SS 2017
Software Verification
LTL model checking continued

Prof. Dr. Holger Schlingloff 1,2
Dr. Esteban Pavese 1

(1) Institut für Informatik der Humboldt Universität
(2) Fraunhofer Institut für offene Kommunikationssysteme FOKUS
Recap

- Can you give a recursive characterization of $G^*(p \lor q)$?
- Consider an operator B^+ such that
 $$(\phi B^+\psi) \iff X(\phi \lor (\neg\psi \land (\phi B^+\psi)))$$
 Can you express B^+ in terms of U^+ and/or W^+?

- Can you give recursive characterizations of AG^+p and EG^+p?

- Can you give a Büchi-automaton for „finitely many a“?
- Can you give a deterministic Büchi-automaton for it?
- Can you prove that?
Back to the homeworks...

• **Theorem:** Büchi automata are more expressive than deterministic Büchi automata.

• **Proof:** Show that there is no deterministic BA accepting the language L of all ω-words which contain only finitely many a (Alphabet $\{a, b\}$)

• **Lemma:** For every dBA $A = (S, R, s_0, S_F, S_R)$ and every infinite input word $w=w_1w_2w_3...$ accepted by A there is a unique sequence of states $\sigma_w : \mathbb{N}_0 \to S$, such that $\sigma_w(0)=s_0$ and $(\sigma_w(i), w_{i+1}, \sigma_w(i+1)) \in R$, and for infinitely many indices i it holds that $\sigma_w(i) \in S_R$
Proof: BA not determinizable

Widerspruchsbeweis: Ann. es gibt ein BA $A = (S, \delta, \omega, s_0, F, \mathcal{R})$ mit $\mathcal{R} = \{a, b, \ldots\}$ und endlich vielen x.

Es gibt Sequenz $\omega = \omega_1 \omega_2 \ldots$ der a_k. Für ein $s \in \mathcal{S}$ gibt es unendlich viele Indexe i mit $s_i = s$.

Sei in der Liste solche i.

Betrachte Wort $\omega = b a b a b a b \ldots = b^i a^i b^i$.

Es gibt für ein $s \in \mathcal{S}$ unendlich viele Indices i mit $s_i = s$.

Sei ω das kleinste solche i mit $i > i_0$.

Betrachte Wort $\omega = b^i a^i b^i a^i$.

Sei $|\mathcal{S}| = m$.

Betrachte Wort $\omega_{i_0} = b^i a^i b^i a^i b^i a^i \ldots = b^i a^i$.

Beim Akzeptieren dieses Wortes kommt mindestens ein $s \in \mathcal{S}$ in "Anfangstel" mehrfach vor: $s_{i_0} = s_{i_1} = s_{i_2} = \ldots = s_{i_m} = s_{i_m}$.

Betrachte Wort $\omega_0 = \omega_{i_0}^{i_0} (\omega_{i_0}^{i_0} \omega_{i_0}^{i_0})^\omega$.

ω_0 enthält unendlich viele a's.

ω_0 wird von A akzeptiert.
Recap (continued)

- Can you give a recursive characterization of $G^*(p \lor q)$?
- Consider an operator B^+ such that
 $$(\phi B^+ \psi) \leftrightarrow X(\phi \lor (\neg \psi \land (\phi B^+ \psi)))$$
 Can you express B^+ in terms of U^+ and/or W^+?

- Can you give a Büchi-automaton for "finitely many a"?
- Can you give a deterministic Büchi-automaton for it?

- What is an atom in LTL modelchecking?
- What is the atom graph?
- How is it built?
Kripke structures

- Usually, model M is an LTS, FSM, Kripke-structure, or such
- $M \models \phi$ is read as „for all execution sequences σ of M it holds that $\sigma \models \phi$“
- How to check all execution sequences?
 - \Rightarrow depth-first search!

- given formula ϕ, define $SF(\phi)$ to be the set of all subformulas of ϕ
 (for reasons which will become clear later, we say that $X\phi$, $X\psi$ and $X(\phi U \psi)$ are subformulae of $(\phi U \psi)$)
- $m \subseteq SF(\phi)$ is propositionally consistent, if
 - not $m \models \bot$ (propositionally), e.g., not $(\psi \in m$ and $\neg \psi \in m)$
 - $\phi U \psi \in m$ iff $X\psi \in m$ or $X\phi \in m$ and $X(\phi U \psi) \in m$
- $atom a = (w, m)$, $w \subseteq P$ interpretation, $m \subseteq SF(\phi)$ prop. cons., $p \in m$ iff $p \in w$
- define an $atom graph$ as „$M \times \phi$“
Atom Graph

- an initial atom is any $a_0=(w_0,m_0)$, where w_0 is any initial state of M and m_0 is any propositionally consistent set s.t. $\phi \in m_0$
- $(w,m) \rightarrow (w',m')$ if
 - $(w,w') \in \Delta$
 - $\forall \psi \in m$ iff $\psi \in m'$
- atom graph can be constructed depth-first
- Example $\phi = G^+(p \lor q) = \neg (T U^+ \neg (p \lor q))$
 $SF(\phi) =$
- $M =$
Eventualities

- if \(m \) contains \((\phi U^+ \psi)\), some \(m' \) containing \(\psi \) must be reachable
- „reachable“ means „in the same strongly connected component“ (SCC)
- self-fulfilling SCC: for any \(\alpha = (w,m) \) and \((\phi U^+ \psi) \in m\) there is a reachable \(\alpha' = (w',m') \) and \(\psi \in m' \)

\[\Rightarrow \text{we have to decompose the atom graph into SCCs} \]

- Tarjan’s algorithm is a clever solution to this
- linear complexity (enumerates SCCs as they are encountered)
- overall complexity: \(|M| \times 2^{|\phi|} \)
- meaning: The model must be traversed only once
Tarjan’s algorithm

Tarjan's strongly connected components algorithm

From Wikipedia, the free encyclopedia

Tarjan's algorithm is an algorithm in graph theory for finding the strongly connected components of a graph. It runs in linear time, matching the time bound for alternative methods including Kosaraju's algorithm and the path-based strong component algorithm. Tarjan's Algorithm is named for its discoverer, Robert Tarjan.\(^1\)

Overview

The algorithm takes a directed graph as input, and produces a partition of the graph's vertices into the graph's strongly connected components. Each
