that no two subsequent messages are identical. As another example, in verifying the addition operation of a microprocessor, we might require that the value in one register is eventually equal to the sum of the values in two other registers. The complexity of the verification can be reduced in such cases by suitable abstractions. An abstraction is specified by giving a mapping between the actual data values in the system and a small set of abstract data values. By extending the mapping to states and transitions, we can produce an abstract version of the system under consideration. The abstract system is often much smaller than the actual system, and, as a result, it is usually much simpler to verify properties at the abstract level.

![Diagram](image)

(a) Concrete system (b) Abstraction

Figure 37: The dining mathematicians

For example, consider the program from Figure 37. This example called the "dining mathematicians" is from [Dams et al. 1994] and is reconsidered in [Merz 1997]. It consists of two processes communicating via a shared variable \(x \) which ranges over the domain \(D_x \) of all integers. Initially \(x \) is any positive integer. Both processes have a "thinking" and an "eating" state and start in the former. That is, the state space is \(\{t_0, e_0\} \times \{t_1, e_1\} \times D_e \), and the initial states are \(\{(t_0, t_1, d) \mid d > 0\} \). Note that both of these sets are infinite. The system ensures mutual exclusion to the eating phase and starvation-freeness for both processes.

Assume that we are interested in proving mutual exclusion: \(A \mathbf{G}^\neg(e_0 \land e_1) \). We create a domain \(A_x \) of abstract values for \(x \), with \(A_x \triangleq \{a_x, a_e, a_o\} \), and define the abstraction mapping \(h_x \) from \(D_x \) to \(A_x \) as follows.

\[
\alpha_x(d) \triangleq \begin{cases}
 a_z, & \text{if } d = 0, \\
 a_e, & \text{if } d \text{ is even, and} \\
 a_o, & \text{if } d \text{ is odd.}
\end{cases}
\]

Now we can use just three atomic propositions to express the abstract value of \(x \): "\(x \equiv a_0 \)”, "\(x \equiv a_e \)”, and "\(x \equiv a_o \)”. We can no longer express properties about the exact value of \(x \) using these atomic propositions. In many cases though, by judicious choice of the abstraction mapping, knowing just the abstract value is sufficient.
Two points \(w_0 = (w_{00}, w_{01}, d_0) \) and \(w_1 = (w_{10}, w_{11}, d_1) \) in the original Kripke model are equivalent \(w.r.t. \) the abstraction mapping \(\alpha \), if \(w_{00} = w_{10}, w_{01} = w_{11} \) and \(\alpha_x(d_1) = \alpha_x(d_2) \). That is, two points are equivalent if they have the same label, and the abstracted variable values in both points are equal. The \(\alpha \)-abstraction is the quotient of the original model under this equivalence. Since the abstract domain \(A_x \) is finite, the \(\alpha \)-abstraction is a finite Kripke model. Figure 37(b) shows the reachable part of the \(\alpha \)-abstraction of 37(a). It is easy to see (and can be confirmed by model checking) that the abstracted system validates \(\mathbf{A} \mathbf{G}^* \neg(e_0 \land e_1) \). As we will see below, this implies that the original systems also guarantees this property.

Formally, abstractions are formed by giving surjections \(\alpha_1, \ldots, \alpha_n \) which map each \(D_i \) onto a set \(D_i^\alpha \) of abstract values. The surjection \(\alpha = (\alpha_1, \ldots, \alpha_n) \) then maps each program state to a corresponding abstract state. As explained above, this mapping may be applied in a natural way to the initial states and the transitions of the program. The resulting transition system is the \(\alpha \)-abstraction of the original program. Applying abstractions to several or all of the program variables, the specification has a much smaller number of atomic propositions and points. For the abstracted system, various state space reductions discussed in previous sections can be applied.

One way of obtaining a representation of the \(\alpha \)-abstraction of a concurrent program is to build a representation of the original state space and to construct the \(\alpha \)-abstraction from it. However, if the original state space is infinite as in the above example, or it is too large to fit into memory, this may not be feasible. In the finite state case, it might be possible to represent the system using BDD-based methods, but the computational complexity of building the \(\alpha \)-quotient from this representation can still be very high.

To circumvent these problems, another way of producing abstract models in a BDD-based verification tool is to start with a high level description of the system and the abstraction function. The system could be given, \(e.g., \) as a program in a hardware description language. From this, a BDD for the abstracted system is generated directly. In order to perform the compilation process effectively, an approximation to the \(\alpha \)-abstraction is generated [Clarke, Grumberg and Long 1994]. This approximation might be somewhat larger than the \(\alpha \)-abstraction, but it can be built very efficiently. The techniques used in this construction are similar to those involved in abstract interpretation [Cousot and Cousot 1977, Cousot and Cousot 1979, Dams 1995]. This way, it is even possible to use abstractions to verify systems in which the data path is not completely specified. By modeling the data path as a collection of units that perform unspecified functions, the verification of the data path and the verification of the control can be largely decoupled.

To be able to interpret specification formulas with respect to both the original transition system and its abstraction, atomic formulas must be those specifying that a program variable has a particular abstract value. In Theorem 4.11 we showed that if \(M_1 \) is simulated by \(M_2 \), then any formula in the logic \textbf{ACTL} valid in \(M_2 \) is also valid in \(M_1 \). An abstraction is a special simulation: thus if an \textbf{ACTL} formula is true in the abstract system, we can conclude that it is also true in the original system. In addition, if the equivalence relations induced by the \(\alpha_i \) are congruences with respect
to the operations used in the program, then the formula is true in the abstract system if it is true in the original system. [Loiseaux, Graf, Sifakis, Bouajjani and Bensemel 1995] discusses abstraction techniques which preserve properties specified in \(\mu TL \).

It should be emphasized that the choice of suitable abstractions \(\alpha_i \) is an interactive step in the verification. Usually, there are several possibilities to abstract a given system, all preserving different properties. In our above example, the chosen abstraction does not allow to prove starvation-freeness of the second process. However, this situation is not typical for industrial applications. In [Clarke, Grumberg and Long 1994a], the following abstractions are used to verify a pipelined arithmetic/logical unit with over 4000 state bits and \(10^{1000} \) reachable states.

- congruence modulo an integer, for dealing with arithmetic operations;
- single bit abstractions, for dealing with bitwise logical operations;
- product abstractions, for computing abstractions such as the above; and
- symbolic abstractions. This is a powerful type of abstraction that allows to verify an entire class of formulas simultaneously.

Another approach at implementing abstraction functions is directly at the level of the BDD data structure. Given an abstraction function, we can reduce the size of a BDD by merging nodes that have the same abstract value. Abstract BDDs (ABDDs) are a generalization of Residue BDDs (RBDDs, see [Kimura 1995]). To obtain an ABDD it is not necessary to build the full BDD: ABDDs can be constructed directly from the abstraction function and the description of the system. For more information, see [Clarke, Jha, Lu and Minea 1997].

