SS 2017
Software Verification
TCTL Model Checking

Prof. Dr. Holger Schlingloff\(^1,2\)
Dr. Esteban Pavese\(^1\)

(1) Institut für Informatik der Humboldt Universität
(2) Fraunhofer Institut für offene Kommunikationssysteme FOKUS
Timed CTL Syntax

- TCTL syntax is very similar to CTL

\[\phi ::= \text{true} | \text{ap} | \text{cc} | \phi \land \phi | \neg \phi | \exists \phi | \forall \psi \]

\[\psi ::= \phi U^I \phi \]

- \(\phi \) formulae are *state* formulae
- \(\psi \) formulae are *path* formulae
- Note 1: Interval I must be natural-bounded
- Note 2: no X operator. Why?
Timed CTL Semantics

\((s, v) \models true \)

\((s, v) \models a \) \iff \(a \in L(s) \)

\((s, v) \models cc \) \iff \(v \models cc \)

\((s, v) \models \neg \phi \) \iff \(\neg((s, v) \models \phi) \)

\((s, v) \models \phi_1 \land \phi_2 \) \iff \((s, v) \models \phi_1 \land (s, v) \models \phi_2 \)

\((s, v) \models \exists \phi \) \iff \(\pi \models \phi \) for some (time-divergent) path \(\pi \) from \(s \)

\((s, v) \models \forall \phi \) \iff \(\pi \models \phi \) for every (time-divergent) path \(\pi \) from \(s \)

This should not be surprising. It is exactly the same as for CTL
Timed CTL Semantics

• Until semantics are a bit different

• TA paths can be written as

\[s_0 \xrightarrow{d_0} s_1 \xrightarrow{d_1} s_2 \xrightarrow{d_2} s_3 \xrightarrow{d_3} s_4 \ldots \]

• 0-delay denotes a location change
Timed CTL Semantics

\[\pi \models \phi \mathcal{U}^I \psi \iff \exists \ i \geq 0 \cdot s_i + d \models \phi \ (d \in [0, d_i]) \text{ and } \]

\[1) \quad \sum_{j=0}^{i-1} d_k + d \in I \]

or, there is a state in the trace such that a delay on that state

- satisfies \(\psi \)
- the total elapsed time is in \(I \)
Timed CTL Semantics

\[\pi \models \phi U^I \psi \iff \exists i \geq 0 \cdot s_i + d \models \phi \ (d \in [0, d_i]) \text{ and } \]

\[\forall k \leq i \ s_k + d' \models (\phi \lor \psi) \] for every \(d' \in [0, d_k] \) and

\[\sum_{j=0}^{k-1} d_j + d' \leq \sum_{j=0}^{i-1} d_j + d \]

before that point, \((\phi \lor \psi)\) must hold at every time
Timed CTL Semantics for TA

- For a formula ϕ and timed automata TA, the satisfaction state set is given by
 $$\text{Sat}(\phi) = \{(s, v) \in (S \times V(C)) | (s, v) \models \phi\}$$
- ... and a timed automaton is said to satisfy the formula if all initial states satisfy it
 $$TA \models \phi \text{ if and only if } (s_0, v_0) \in \text{Sat}(\phi)$$
- ... it does look a lot like CTL model checking
- in fact...

$$TA \models_{TCTL} \forall \phi U [0, \infty) \psi \sim TA \models_{CTL} \forall \phi U \psi$$
Timed CTL semantics for TA

- The transition system for a FA is the same FA
- ...with variables, we need to transform it
 - ... but we still get a FA
- In the case of timed automata, the transition system does NOT correspond to a finite automaton
- The transition system of a TA is uncountably infinite
Making the transition system finite

Uncountably infinite states to check!
Making the transition system finite

IDEA – Partition the *uncountably infinite* state space into *finite* portions

(SPOILER) It can be done! And the partition is a *bisimulation*
Making the transition system finite

