Chapter 6. Hennessy-Milner Logic with recursive definitions

Hernán Vanzetto

INRIA Nancy & LORIA, France

VINO 2011, Campo Tures, Italy

July 16, 2011
Syntactic

For an action $a \in Act$

$$F ::= tt \mid ff \mid F \land F \mid F \lor F \mid \langle a \rangle F \mid [a]F$$

where

- $\langle a \rangle F$ states that it is possible to perform action a and thereby (in the next state) satisfy F
- $[a]F$ states that no matter how a process performs action a, the state it reaches afterwards necessarily satisfy F
Hennessy-Milner Logic

Semantics

For each formula F, associate a set of states where the formula is valid. $\llbracket F \rrbracket \subseteq \text{Proc}$ is defined inductively by

1. $\llbracket \mathsf{tt} \rrbracket = \text{Proc}$
2. $\llbracket \mathsf{ff} \rrbracket = \emptyset$
3. $\llbracket F \land G \rrbracket = \llbracket F \rrbracket \cap \llbracket G \rrbracket$
4. $\llbracket F \lor G \rrbracket = \llbracket F \rrbracket \cup \llbracket G \rrbracket$
5. $\llbracket \langle a \rangle F \rrbracket = \langle \cdot a \cdot \rangle \llbracket F \rrbracket$
6. $\llbracket [a]F \rrbracket = \langle a \cdot \rangle \llbracket F \rrbracket$

where $\langle \cdot a \cdot \rangle$, $\langle a \cdot \rangle : 2^{\text{Proc}} \to 2^{\text{Proc}}$ are defined by

- $\langle \cdot a \cdot \rangle S = \{ p \in \text{Proc} \mid \exists p'. p \xrightarrow{a} p' \land p' \in S \}$
- $\langle a \cdot \rangle S = \{ p \in \text{Proc} \mid \forall p'. p \xrightarrow{a} p' \Rightarrow p' \in S \}$
Hennessy-Milner Logic

Temporal properties not expressible in HML

- Inv(F) iff all reachable states satisfy F
 \[
 Inv(F) = F \land [Act]F \land [Act][Act]F \land [Act][Act][Act]F \land \ldots \\
 = \bigwedge_{i \geq 0} [a]^i F
 \]

- Pos(F) iff there is a reachable state which satisfies F
 \[
 Pos(F) = F \lor \langle Act \rangle F \lor \langle Act \rangle \langle Act \rangle F \lor \langle Act \rangle \langle Act \rangle \langle Act \rangle F \lor \ldots \\
 = \bigvee_{i \geq 0} \langle a \rangle^i F
 \]

Problems

- infinite formulae cannot be expressed in HML
- infinite formulae are difficult to handle
Syntax

Formulae are given by the following abstract syntax

\[F ::= X \mid tt \mid ff \mid F \land F \mid F \lor F \mid \langle a \rangle F \mid [a]F \]

where \(a \in Act \), and \(X \) is a distinguished variable with a definition

- \(X^{\min} \equiv F_X \), or \(X^{\max} \equiv F_X \)

such that \(F_X \) is a formula of the logic which can contain \(X \).
Example:

\[X^{\min} = X \]

Any set of states \(S \) satisfies the set-equation \(X = X \). The least such set is \(\emptyset \).

Example:

\[X^{\max} = X \]

Any set of states \(S \) satisfies the set-equation \(X = X \). The greatest such set is \(Proc \).
HML with one recursively defined variable

Example: “A state can be reached where a cannot be executed”

$$X \leftarrow [a]ff \lor \langle Act \rangle X$$

The property is valid for the labelled transition system. The sets $\{1, 2\}$ and $\{0, 1, 2\}$ are solutions for the equation.

But what we intended to describe is the least solution!

$$X \overset{\text{min}}{=} [a]ff \lor \langle Act \rangle X$$
Example: “A state can be reached where a cannot be executed”

\[X \overset{\text{min}}{=} [a] ff \lor \langle Act \rangle X \]

The unique least solution for this equation is the set of states \emptyset. Hence the property is not valid for this labeled transition system.
HML with one recursively defined variable

Example: “In every reachable state an a-transition is possible”

\[X \equiv \langle a \rangle tt \land [\text{Act}]X \]

Solutions: \(\emptyset \), \{0\} and \{0, 1\}

What we intended to describe is the greatest solution!

\[X^{\text{max}} \equiv \langle a \rangle tt \lor [\text{Act}]X \]
HML with one recursively defined variable

Example: “In every reachable state an \(a \)-transition is possible”

\[
X \overset{\text{max}}{=} \langle a \rangle \top \land [\text{Act}]X
\]