13.2. Symmetry Reductions

Most large hardware circuits are highly symmetric. For instance, one can find symmetry in memories, caches, register files, bus and network protocols — any type of hardware containing replicated structures. For symmetric systems, we can apply special abstractions to avoid searching the entire state space of the circuit and to reduce the size of the BDDs representing the transition relation [Starke 1991, Emerson and Sistla 1993, Clarke, Finkorn and Jha 1993, Ip and Dill 1993].

Suppose that we want to represent the boolean function (formula) \(\varphi(v_1, \ldots, v_n) \) of \(n \) variables by a BDD. Symmetry in a boolean function is modeled in terms of a permutation group acting on the set of variables of the function. We say that \(\varphi \) is invariant under a permutation \(\sigma \) on \(v_1, \ldots, v_n \), if the value of the function does not change when the permutation \(\sigma \) is applied to its arguments:

\[
\varphi(v_1, \ldots, v_n) = \varphi(\sigma(v_1), \ldots, \sigma(v_n))
\]

The function is said to be invariant under a group \(G \) of permutations, if it is invariant under each permutation \(\sigma \) in \(G \). For example, let \(\varphi(v_1, v_2, v_3, v_4) \) be the function which tests whether two 2-bit numbers \((v_1, v_3)\) and \((v_2, v_4)\) are equal. The function \(\varphi \) is clearly invariant under the transpositions \((1 \ 2)\) and \((3 \ 4)\). The first permutation corresponds to exchanging input bits \(v_1 \) and \(v_2 \). The second corresponds
to exchanging \(v_3 \) and \(v_4 \). The function will, of course, also be invariant under the group generated by the two transpositions.

Let \(B^n \) be the set of boolean vectors of length \(n \), and let \(G \) be a permutation group on \(1, \ldots, n \). Assume that \(G \) acts on \(B^n \) in the natural way. For example, applying the transposition \((2 \, 3)\) to \((0, 1, 0, 1)\) yields \((0, 0, 1, 1)\). We say that two vectors \(v^1 \) and \(v^2 \) are equivalent with respect to \(G \) if there is a permutation \(\sigma \) in \(G \) such that \(v^1 = v^2 \). Since \(G \) is a group, this relation is an equivalence relation on \(B^n \) and therefore partitions \(B^n \) into a number of equivalence classes. The number of equivalence classes may be much smaller than the number of boolean vectors in \(B^n \).

A boolean function \(\varphi(v_1, \ldots, v_n) \) is uniquely determined by the set of vectors in \(B^n \) that cause it to have the value \(T \). If \(\varphi \) is invariant under some group of permutations \(G \), it may be possible to compact the BDD representation for \(\varphi \) if any one of the boolean vectors in some equivalence class determined by \(G \) makes \(\varphi \) true, then all of the vectors in this equivalence class will. Consequently, in the BDD representation for \(\varphi \) it is necessary to keep at most one representative from each equivalence class. In many cases this significantly reduces the size of the BDD for \(\varphi \).

Essentially the same idea can be used to reduce the size of the state space that must be searched by the symbolic model checking algorithm. Let \(U \) be the set of possible states of the system, which are determined by the values of \(v_1, \ldots, v_n \). A permutation of these state variables induces a permutation on the state-space of the system. Let \(\prec \) be the transition relation of the system and \(\equiv \) be an equivalence relation. We say that \(\prec \) respects \(\equiv \) if whenever \(w_1 \equiv w'_1 \) and \(w_2 \equiv w'_2 \), then \(w_1 \prec w_2 \) iff \(w'_1 \prec w'_2 \). When the transition relation \(R \) respects the equivalence relation \(\equiv \) determined by a permutation group, it is possible to reduce the state space to the set of equivalence classes \(U^\equiv \) determined by \(\equiv \). The corresponding transition relation between these equivalence classes is \(\prec^\equiv \). Since we only need one point for each equivalence class, the model \((U^\equiv, \prec^\equiv)\) is often much smaller than the original model \((U, \prec)\).

Similar as with abstraction functions, the reduced BDD can be constructed directly from a description of the system and the permutation group. For more information, the reader is referred to [Kannan and Lipton 1986, Clarke, Finkorn and Jia 1993]. It is not clear, though, how the reductions obtained by symmetries interacts with other abstraction techniques and partial order methods.

13.3. Parameterized Systems

A special case of a symmetry is that the system consists of an arbitrary number of similar or identical processes. Systems of this type are commonplace – they occur in bus protocols and network protocols, I/O channels, and many other structures that are designed to be extensible by adding similar components. A number of methods have been proposed for extending model checking to such designs [Clarke, Grumberg and Browne 1986, Wolper and Lovinfosse 1989, German and Sistla 1992, Clarke, Grumberg and Jia 1995].
After using a model checker to determine the correctness of a system configured with a fixed number of processors or other components, it is natural to ask whether this number is enough in some sense to represent a system with any number of components. This question was approached in [Browne, Clarke and Grumberg 1989], who extended CTL to a logic called indexed CTL. This logic allows the restricted use of process quantifiers as in the formula $\bigwedge_{i} \varphi_i$, which means that the formula φ holds for all processes i. Restricting the use of these quantifiers and eliminating the next-time operator makes it impossible to write a formula which can distinguish the number of processes in a system. By establishing an appropriate relationship between a system with n processes and a system with $n + 1$ processes, one can guarantee that all systems satisfy the same set of formulas in the indexed logic. This method was used to establish the correctness of a mutual exclusion algorithm by exhibiting a bisimulation relation between an n-process system and a 2-process system, and applying model checking to the 2-process system.

One disadvantage of the indexing method is that the bisimulation relation must be proved "by hand" in an ad hoc manner. Finite state methods cannot be used to check it because it is a map between states of a finite state process and a process with an arbitrary number of states. A method without this disadvantage was proposed in [Kurshan and McMillan 1989], and independently in [Wolper and Lovinfosse 1989]. This method uses a process Q to act as an invariant, as the number of processes increases. If P represents one process in the system, then by showing that the possible executions of P composed with Q are contained in the possible executions of Q, we can conclude by induction that Q adequately represents a system of any finite number of processes. Since both P composed with Q and Q are finite-state processes, the containment relation can be checked automatically. This method has been applied in [McMillan and Schwalbe 1992] to the Encore Gigamax cache consistency protocol. By slightly generalizing the model of one processor, an invariant process for this system could be obtained which stands for any number of processors on a bus.

These induction techniques have been generalized by a number of authors (e.g., [Marely and Grumberg 1991]). However, the main problem in all of these verification methods is that of constructing the invariant process. Currently, the invariant process must be generated interactively. Counterexamples produced by model checking tools are helpful for guiding the construction, but it would be useful to have automated techniques for this purpose. To make these methods generally accepted, more results on the combination of model checking and inductive theorem proving and powerful heuristics are necessary.

14. Compositionality and Modular Verification

As explained in Section 9, most circuits and protocols are modeled as networks of communicating parallel processes. The complexity of these models grows exponentially in the number of processes; thus, monolithic verification of such designs can be hard. Therefore, it may be necessary to verify small components separately and,
from that, derive the correctness of the whole design, without building a model for the entire system. This so-called compositionality paradigm has been investigated by a number of authors [deRoever, Langmaack and Pnueli 1998].