- The outline of the idea is
 - Obtain the finite partition - the *region transition system*
 - Transform the property into an “equivalent” CTL formula
 - CTL-check the new formula on the *region* transition system
 - ...and if all goes well, the procedure is equivalent to checking TCTL on the original model
Making the transition system finite

- First step
 - eliminate timing constraints in the formula to be checked
 - Introduce a new clock to the system

\[
(s, v) \models \forall \phi \mathcal{U}^I \psi \quad \iff \quad (s, v\{z := 0\}) \models \forall((\phi \vee \psi) \mathcal{U}(z \in I \land \psi))
\]

- (same with existential)
- we end up with CTL properties!
Making the transition system finite

• Second step
 ▪ construct a timing bisimulation such that when
 \[(s, v) \cong (s', v')\]
 ▪ then:

 \[s = s' \land v \cong v'\]

\[v \cong v' \implies \forall cc \in CC(TA) \cup CC(\phi) \cdot v \models cc \iff v' \models cc\]

\[\Pi(s, v) \cong \Pi(s', v')\]

and such that the bisimulation is finite
Making the transition system finite

- Third step
 - recall clock conditions have *natural* bounds. Then,

\[
v'(x) < c \iff \lfloor v'(x) \rfloor < c
\]

\[
v'(x) \leq c \iff \lfloor v'(x) \rfloor < c \lor (\lfloor v'(x) \rfloor = c) \land \text{frac}(v'(x)) = 0
\]

Therefore the bisimulation must satisfy that (1)

\[
\lfloor v(x) \rfloor = \lfloor v'(x) \rfloor \land \text{frac}(v(x)) = 0 \iff \text{frac}(v'(x)) = 0
\]
Making the transition system finite

These conditions make the bisimulation at most *enumerable*. Finiteness is obtained by bounding via the *largest constant* in the TA or property.
Making the transition system finite

• Fourth step
 - the conditions are still too coarse

The “closest” clock will enable the transition first
Making the transition system finite

• Fourth step
 - given two valuations satisfying (1), we need to consider the ordering between clocks in the same zone
 - Valuations in the same region agree on integral part
 - Now they must agree in ordering

\[
\frac{v(x)}{v(y)} \leq \frac{v'(x)}{v'(y)}
\]
Making the transition system finite

• Fourth step

\[3 < x < 4, 1 < y < 2, x - y < 2 \]

\[-3 < x < 4, 1 < y < 2, x - y = 2 \]

\[3 < x < 4, 1 < y < 2, x - y > 2 \]
How many regions?

- Now we have a bisimulation generating a finite number of equivalence
- but how many exactly?

Let C = number of clocks, c_x maximum constant comparing clock x, then the number of clock regions is bounded by

$$|C|! \times \prod_{x \in C} c_x$$

$$|C|! \times 2^{|C|-1} \times \prod_{x \in C} 2(c_x + 1)$$
Building the transition system

- Each state of the real time transition system consists of a discrete location l and a clock region r
- We will note $[v]$ as the region containing v, that is, all other v' such that $v \equiv v'$
- Since action transitions take no time, they do not change the clock region
 - except for resets!
- Delay transitions do not change the location
 - ...but may traverse many clock regions
- Once a clock reaches its maximum bound, further delays do *nothing*
Building the transition system

- Clock resets yield valid regions
- Given a zone \(r \), we can define \(\text{reset}(D, r) \) as the reset of clocks in \(D \)
 \[
 \text{reset}(D, r) = \{ v[c := 0] | v \in r, c \in D \}
 \]
- Since the region distribution is an equivalence
 \[
 v \equiv v' \implies v[c := 0] \equiv v'[c := 0]
 \]
- and therefore
 \[
 r \equiv r' \implies \text{reset}(D, r) \equiv \text{reset}(D, r')
 \]
Building the transition system

