SS 2017
Software Verification
Wrap Up

Prof. Dr. Holger Schlingloff ¹,²
Dr. Esteban Pavese ¹

(1) Institut für Informatik der Humboldt Universität
(2) Fraunhofer Institut für offene Kommunikationssysteme FOKUS
Recap

- What is the idea of bounded model checking?
- How to code the transition relation in PL?
- How to describe maximal paths in a model?
- How to translate temporal formulas into PL?
- How to construct a variable assignment?
- What is the diameter of a model? How can it be determined?
- What else needs to be considered for model checking of (C, Java, Python, ...) programs?
What has been discussed

• In this class, we learned about
 ▪ propositional, predicate, modal logic
 ▪ models and relations between models
 ▪ linear and branching temporal logics
 ▪ specification of safety and liveness
 ▪ model checking by depth-first search
 ▪ symbolic model checking with BDDs
 ▪ timed automata and TCTL model checking
 ▪ probabilistic systems and logics
 ▪ model checking of sequential software
 ▪ parallelism and partial order reductions
 ▪ bounded model checking and applications

• Thanks to Esteban, we were completely in time!
What we have learned

• Thanks for the active participation
 ▪ and thanks for answering all my questions 😊

• For the exercises, we all have learned a lot
 ▪ the world is changing fast

• You now have some solid knowledge on software verification by model checking
 ▪ formal background
 ▪ formalization of specifications
 ▪ underlying algorithms, and
 ▪ some tools (established and experimental)

• You also saw some pointers to further topics
 ▪ advanced
 ▪ applied
Where is this Knowledge Useful?

• Industry
 ▪ safety-critical systems (e.g., train control)
 ▪ “formal thinking”, avoiding errors before they are made (“certified system verifier”)
 ▪ dealing with advanced SE tools

• Academia
 ▪ improvement of current tools, new tools
 ▪ usability and capability enhancement, e.g., combination with interactive verification
 ▪ main challenge: applicability to industrial-sized systems
Typical Projects

- Current industrial projects in this area
 - Modelling correctness of autonomous transport robots and self-driving cars
 - Correctness of future internet middleware
 - Enhancing the FRAMA-C verification environment
 - Safety and security in collaborative systems
 - Verification and testing of medical devices
 - ...

- If you are looking for a bachelor or master’s thesis, or if you are looking for a student’s job, just drop me a note!
Questions and Answers

• Q: date for recap session? A: 7.9.2017
• Q: How is the exam? A: 😊