14.1. Model Checking and Theorem Proving

Assume a process consisting of a parallel composition of several subprocesses, where all subprocesses have associated formulas specifying their properties. Whenever a property of a parallel composition is to be proven, we can first prove for each component that the corresponding property holds, and then infer in an adequate proof system that the global property of the composition also holds. Model checking can be used to verify the individual components; then theorem proving techniques can be used to derive global properties of their parallel composition. The composition step substantially simplifies the verification problem, since it avoids building the global state space. Thus, the compositionality paradigm is a promising perspective for the combination of model checking with theorem proving.

Moreover, this approach supports the hierarchical design process. One can work out specifications for all parts of a complex system and prove that if every component satisfies its specification, then the whole system is correct. When the system is implemented it is sufficient to verify each component separately. It is also possible to change the actual implementation of some component without having to repeat the verification of the entire system as soon as the new implementation meets its local requirements.

For instance, consider the problem of verifying a communications protocol that is modelled by three processes: a transmitter, some type of network, and a receiver. Suppose that the specification for the system is that data is eventually transmitted correctly from the sender to the receiver. Such a specification might be decomposed into three local properties. First, the data should eventually be transferred correctly from the transmitter to the network. Second, the data should eventually be transferred correctly from one end of the network to the other. Finally, the data should eventually be transferred correctly from the network to the receiver. We might be able to verify the first of these local properties using only the transmitter and the network, the second using only the network, and the third using only the network and the receiver. By decomposing the verification in this way, we never have to compose all of the processes and therefore avoid the state explosion phenomenon.

Whereas model checking for the verification of the individual components is a well-understood technique, for the derivation of global system properties from local components properties an appropriate calculus is needed. There are two possibilities for implementing a proof system for such a calculus. The first is to incorporate the calculus into a general purpose theorem prover. For example, there are embeddings of Lamport’s temporal logic of actions (TLA) into the theorem provers LARCH, PVS and Isabelle (see, e.g., [Abadi, Lamport and Merz 1996]). However, the computational complexity inherent in such an approach may prevent the resulting tool from being applicable for large industrial designs.
The second possibility is to build a special purpose theorem prover for the chosen calculus. Several suggestions for a concrete framework following this approach have been made. The proof system of [Stirling 1987] is, probably, the most compositional in the sense that it clearly reduces the verification problem to the verification of components. However, the logic which is used in this paper is too weak to be of much interest in practice. In [Andersen, Stirling and Winskel 1994] the parallel composition operator was eliminated basically by encoding one of the subprocesses into the formula. In the worst case this results in an exponential blow-up in the size of the formula, and the total complexity remains the same as for non-compositional model checking. The proof system of [Dam 1995] is complete for finite-state processes. However, it uses a silent τ action for all synchronizations, and in the τ-rule there have to be as many premises as there are actions in the model. Therefore, one can only have a fixed set of actions.

The STeP system [Bjørner, Browne, Chang, Colón, Kapur, Manna, Sipma and Uribe 1995, Bjørner, Browne, Chang, Colón, Kapur, Manna, Sipma and Uribe 1996] implements another approach to combining model checking and theorem proving under a single framework. However, the user must decide what has to be model checked and what to be derived in a theorem prover. It would be desirable to create the verification agenda automatically, such that the user will only have to supply some intermediate properties and possibly assist the theorem prover during a proof search.

14.2. Compositional Assume-Guarantee Reasoning

Ideally, compositional reasoning exploits the natural decomposition of a complex system into simpler components, handling one component at a time. In practice, however, when a component is verified it may be necessary to assume that the environment behaves in a certain manner. If the other components in the system guarantee this behavior, then we can conclude that the verified properties are valid in the entire system. These properties can be used to deduce additional global properties of the system.

The assume-guarantee paradigm (cf. e.g., [Pnueli 1984]) uses this method. Typically, a formula is a triple $\langle \psi \rangle M \langle \varphi \rangle$ where ψ and φ are temporal formulas and M is a program. The formula is valid if whenever M is part of a system satisfying ψ, the system must also satisfy φ. A typical proof shows that $\langle \psi \rangle M \langle \varphi \rangle$ and $\langle \tau \rangle M' \langle \psi \rangle$ hold and concludes that $\langle \tau \rangle M \parallel M' \langle \varphi \rangle$ is valid. This proof strategy can also be expressed as an inference rule:

\[
\frac{\langle \psi \rangle M \langle \varphi \rangle \quad \langle \tau \rangle M' \langle \psi \rangle}{\langle \tau \rangle M \parallel M' \langle \varphi \rangle}
\]

The soundness of an assume-guarantee rule of this form is straightforward. A more powerful form that also involves pure temporal reasoning is:
\[(\psi_1) M_1 (\phi_1) \]
\[(\psi_2) M_2 (\phi_2) \]
\[\xi_1 \land \phi_1 \rightarrow \psi_2 \]
\[\xi_1 \land \phi_2 \rightarrow \psi_1 \]
\[\phi_1 \land \phi_2 \rightarrow \xi_2 \]
\[\langle \xi_1 \rangle M_1 || M_2 \langle \xi_2 \rangle \]

In the composed system \(M_1 || M_2 \), the module \(M_2 \) is part of the environment of \(M_1 \) and vice versa. \(M_2 \) guarantees via \(\phi_2 \) that the assumption \(\psi_1 \) of \(M_1 \) is met, provided that its own assumption \(\psi_2 \) holds. \(M_1 \), in turn, guarantees the assumption of \(M_2 \), provided that its assumption holds.

As shown in [Pnueli 1984], careless application of this rule may lead to a circular reasoning and, thus, may result in an erroneous conclusion. To avoid this, Pnueli suggested associating a parameter over some well-founded set with each temporal formula in the assume-guarantee rule. The rule then allows for a temporal formula to be deduced only from formulas with smaller parameters. For an abstract account of composition, see [Merz 1997]. Several tools have been developed that permit this type of reasoning to be automated [Josko 1993, Long 1993, Grumberg and Long 1994]. The tools provide a machinery for checking automatically the validity of formulas of the form \(\langle \psi \rangle M \langle \phi \rangle \). These tools, however, suffer from two main deficiencies.

Firstly, they do not provide any mechanism to avoid or to locate circular reasoning. Thus, they count on the user "common sense" for correct application of the method. An open problem is to develop an algorithm for checking non-circularity in assume-guarantee reasoning. This could bridge the gap between the abstract assume-guarantee paradigm and its computerized version.

Secondly, in order to obtain a powerful method, the preorder and the semantics of the logics should both include a notion of fairness. This is essential for modelling systems (hardware or communication protocols) at the appropriate level of abstraction. Unfortunately, no efficient technique exists to check or compute fair preorder between models. In [Grumberg and Long 1994], it is suggested how to check the fair preorder in some simple cases. In the general case, the problem is PSPACE-hard [Kupferman and Vardi 1996]. A notion of fair preorder that, on the one hand, is suitable for computerized assume-guarantee reasoning, and on the other hand, can be checked efficiently, would make compositional reasoning less error prone and could widen the applicability of this type of reasoning.