- We can now define the action transitions on the region transition system

\[
<l, r> \xrightarrow{a,D} <l', \text{reset}(D,r)> \in R_{RTS}
\]

\[
\iff
\]

\[
l \xrightarrow{a,D} l' \in R_{TA}
\]
Building the transition system

- Delay transitions need to be decomposed so that every delay traverses every region in between

\[\langle l, r \rangle \xrightarrow{d} \langle l, r' \rangle \]

whenever:

1. \(r = r_\infty \) (the unbounded region) and \(r = r' \); or

2. \(r \neq r_\infty, r \neq r' \) and \(\forall v \in r \)

\[\exists d \in \mathbb{R}_{>0} (v + d \in r' \land \forall d' \in [0, d] v + d \in (r \cup r')) \]
Example!

\[x \geq 2 : \alpha \]

\[\text{reset}(x) \]

Figure 9.23: Region transition system for a simple timed automaton with \(\Phi = \text{true} \).

Figure 9.24: Region transition system for a simple timed automaton with \(\Phi \text{ with } c \).
TCTL checking algorithm

\[R := RTS(TA \oplus z, \Phi); \]

(* with state space \(S_{rts} \) and labeling \(L_{rts} \) *)

for all \(i \leq |\Phi| \) do

\[\text{for all } \Psi \in \text{Sub}(\Phi) \text{ with } |\Psi| = i \text{ do} \]

switch(\(\Psi \)):

true : \(\text{Sat}_R(\Psi) := S_{rts}; \)

a : \(\text{Sat}_R(\Psi) := \{ s \in S_{rts} \mid a \in L_{rts}(s) \}; \)

\(\Psi_1 \land \Psi_2 \) : \(\text{Sat}_R(\Psi) := \{ s \in S_{rts} \mid \{a_{\Psi_1}, a_{\Psi_2}\} \subseteq L_{rts}(s) \}; \)

\(\neg \Psi' \) : \(\text{Sat}_R(\Psi) := \{ s \in S_{rts} \mid a_{\Psi'} \notin L_{rts}(s) \}; \)

\(\exists(\Psi_1 U J \Psi_2) \) : \(\text{Sat}_R(\Psi) := \text{Sat}_{CTL}\left(\exists((a_{\Psi_1} \lor a_{\Psi_2}) U ((z \in J) \land a_{\Psi_2})) \right); \)

\(\forall(\Psi_1 U J \Psi_2) \) : \(\text{Sat}_R(\Psi) := \text{Sat}_{CTL}\left(\forall((a_{\Psi_1} \lor a_{\Psi_2}) U ((z \in J) \land a_{\Psi_2})) \right); \)

end switch

(* add \(a_{\Psi} \) to the labeling of all state regions where \(\Psi \) holds *)

forall \(s \in S_{rts} \) with \(s\{z := 0\} \in \text{Sat}_R(\Psi) \) do \(L_{rts}(s) := L_{rts}(s) \cup \{a_{\Psi}\} \) od;

od

dod
if \(I_{rts} \subseteq \text{Sat}_R(\Phi) \) then return “yes” else return “no” fi
Some more remarks

- We are forgetting location invariants!
 - Not to worry. We simply intersect the region corresponding to the invariant
 - Intersection of regions yields a region
 - Unions will make things harder later on

- We are forgetting nested Until properties!
 - easy! just add a fresh clock for each nested U!
 - but clock size grows linearly!
 - we can do it with just one clock though
Some more remarks

- TCTL model checking is in PSPACE-complete
- Model checking of CTL or LTL over TA is in PSPACE-complete

- Satisfiability of TCTL is undecidable
- Is TLTL a thing?
 - Model checking for Timed LTL is undecidable
Implementing the monster
Implementing the monster

- The state explosion problem in verification requires efficient data structures and algorithms
 - We’ve already seen BDDs for symbolic representation of discrete states
 - Also on-the-fly construction of the RTS
- What about clock regions?
 - We can still use BDDs for discrete states
 - New structures appear for handling clock regions symbolically
Difference Bound Matrix (DBM)