The greatest solution for this equation is the set of states \(\{0\} \).
Thus property is not valid for the labeled transition system.
Example: “In all states reachable by a b-transition (0 or more), a
b-transition is possible”

$$X \overset{\text{max}}{=} \langle b \rangle tt \land [b]X$$

The greatest solution is $\{s_1, s_2, t_1\}$.
Formulas for the properties that cannot be expressed in HML:

- “the computer scientists never drinks coffee”
 \[X^{\text{max}} = \neg \left[\text{coffee} \right] \land [\text{Act}]X \]

- “the computer scientists always produces a publication after drinking wine”
 \[X^{\text{max}} = \left[\text{wine} \right] \left(\langle \text{pub} \rangle tt \land \neg [\text{Act}\\{\text{pub}\}] \right) \land [\text{Act}]X \]

- Inv(F)
 \[X^{\text{max}} = F \land [\text{Act}]X \]

- Pos(F)
 \[X^{\text{min}} = F \lor \langle \text{Act} \rangle X \]

If there’s more than one, which solution to choose? In general:

- min are used to express that something will happen sooner or later.
- max are used to express the invariance of some property during an execution or that something does not happen.
HML with one recursively defined variable

Semantics

- With each formula F associate a set of states for which
 \[[F] \subseteq Proc \]
 is satisfied.

- How to deal with recursion variable X?
 Make an assumption on states satisfied by X.

For every formula F we define a function $O_F : 2^{Proc} \rightarrow 2^{Proc}$ s.t.
- if S is the set of processes that satisfy X
- then $O_F(S)$ is the set of processes that satisfy F.
HML with one recursively defined variable. Semantics

Definition of $\mathcal{O}_F : 2^{\text{Proc}} \rightarrow 2^{\text{Proc}}$

For $S \subseteq \text{Proc}$:

- $\mathcal{O}_\times(S) = S$
- $\mathcal{O}_{tt}(S) = \text{Proc}$
- $\mathcal{O}_{ff}(S) = \emptyset$
- $\mathcal{O}_{F_1 \land F_2}(S) = \mathcal{O}_{F_1}(S) \cap \mathcal{O}_{F_2}(S)$
- $\mathcal{O}_{F_1 \lor F_2}(S) = \mathcal{O}_{F_1}(S) \cup \mathcal{O}_{F_2}(S)$
- $\mathcal{O}_{\langle a \rangle F}(S) = \langle a \rangle \mathcal{O}_F S$
- $\mathcal{O}_{[a] F}(S) = [a] \mathcal{O}_F S$
HML with one recursively defined variable. Semantics

\[\mathcal{O}_{\langle a \rangle} X(\{s\}) = \langle \cdot a \cdot \rangle \mathcal{O} X(\{s\}) = \langle \cdot a \cdot \rangle \{s\} = \{s_2\} \]

\[\mathcal{O}_{\langle a \rangle} X(\{s, s_1\}) = \langle \cdot a \cdot \rangle \mathcal{O} X(\{s, s_1\}) = \langle \cdot a \cdot \rangle \{s, s_1\} = \{s, s_2\} \]

\[\mathcal{O}_{[b]} X(\{s_1\}) = [\cdot b \cdot] \mathcal{O} X(\{s_1\}) = [\cdot b \cdot] \{s_1\} = \{s_1, s_2\} \]
We know that \((2^{\text{Proc}}, \subseteq)\) is a complete lattice and \(\mathcal{O}_F\) is monotonic, so \(\mathcal{O}_F\) has a unique least fixed point and a unique greatest fixed point (by Tarski's Fixed Point Theorem).

Semantics of formula \(F\)

1. \([tt] = \text{Proc}\)
2. \([ff] = \emptyset\)
3. \([F \land G] = [F] \cap [G]\)
4. \([F \lor G] = [F] \cup [G]\)
5. \([\langle a \rangle F] = \langle \cdot a \cdot \rangle [F]\)
6. \([\lbrack a \rbrack F] = [\cdot a \cdot][F]\)
7. If \(X \equiv F_X\) then \([X] = \bigcap\{S \subseteq \text{Proc} \mid S = \mathcal{O}_{F_X}(S)\}\)
8. If \(X \equiv F_X\) then \([X] = \bigcup\{S \subseteq \text{Proc} \mid S = \mathcal{O}_{F_X}(S)\}\)
HML with one recursively defined variable.

Notation

\[T, s \models F \quad \text{iff} \quad s \in [F] \]

Let \(\text{Proc} \) be a finite set.