15. Further Topics

There are several extensions to each of the topics presented here, and in many areas there is a lot of ongoing activity. Current research can be classified into two main tracks:

- improve efficiency and applicability of present model checking techniques, and
extend the realm of application and merge model checking with other formal methods.

A number of papers on industrial case studies, advanced heuristics, and improved algorithms and data structures follows the first track. The second track encompasses papers on model checking for infinite state systems, integration with simulation and testing, as well as model checking for real-time, probabilistic and security related applications.

15.1. Combination of Heuristics

Partial order techniques attempt to alleviate the state explosion problem by constructing a reduced state space to be searched by the model checking algorithm. Originally introduced in the context of untimed models, they have been expanded to handle real time systems [Yoneda and Schlingloff 1997, Sloan and Buy 1997]. In turn, symbolic techniques have been applied to model checking for real-time systems. It seems to be a challenging task to combine the advantages of partial order reduction with a symbolic representation for real-time system verification. One of the intrinsic difficulties is that the partial order reduction, as described in section 11, needs to have access to the search history, which is trivially implemented for explicit state search but has no immediate correspondence in the symbolic case. Recent advances [Alur et al. 1997, Kurshan, Levin, Minea, Peled and Yenigun 1997] have shown that this technique can be combined with symbolic model checking, which in many cases allows much larger state spaces to be handled. One of these methods [Kurshan et al. 1997] allows partial order reduction to be performed statically, by analyzing the state graph of each asynchronous system component. Existing partial order methods for real-time models are dynamic in the sense that they use timing information obtained during the state space search. However, probably a significant part of the dependency information can be obtained statically as well, making the combination with symbolic techniques possible [Minea 1999].

Partial order methods mostly have been investigated within the context of (stutter-invariant) linear temporal logic model checking. The method reduces the complex part of the model checking problem, namely the size of the model. The tableau for an LTL specification is usually small. However, the state explosion problem is even more prevalent in the case of conformance checking and (bi-)simulation between automata. A problem here is how to apply partial order reduction simultaneously to both models.

A key factor that affects the efficiency of partial order reduction is the number of visible transitions, i.e., transitions that may change a predicate in the checked property. With more and more complex specifications, the number of visible transitions increases and less reduction can be achieved. Some approaches to alleviate this problem have been proposed in [Peled 1993]. One possibility is to take advantage of the structure of the specification and rewrite it as a combination of simpler properties. However, no optimal solution is known to date.

Other issues that are important in conjunction with the combination of heuris-
tics are abstraction and compositionality. It is still unknown how the efficiency improvement gained by symbolic representation and partial order analysis interact with abstraction techniques and compositional reasoning. To be able to verify even bigger systems, it is important to develop methods and tools that allow to combine the benefits of several methods.

15.2. Real Time Systems

Within the last few years, several attempts have been made to apply formal analysis methods also to real time systems. The ideas and techniques presented so far are well-suited for the verification of systems in which only causal aspects of time are important. In some applications it is desirable to consider quantitative aspects of timing behavior. We say that a system has to satisfy hard real time constraints, if its correctness depends on the value or progress of “the real” clock. In hard real-time systems, not only the relative order of events is important, but also their absolute duration with respect to a (conceptual) global clock. For example, in a traffic light controller, it might not be sufficient to show that if a pedestrian pushes a button, then eventually the green lights will be on. To allow approaching cars to pass, the light should stay red after the button has been pushed for at least 10 seconds. To avoid that pedestrians start crossing at red, it should also change not later than 30 seconds after the request. In this example, we assume that both the pedestrian and the traffic light controller have the same measure of the duration of a second. Of course, it is possible to model the global clock as separate concurrent part of the system. Then this global clock synchronizes the local clocks of both pedestrian and traffic light controller. Thus, it is possible to consider real-time verification as special case of the untimed methods described above. However, in hard real-time systems, global time is ubiquitous, therefore this approach may not be the most efficient.

It is important to note that “hard real time” does not mean “as fast as possible”. As the above example shows, predictability of timing behavior can also mean that some events do not occur before a certain amount of time has elapsed. As another example, consider a real-time protocol, where all necessary computation steps must be performed in exactly a fixed time slot. Currently, hard real time systems are designed with trial and error: if a component is too fast, an idle waiting loop is incorporated; if it is too slow, more expensive hardware is used. This procedure has several disadvantages. Firstly, it can add intricate hardware-software dependencies to a system. Therefore the migration to new hardware generations is complicated. Secondly, the execution time of single statements can vary depending on input data, nondeterministic scheduling, cache behavior, etc. Timing measurement can not guarantee that the actual timing will be within required boundaries. Finally, in applications like the design of asynchronous circuits, an arbitrary delay of signals can be expensive.

In real time verification, clock values usually are assumed to be nonnegative real, rational or natural numbers. As opposed to untimed systems, there is no gener-
ally accepted representation of sets or regions of timing values. Common tools use difference bound matrices [Dill 1989] and clock regions [Alur, Courcoubetis and Dill 1990, Alur 1991] to represent timing constraints. Real time systems often are modelled with timed automata [Alur 1998, Alur and Dill 1990] or timed transition systems [Henzen, Manna and Pnueli 1992]. For an overview on real time logics and models, see [Alur and Henze 1992]. Reachability and model checking algorithms for these models are given in [Alur et al. 1990]. Generally, the complexity of verifying real-time systems is much higher than that for untimed systems. Moreover, timing constructs are often represented using an explicit state representation. Consequently, the number of states that can be handled is relatively small \(10^5 - 10^7\). Thus, at present, only highly abstracted examples (e.g., [Archer and Heitmeier 1996]) can be verified automatically by model checking tools like Kropos [Yovine 1997, Yovine 1998] or UPPAAL [Larsen, Pettersson and Yi 1997, Aceto, Bergueno and Larsen 1998].

It is a challenging research task to find a paradigm separating the real-time component from the functional and reactive component in the specification of typical real-time requirements. This could make model checking an integral component in the development of reactive real-time systems.

15.3. Probabilistic Model Checking

Some safety-critical systems have a stochastic behavior. This may be either due to the fact that some part of the outside world, which is stochastic in nature, is modelled as part of the system, or because of hardware failures which may happen stochastically. Available model checkers usually model the probabilistic behavior of such systems non-deterministically, missing the ability to assess how probable some system behavior is.

A number of theoretical papers have been written on probabilistic verification. Efficient algorithms have been given by several authors; for example, there is an LTL model checking algorithm which is exponential in the size of the formula and polynomial in the size of the Markov chain [Courcoubetis and Yannakakis 1995]. However, currently there are no probabilistic model checking tools available which can verify systems of realistic size. The bottleneck is the construction of the state space and the necessity to solve huge systems of linear equations. A more efficient alternative could be to perform the probability calculations using Multi-Terminal Binary Decision Diagrams (MTBDDs).