• First, we need a reference point
 ▪ Let’s add a constant clock 0 (which naturally is set to zero all the time)

• Now all clock constraints can be written as
 \[x - y \leq c, \leq \in \{<, \leq\} \]

• We have at most \((|C| + 1)^2\) constraints (avoiding redundant ones)

• Any region can be encoded like this
Difference Bound Matrix

• Rows and columns represent clocks (including the fixed clock 0)
• A region encoded in DBM Z satisfies
 $$Z(i, j) = (\prec, c) \iff x_i - x_j < c$$
• Special note for unbounded region, it can be that $Z(i,j) = (\prec, \text{infinity})$ in this case
Example

\[(x_1 \geq 3) \land (x_2 \leq 5) \land (x_1 - x_2 \leq 4)\]

Is this the only possible valid representation?
Example

\[(x_1 \geq 3) \land (x_2 \leq 5) \land (x_1 - x_2 \leq 4)\]

\[\begin{pmatrix}
 x_0 \\
 x_1 \\
 x_2
\end{pmatrix} = \begin{pmatrix}
 +\infty \\
 +\infty \\
 5
\end{pmatrix} \begin{pmatrix}
 +\infty \\
 -3 \\
 4
\end{pmatrix} + \begin{pmatrix}
 +\infty \\
 +\infty \\
 +\infty
\end{pmatrix}

Is this only possible valid representation?
Clearly not!
Is there a *best representation?*
Canonical DBM

- Fortunately, each DBM has a canonical form that is, a standard upon we can define all representations.

- A DBM is in canonical form if strengthening a condition results in reducing the represented area.
Canonical DBM

- Every zone has a canonical form, and this canonical form is unique
- Obtaining the canonical DBM is equivalent to finding the least difference between clocks
- ... or equivalently, finding the shortest (time) distance between them
- so it must hold that a DBM is canonical iff

\[Z(i, j) \leq Z(i, k) + Z(k, j) \quad \forall x_i, x_j, x_k \]
Canonical DBM

- Hmm... that *really* rings a bell...
Canonical DBM

- Hmm... that *really* rings a bell...
- The problem of making a DBM canonical is equivalent to finding *all—shortest paths*
- Use a standard algorithm like Floyd-Warshall, complexity in $O(|C + 1|^3)$
- Improve efficiency by maintaining canonicity throughout all operations during region transition graph construction
Reduced canonical DBM

- Further memory consumption improvement can be made
- We already know this to be true
 \[Z(i, j) \leq Z(i, k) + Z(k, j) \forall x_i, x_j, x_k \]
- but what if for some \(i, j, k \)
 \[Z(i, j) = Z(i, k) + Z(k, j) \]
- !! Now \(Z(i,j) \) is redundant and can be dropped
DBM operations

- Non-emptiness check (satisfiability)
 - check for negative cycles
 - or check for
 \[x_i - x_j \leq c \text{ and } x_j - x_i \leq' c' \text{ and } (c, \leq) < (c', \leq') \]

- Zone inclusion test
 - check matrices element by element
 \[Z \subseteq Z' \iff Z(i, j) \leq Z'(i, j) \forall x_i, x_j \]

- Constraint satisfaction
 - add the constraint + non-emptiness check
DBM operations

• Future successors
 ▪ move all single clock upper bounds to infinity
 ▪ preserves canonicity!

• Past successors
 ▪ important for on-the-fly backwards model checking
 ▪ Set single clock lower bounds to zero
 ▪ does not preserve canonicity
DBM operations

- **Intersection**
 - pick the lower bound for each element pair
 - re-canonization can be improved if few elements are modified

- **Reset**
 - resetting clock i yields $Z(i,j)=Z(0,j)$ and $Z(j,i)=Z(j,0)$
DBM Operations

- Union
 - required when coming back to a discrete location with a different clock region
 - Joining convex regions *does not* in general yield a convex region
 - DBMs can only represent convex areas, so...
 - use a list of DBMs
 - many other (failed) alternatives