MTBDDs [Bahar, Frohm, Gaona, Hachtel, Macii, Pardo and Somervi 1993, Clarke, Fujita, McGeer, Yang and Zhao 1993] differ from BDDs in that the leaves may have values other than 0 and 1; in this case the leaves contain transition probabilities. MTBDDs can be used to represent \(D\)-valued matrices efficiently. Consider a \(2^m \times 2^m\)-matrix \(A\). Its elements \(a_{i,j}\), can be viewed as the values of a function \(f_A : \{0, \ldots, 2^m - 1\} \times \{0, \ldots, 2^m - 1\} \rightarrow D\), where \(f_A(i,j) = a_{i,j}\). Using the standard encoding \(c : B^m \rightarrow \{0, \ldots, 2^m - 1\}\) of boolean sequences of length less than \(m\) into the integers, this function may be interpreted as a \(D\)-valued boolean
function $f : B^m \to D$ where $f(x, y) = f_A(c(x), c(y))$ for $x = (x_0 \ldots x_{m-1})$ and $y = (y_0 \ldots y_{m-1})$. This transformation now allows matrices to be represented as MTBDDs. In order to obtain an efficient MTBDD-representation, the variables of f are permuted. Instead of the MTBDD for $f(x_0 \ldots x_{m-1}, y_0 \ldots y_{m-1})$, the MTBDD obtained from $f(x_0, y_0, x_0, y_0, \ldots x_{m-1}, y_{m-1})$ can be used. This convention imposes a recursive structure on the matrix from which efficient recursive algorithms for all standard matrix operations can be derived.

MTBDDs can be integrated with a symbolic model checker and have the potential to outperform other matrix representations because they are very compact. For example, in [Hachtel, Macii, Pardo and Somenzi 1996] symbolic algorithms were developed to perform steady-state probabilistic analysis for systems with finite state models of more than 10^{27} states. While it is difficult to provide precise time complexity estimates for probabilistic model checking using MTBDDs, the success of BDDs in practice indicates that this is likely to be a worthwhile approach.

The standard model used in probabilistic model checking are finite state discrete-time Markov chains ([Hansson and Jonsson 1989, Courcoubetis and Yannakakis 1995, Ažić, Singhal, Balarin, Brayton and Sangiovanni-Vincentelli 1995, Ažić, Sanwal, Singhal and Brayton 1996]). This model is a powerful notation for the dependability analysis of fault-tolerant real-time control systems, performance analysis of commercial computer systems and networks, and operation of automated manufacturing systems.

To specify properties of finite state discrete-time Markov chains, Probabilistic Real Time Computation Tree Logic (PCTL) was introduced in [Hansson and Jonsson 1989]. PCTL augments CTL with time and probability; it is a very expressive logic and offers simple model checking algorithms that can be implemented using symbolic techniques in a straightforward manner [Baier, Clarke, Hartonas-Garnhausen, Kwiatkowska and Ryan 1997].

However, in order to make model checking a standard method for probabilistic verification, more experiences with industrial size examples, typical requirements and efficient tools are necessary.

15.4. Model Checking for Security Protocols

Security protocols are another promising area for the application of model checking techniques. The increasing amount of confidential information (such as monetary transactions) sent over insecure communication links (such as the internet) requires more and more sophisticated encryption protocols. Like hardware designs, these protocols can have subtle bugs which are difficult to find. It may be possible to use the same exhaustive search techniques as in model checking to verify security protocols. By examining all possible execution traces of the protocol in the presence of a malicious adversary with well defined capabilities, it may be possible to determine if an attack on the protocol could be successful.

Typically, security protocols can be thought of as a set of principals which send messages to each other. The hope is that by requiring agents to produce a se-
quence of formatted and encrypted messages, the security goals of the protocol can be achieved. For example, if a principal \(A \) receives a message encrypted with a key known only by principal \(B \), then principal \(A \) should be able to conclude that principal \(B \) created the message. However, it would be incorrect to conclude that principal \(A \) is talking to principal \(B \). An adversary could be replaying a message overheard during a previous conversation between \(A \) and \(B \). If the aim is to keep the message secret, then as long as the adversary does not learn the key, this security property is satisfied. If, however, the aim is to authenticate \(B \) to \(A \), then clearly this is not satisfied since the message was not necessarily sent by \(B \).

Since the reasoning behind the correctness of these protocols can be subtle, researchers have tried turning to formal methods to prove protocols correct. In [Burrows, Abadi and Needham 1989], a logic of belief is developed in which one could formally reason about security protocols by stating axioms about the protocol and trying to derive theorems about its security. [Kindred and Wing 1996] added some automation to this process by generating theory checkers for these logics. In [Meadows 1994], a different approach is taken by modelling a security protocol in terms of a set of rewrite rules. These rules capture the way that the adversary can learn new information using encryption and decryption, and by receiving replies to messages sent to participants of the protocol. In [Woo and Lam 1993], the authors propose a model for authentication and provide a number of inference rules that could be used for proving properties in this model. The paper [Mitchell, Mitchell and Stern 1997] investigated the use of Mur\(\phi \), a previously existing model checker, for verifying security protocols.

A special purpose model checker for authentication protocols could contain two orthogonal components. The first is a state exploration component. Each honest agent can be described by the sequence of actions that it takes during a run of the protocol, and can be viewed as a finite-state machine. A trace of the actions performed by the asynchronous composition of these state machines corresponds to a possible execution of the protocol by the agents. By performing an exhaustive search of the state space of the composition, it can be determined if various security properties are violated.

The second component would be the message derivation engine which is used to model what the adversary is allowed to do. It can be implemented as a simple natural deduction theorem prover for constructing valid messages. The adversary can intercept messages, misdirect messages, and generate new messages using encryption, decryption, concatenation (pairing), and projection. Each time a message is sent, the adversary intercepts the message and adds it to the set of assumptions it can use to derive new messages. Whenever an honest agent receives a message, the message must have been generated by the derivation engine.

A first prototypical implementation shows that this framework can be successfully used to analyze threats and exhibit possible attacks in authentication protocols. It is also general enough to handle other kinds of security protocols such as key exchange and electronic commerce. Moreover, combining model checking with other automated deduction techniques could make it possible to verify both the encryption algorithm and the actual implementation at the same time. However,
for a widespread use it is additionally necessary to integrate the model checking approach with other, more well-established security design methods.

Acknowledgments

We would like to thank Wolfgang Heinle for help with initial versions of this chapter, the editor for his patience with us during its preparation, and the referees for many useful comments and suggestions.
Bibliography

Bradfield J. and Stirling C. [1991], Local model checking for infinite state spaces, in Proc. 3rd Workshop on Computer Aided Verification (CAV ’91), LNCS, Springer.

Brown M. C. and Clarke E. M. [1986], SML: A high level language for the design and verification of finite state machines, in IFIP WG 10.2 Int. Working Conf. from HDL Descriptions to Guaranteed Correct Circuit Designs, IIFIP, Grenoble, France.

CLARKE E. M. AND EMERSON E. A. [1981], Synthesis of synchronisation skeletons for branching
time temporal logic, in ‘Proc. Workshop on Logic of Programs’, Vol. 131 of LNCS, Springer,
Yorktown Heights, NY.
concurrent systems using temporal logic specifications’, ACM Transactions on Programming
Languages and Systems 8(2), 244–263.
CLARKE E. M., FILKORN T. AND JHA S. [1993], Exploiting symmetry in temporal logic model
checking, in C. Courcoubetis, ed., ‘Proc. 5th Workshop on Computer Aided Verification (CAV
1st Int. Conf. on Information, Communications and Signal Processing (ICICS ’97)’.
CLARKE E. M., FUJITA M., McGEE P., YANG J. AND ZHAO X. [1993], Multi-terminal binary de-
cision diagrams: An efficient data structure for matrix representation, in ‘Proc. Int. Workshop
on Logic Synthesis (IWLS ’93)’, Tahoe City.
CLARKE E. M., FUJITA M. AND ZHAO X. [1995], Hybrid decision diagrams — overcoming the
limitations of MTBDDs and BMDs, in ‘Proc. IEEE Int. Conf. on Computer Aided Design
(ICCAD ’95)’, IEEE Computer Society Press, pp. 54–60.
CLARKE E. M., FUJITA M. AND ZHAO X. [1996], Multi-terminal binary decision diagrams and
hybrid decision diagrams, in T. Sasao and M. Fujita, eds., ‘Representations of Discrete Func-
CLARKE E. M. AND GRUMBEG O. [1987a], Avoiding the state explosion problem in temporal
model checking algorithms, in ‘Proc. 6th Ann. ACM Symp. on Principles of Distributed
CLARKE E. M. AND GRUMBEG O. [1987b], Research on automatic verification of finite-state
CLARKE E. M., GRUMBEG O. AND BROWN M. C. [1986], Reasoning about networks with many
identical finite-state processes, in ‘Proc. 5th Ann. ACM Symp. on Principles of Distributed
CLARKE E. M., GRUMBEG O., HIRASHI H., JHA S., LONG D. E., McMILLAN K. L. AND NESS
L. A. [1993], Verification of the Futurebus+ cache coherence protocol, in L. Claesen, ed.,
‘Proc. 11th Int. Symp. on Computer Hardware Description Languages and their Applications’,
North-Holland.
CLARKE E. M., GRUMBEG O. AND JHA S. [1995], Parametrized networks, in S. Smolka and
I. Lee, eds, ‘Proc. 6th Int. Conf. on Concurrency Theory (CONCUR ’95)’, Vol. 962 of LNCS,
Springer.
CLARKE E. M., GRUMBEG O. AND LONG D. E. [1993], Model checking, in M. Broy, ed., ‘De-
CLARKE E. M., GRUMBEG O. AND LONG D. E. [1994a], ‘Model checking and abstraction’, ACM
Transactions on Programming Languages and Systems 16(5), 1512–1532, also in 19th ACM
POPL ’92.
CLARKE E. M., GRUMBEG O. AND LONG D. E. [1994b], Verification tools for finite-state con-
current systems, in J. W. de Bakker, W. P. de Roever and G. Rosenberg, eds, ‘A Decade of
CLARKE E. M., GRUMBEG O., McMILLAN K. AND ZHAO X. [1994], Efficient generation of
counterexamples and witnesses in symbolic model checking, Technical Report CMU-CS-94–
204, Carnegie Mellon University, Pittsburgh.
CLARKE E. M., GRUMBEG O., MINEA M. AND PELED D. [1999], ‘State space reductions using
CLARKE E. M., GRUMBEG O. AND PELED D. [1999], Model Checking, MIT Press, Boston, MA.

Cousot P. and Cousot R. [1977], Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints, in 'Proc. 4th Ann. ACM Symp. on Principles of Programming Languages (POPL '77)'.

Cousot P. and Cousot R. [1979], Systematic design of program analysis frameworks, in 'Proc. 6th Ann. ACM Symp. on Principles of Programming Languages (POPL '79)'.

Dam M. [1994], 'CTL* and ECTL* as fragments of the modal μ-calculus', Theoretical Computer Science 126, 77–96.

Emerson E. A. and Lei C. L. [1986], Efficient model checking in fragments of the propositional μ-calculus, in ’Proc. 1st Symp. on Logic in Computer Science (LICS ’86)’, Boston, Mass.

FRANZECZ N. [1986], Fairness Text and Monographs in Computer Science, Springer.

FUJ H., OOTOMO G. AND HOMI C. [1993], Interleaving based variable ordering methods for ordered binary decision diagrams, in Proc. Int. Conf. on Computer Aided Design (ICCAD '93), IEEE.

GRUMBACH O. AND LONG D. E. [1994], ‘Model checking and modular verification’, ACM Transactions on Programming Languages and Systems 16, 843-872.

HOPCROFT J. E. AND ULLMAN J. D. [1979], Introduction to Automata Theory, Languages, and Computation, Addison-Wesley.

IMMERMAN N. [1986], 'Relational queries computable in polynomial time', Information and Control 68, 86–104.

JANIN D. AND WALUKIEWICZ I. [1990], On the expressive completeness of the propositional \(\mu \)-calculus with respect to monadic second order logic, in 'Proc. 7th Int. Conf. on Concurrency Theory (CONCUR '90)', Vol. 1119 of LNCS, Springer, Pisa, Italy.

JOSKO B. [1993], 'Modular specification and verification of reactive systems', Habilitationsschrift, University of Oldenburg.

KIMURA S. [1995], Residue BDD and its application to the verification of arithmetic circuits, in 'Proc. 32nd Int. Design Automation Conference [DAC '95]'.

KINDRED D. AND WINE J. M. [1996], Fast, automatic checking of security protocols, in 'USENIX 2nd Workshop on Electronic Commerce'.

KOEZEN D. [1983], 'Results on the propositional \(\mu \)-calculus', Theoretical Computer Science 27, 333–354.

KOEZEN D. AND PARSHI R. [1983], A decision procedure for the propositional \(\mu \)-calculus, in 'Proc. Int. Symp. Logic of Programs'.

KRÖGER F. [1987], Temporal logic of Programs, number 8 in 'EATCS monographs on TCS', Springer.

Park D. M. [1974], Finiteness is mu-indefinable, Theory of Computation Report 3, University of Warwick.
Prior A. N. [1967], Time and Modality, Oxford University Press.
Quelle J. P. and Saks J. [1981], Specification and verification of concurrent systems in CESAR, in 'Proc. 5th Int. Symp. on Programming'.
Quelle J. P. and Saks J. [1982], Fairness and related properties in transition systems, Technical Report 202, IMAG.
Rescher N. and Urquhart A. [1971], *Temporal Logic*, Springer.
Segerberg K. [1971], An essay in classical modal logic, Technical Report Filosofiska Studier 13, Department of Philosophy, University of Uppsala.

van Benthem J. [1983], Modal Logic and Classical Logic, Bibliopolis, Naples.

Wolper P. [1982], Specification and synthesis of communicating processes using an extended temporal logic, in 'Proc. 9th Int. Symp. on Principles of Programming Languages (POPL '82)', Albuquerque, pp. 20–33.

Wolper P. [1983], 'Temporal logic can be more expressive', Information and Control 56(1–2), 72–99.

Wolper P. [1986], Expressing interesting properties of programs in propositional temporal logic, in 'Proc. 13th ACM Symp. on Principles of Programming Languages (POPL '86)'.

List of symbols used in this chapter

Syntactic categories

\(\mathcal{P} \) Propositions, Predicates \{p, on, buffer_empty, \ldots\} .. 1374
\(\mathcal{R} \) Relations \{R, a, b, a_1, \ldots\}; \(\mathcal{R}^+ \triangleq \mathcal{R} \cup \{<, <, =\} \) 1375
\(\mathcal{T} \) Time variables \{t, t_1, \ldots\} ... 1375
\(\mathcal{Q} \) Proposition variables \{q, p, \ldots\} ... 1390

Operators

\(\bot, \rightarrow \) basic boolean operators ... 1374
\(\top, \lor, \land, \leftrightarrow \) derived boolean operators .. 1374
\(\& \) Conjunction \((\varphi_1 \land \ldots \land \varphi_n)\) of the finite set \(\Phi = \{\varphi_1, \ldots, \varphi_n\}\) 1422
\([R] \) Multi-modal box, basic ML-operator ... 1376
\([\neg R] \) Multi-modal box, \([\neg R] \varphi \triangleq \neg (R) \neg \varphi \) .. 1376
\(\text{N} \) next, \(\text{N} \varphi \triangleq (\bot \text{U}\varphi) \) (i.e., \(\text{N} \equiv \langle \rangle \)) .. 1377
\(\text{N} \) weak next, \(\text{N} \varphi \triangleq \neg \text{N}\neg \varphi \) (i.e., \(\text{N} \equiv [\langle \rangle] \)) 1377
\(F^+ \) sometime, \(F^+ \varphi \triangleq (\top \text{U}\varphi) \) (i.e., \(F^+ \equiv \langle \rangle \)) 1377
\(G^+ \) always, \(G^+ \varphi \triangleq \neg F^+ \neg \varphi \) (i.e., \(F^+ \equiv [\langle \rangle] \)) 1377
\(F^* \) reflexive sometime, \(F^* \varphi \triangleq (\varphi \lor F^* \varphi) = (\top \text{U}\varphi) \) (i.e., \(F^* \equiv \langle \rangle \)) 1377
\(G^* \) reflexive always, \(G^* \varphi \triangleq (\varphi \land G^+ \varphi) = \neg F^+ \neg \varphi \) (i.e., \(F^* \equiv [\langle \rangle] \)) 1377
\(\text{U}^+ \) linear until, basic LTL operator ... 1378
\(\text{U}^* \) reflexive until, \((\varphi \text{U}^* \psi) \triangleq (\psi \lor \varphi \land (\varphi \text{U}^* \psi)) \) 1379
\(\text{U}^- \) linear since, basic LTL operator ... 1380
\(F^-, G^- \) temporal past operators ... 1380
\(F^t \) temporal existential operator, \(F^t \varphi \triangleq (F^t \varphi \lor F^\varphi) \) 1380
\(G^t \) temporal universal operator, \(G^t \varphi \triangleq \neg F^t \neg \varphi \equiv (G^* \varphi \land G^+ \varphi) \ldots 1380
\(A \text{U}^+ \) forall-until, basic CTL operator ... 1386
\(E \text{U}^+ \) exists-until, basic CTL operator ... 1386
\(E \text{X} \) exists-next ... 1387
\(A \text{N} \) for all next .. 1387
\(E \text{F}^t \) exists-future ... 1386
\(A \text{F}^t \) forall-future ... 1386
\(E \text{G}^+ \) exists-globally .. 1386
\(A \text{G}^+ \) forall-globally .. 1386
\(E \text{F}^t \) reflexive exists-future, \(E \text{F}^t \varphi \triangleq (\psi \lor \text{EF}^t \psi) \) ... 1386
\(A \text{G}^+ \) reflexive forall-globally, \(A \text{G}^+ \varphi \triangleq \varphi \land A \text{G}^t \varphi \) 1386
\(\nu \) maximization (greatest fixpoint) operator ... 1392
\(\mu \) minimization (least fixpoint) operator, \(\mu q \varphi \triangleq \neg \mu q \neg (\varphi \{q := \neg q\}) \) 1392
Logics

PL Propositional logic, e.g., $(\bot \rightarrow p)$... 1374
FOL First order logic, e.g., $\exists t (R(t, t') \land p(t))$.. 1375
ML Multi-modal logic, e.g., $(R) p$... 1376
LTL Linear temporal logic, e.g., $(p U^+ (q U^- p))$... 1380
CTL Computation tree logic, e.g., $A F^{+} A (E X p U^{+} E F^{+} p)$ 1386
ACTL All-fragment of CTL ... 1411
CTL* Extended CTL, e.g., $E (G F^{+} p)$... 1388
qTL Quantified temporal logic, e.g., $\exists q (p U^+ q)$.. 1390
MSOL Monadic second order logic, e.g., $\exists q \forall t (p(t) \rightarrow q(t))$ 1390
μTL Modal μ-calculus, e.g., $\mu q (p \lor R q)$... 1392

Semantical notions

\triangleq Equal by definition
U Universe of points in time .. 1374,1375,1376
I Interpretation of relations and propositions .. 1374,1375,1376
v Valuation of logical variables .. 1375,1390
w Point ... 1376
M Model $M \triangleq (U, I, v)$ or $M \triangleq (U, I, w)$ or $M \triangleq (S, I, v)$ 1375,1376,1480
F Frame $F \triangleq (U, I)$... 1376
L Label of a point, $L(w) \triangleq \{ p \mid w \in I(p) \}$.. 1397
true, false Truth values ... 1374
$0, 1, 2, \ldots$ (Binary) Domain elements, Constant symbols 1467
\models Validation relation, language containment ... 1375,1404
\models_1 Following relation, semantical consequence ... 1422
\vdash Derivation relation, syntactical consequence ... 1423
R Accessibility relation $(R \in R)$... 1375
\prec Transition relation; $I(\prec) \triangleq \bigcup I(R) \mid R \in R$ 1375
$< \prec$ Transitive closure; $I(< \prec) \triangleq I(\prec)^*$... 1375
φ^I Denotation of a formula; $\varphi^I \triangleq \{ w \mid (U, I, w) \models \varphi \}$ 1394
\sqsubseteq Submodel relation .. 1409
\models_L Simulation relation .. 1409
\equiv Bisimulation relation ... 1414
\equiv Equivalence ... 1420
\equiv_L Equivalence with respect to logic L .. 1415
$\varphi(q := \psi)$ Replacement of free variable q in φ by ψ 1381
Index

A
- abstract BDDs 1494
- abstraction 1409
- abstraction function 1491
- acceptance condition 1399
- accepting path 1449
- accessibility relation 1375
- admissible atom 1448
- algebra 1479
- always operator 1377
- ample set 1483
- assume-guarantee 1408
- asynchronous communication 1458
- asynchronous execution 1457

B
- Büchi automaton 1308
- BDD 1468
- binary decision diagram 1468
- binary encoding 1467
- bisimulation 1414
- buffer overflow 1464

C
- cache coherence 1370
- canonical model 1424
- closed leaf 1430
- combinatorial search 1459
- completed tableau 1439
- completeness 1423
- of multimodal logic 1424
- of transitive closure 1427
- compositionality 1497
- computation tree logic 1386
- connectedness 1306
- consequence relations 1421
- consistency 1424
- correspondence theory 1426
- current point 1376

D
- decision procedures 1432
- for branching time 1432
- for natural models 1436
- for transitive closure 1434
- decision tree 1469
- decomposition of properties 1405
- deduction theorem 1428
- defined language 1397
- denotation 1480
- depth first search 1450
- derivation 1423
- derivation rule 1422
- deterministic automaton 1400
- deterministic model 1410
- domain 1459, 1479
- domain name 1479

E
- Ehrenfeucht–Fraïssé games 1418
- elementary equivalence 1415
- elementary net 1458
- equality 1375
- equivalence reduction 1420
- eventuality 1432
- expressive completeness 1381
- expressiveness 1417
- extended sub-formula 1429

F
- fair path 1447
- fair transition system 1308
- finitary transition system 1406
- finitely maximal set 1429
- first order logic 1375
- first order variable 1375
- fixed point 1393
- frame 1376, 1480
- functional system 1369
- future formula 1383
- future operator 1377

G
- generated language 1403
- generated submodel 1409
- generated word 1403
- global model checking 1444
- global operator 1377

H
- Hilbert system 1422
- hybrid system 1457

I
- image finiteness 1406, 1412
induction rule 1428
initial atom 1448
initial state 1459
initial validity 1397, 1444
interleaving 1457
interpretation 1374, 1479
invariance 1431
inverse image calculation 1445

K

Knaster-Tarski theorem 1393, 1452
Kripke axiom (K) 1424
Kripke model 1376

L

labelling 1387
language containment 1408
language, ω-language 1397
linear temporal logic 1380
literal ... 1374
liveness property 1405
local model checking 1444
local validity 1423
logic ... 1421
first order 1375
fixed point 1392
modal .. 1376
propositional 1374
quantified temporal 1390
second order 1390
temporal 1378
logical spectrum 1469
loop condition 1443

M

marking of a net 1449
maximal consistent set 1424
maximal path 1386
modal box formula 1410
modal logic 1376
model ... 1390
first order 1375
Kripke .. 1376
natural ... 1382
relational 1480
tree ... 1386
model checking 1390
for μ-calculus 1452
for CTL .. 1445
for linear time 1448
for modal logic 1445
symbolic 1467, 1476, 1478
under fairness 1447
monotonic formulas 1393
multi-terminal BDDs 1502

N

natural model 1382
necessitation rule (N) 1424
nexttime operator 1377

O

open leaf 1439, 1449
ordered tree form 1469

P

p-morphism 1414
Paige-Tarjan algorithm 1421
parallel transition system 1458
partial order method 1483
partition refinement 1420
past formula 1383
past operator 1380
path .. 1386
persistent set 1486
Petri net 1458
point .. 1375
positive formula 1394, 1479
pre-state 1440
predicate 1375
predicate transformer 1394
probabilistic systems 1502
program variable 1459
property .. 1390, 1404
proposition 1374
proposition variable 1390
propositional μ-calculus 1392
propositional formula 1374
propositional logic 1374

Q

quantified temporal logic 1390

R

reachability relation 1375
reactive system 1369
real concurrency 1484
real time system 1501
recurrence set 1398
recursion axiom 1428
regular expression 1398
relation symbol 1479
relation term 1479
representative interleaving 1484

S

safety property 1405
SCC ... 1442
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>second order logic</td>
<td>1300</td>
</tr>
<tr>
<td>security protocols</td>
<td>1503</td>
</tr>
<tr>
<td>self-fulfilling SCC</td>
<td>1450</td>
</tr>
<tr>
<td>separation</td>
<td>1383</td>
</tr>
<tr>
<td>sequence validity</td>
<td>1388</td>
</tr>
<tr>
<td>Shannon expansion</td>
<td>1469</td>
</tr>
<tr>
<td>shared variables program</td>
<td>1459</td>
</tr>
<tr>
<td>signature</td>
<td>1470</td>
</tr>
<tr>
<td>simulation relation</td>
<td>1409</td>
</tr>
<tr>
<td>sleep set</td>
<td>1483</td>
</tr>
<tr>
<td>sometime operator</td>
<td>1377</td>
</tr>
<tr>
<td>soundness</td>
<td>1423</td>
</tr>
<tr>
<td>specification</td>
<td>1369</td>
</tr>
<tr>
<td>automaton</td>
<td>1402</td>
</tr>
<tr>
<td>examples</td>
<td>1463</td>
</tr>
<tr>
<td>logical</td>
<td>1373</td>
</tr>
<tr>
<td>stable partition</td>
<td>1420</td>
</tr>
<tr>
<td>standard translation</td>
<td>1381</td>
</tr>
<tr>
<td>state</td>
<td>1430</td>
</tr>
<tr>
<td>state explosion</td>
<td>1370</td>
</tr>
<tr>
<td>strongly connected component</td>
<td>1442</td>
</tr>
<tr>
<td>structure</td>
<td>1479</td>
</tr>
<tr>
<td>stubborn set</td>
<td>1483</td>
</tr>
<tr>
<td>stuttering</td>
<td>1479</td>
</tr>
<tr>
<td>stuttering equivalence</td>
<td>1484</td>
</tr>
<tr>
<td>stuttering invariance</td>
<td>1484</td>
</tr>
<tr>
<td>submodel</td>
<td>1409</td>
</tr>
<tr>
<td>substitution</td>
<td>1381, 1392, 1422</td>
</tr>
<tr>
<td>successful tableau</td>
<td>1439</td>
</tr>
<tr>
<td>symbolic model checking</td>
<td>1467, 1469, 1476</td>
</tr>
<tr>
<td>for μ-calculus</td>
<td>1478</td>
</tr>
<tr>
<td>for CTL</td>
<td>1476</td>
</tr>
<tr>
<td>synchronous communication</td>
<td>1458</td>
</tr>
<tr>
<td>synchronous processing</td>
<td>1457</td>
</tr>
<tr>
<td>system</td>
<td>1369</td>
</tr>
<tr>
<td>functional</td>
<td>1409</td>
</tr>
<tr>
<td>reactive</td>
<td>1369</td>
</tr>
</tbody>
</table>

U
- unfolding 1440
- uniform component 1420
- univalence axiom (U) 1426
- universal validity 1377, 1423, 1444
- universe 1375
- until operator 1378

V
- variable
 - first order 1375
 - free 1381
 - individual 1479
 - program 1459
 - proposition 1390, 1422
 - relation 1479
- variable valuation 1375, 1480

W
- weak completeness 1428
- weakly fair transition system 1398
- word, ω-word 1397

T
- tableau 1439
- Tarjan’s SCC algorithm 1450
- temporal logic 1378
- terminal point 1378
- testing 1408
- theorem proving 1497
- theory 1421
- transition relation 1375, 1459
- transition system 1398, 1458
- translation between logics 1381, 1390
- tree model 1386
- tree validity 1388
- truth lemma 1425
- type 1479