Computing the solution of \(X^{\min} = F_X \)

There exists a natural number \(m > 0 \) such that \([X] = \mathcal{O}_{F_X}^m(\emptyset)\)

Computing the solution of \(X^{\max} = F_X \)

There exist a natural number \(M > 0 \) such that \([X] = \mathcal{O}_{F_X}^M(\text{Proc})\)
HML with one recursively defined variable

Example: \(X \overset{\text{min}}{=} [a]ff \lor \langle \text{Act} \rangle X \)

\[
\begin{align*}
\mathcal{O}_{F_X}(S) & = \mathcal{O}_{[a]ff}(S) \cup \mathcal{O}_{\langle \text{Act} \rangle X}(S) \\
& = \{ \cdot a \cdot \} \mathcal{O}_{ff}(S) \cup \langle \cdot \text{Act} \cdot \rangle \mathcal{O}_X(S) \\
& = \{ \cdot a \cdot \} \emptyset \cup \langle \cdot \text{Act} \cdot \rangle S \\
& = \{2\} \cup \langle \cdot \text{Act} \cdot \rangle S
\end{align*}
\]

1. \(\mathcal{O}_{F_X}(\emptyset) = \{2\} \cup \langle \cdot \text{Act} \cdot \rangle \emptyset = \{2\} \cup \emptyset = \{2\} \)
2. \(\mathcal{O}_{F_X}(\{2\}) = \{2\} \cup \langle \cdot \text{Act} \cdot \rangle \{2\} = \{2\} \cup \{0\} = \{0, 2\} \)
3. \(\mathcal{O}_{F_X}(\{0, 2\}) = \{2\} \cup \langle \cdot \text{Act} \cdot \rangle \{0, 2\} = \{2\} \cup \{0\} = \{0, 2\} \)
HML with one recursively defined variable

Example: \(X^{\text{max}} = \langle b \rangle tt \land [b]X \)

\[
\begin{align*}
\mathcal{O}_{F_X}(S) &= \mathcal{O}_{\langle b \rangle tt}(S) \cap \mathcal{O}_{[b]X}(S) \\
&= \langle \cdot b \cdot \rangle \mathcal{O}_{tt}(S) \cap [\cdot b \cdot] \mathcal{O}_{X}(S) \\
&= \langle \cdot b \cdot \rangle \text{Proc} \cap [\cdot b \cdot]S \\
&= \{s_1, s_2, t_1\} \cap [\cdot b \cdot]S
\end{align*}
\]

1. \(\mathcal{O}_{F_X}(\text{Proc}) = \{s_1, s_2, t_1\} \cap [\cdot b \cdot]\text{Proc} = \{s_1, s_2, t_1\} \cap \{s, s_1, s_2, t, t_1\} = \{s_1, s_2, t_1\} \)
2. \(\mathcal{O}_{F_X}(\{s_1, s_2, t_1\}) = \{s_1, s_2, t_1\} \cap [\cdot b \cdot]\{s_1, s_2, t_1\} = \{s_1, s_2, t_1\} \cap \{s, s_1, s_2, t, t_1\} = \{s_1, s_2, t_1\} \)
Some temporal properties. Safety and liveness

- **Safe**(F): formula F holds in all the transition sequence
 \[X^{\text{max}} = F \land ([\text{Act}]ff \lor \langle \text{Act} \rangle X) \]

- **Even**(F): eventually F will hold (in every execution)
 \[X^{\text{min}} = F \lor (\langle \text{Act} \rangle tt \land [\text{Act}]X) \]

- $F \cup^w G$ (weak until): F holds in all states until a state is reached where G holds (but maybe this will never happen!)
 \[X^{\text{max}} = G \lor (F \land [\text{Act}]X) \]

- $F \cup^s G$ (strong until): sooner or later G holds and, until then, F holds in all states traversed
 \[X^{\text{min}} = G \lor (F \land \langle \text{Act} \rangle tt \land [\text{Act}]X) \]

- Even(F) \equiv tt $\cup^s G$

- Inv(F) \equiv $F \cup^w ff$

Duality:
- \negInv(F) \equiv Pos($\neg F$)
- \negSafe(F) \equiv Even($\neg F$)
Mutually recursive equational systems

Multiple recursion variables: X_1, X_2, \ldots, X_n

\[
\begin{align*}
X_1 & \overset{\text{min/max}}{=} F_1(X_1, X_2, \ldots, X_n) \\
X_2 & \overset{\text{min/max}}{=} F_2(X_1, X_2, \ldots, X_n) \\
& \vdots \\
X_m & \overset{\text{min/max}}{=} F_m(X_1, X_2, \ldots, X_n)
\end{align*}
\]

where all equations are either lfp or all are gfp
and each $F_i(X_1, X_2, \ldots, X_n)$ is a formula generated by

\[
F ::= tt \mid ff \mid F \land F \mid F \lor F \mid \langle a \rangle F \mid [a]F \mid X_1 \mid X_2 \mid \ldots \mid X_n
\]
Mutually recursive equational systems

- A variable may depend on another variable

 “It is impossible to do two consecutive coin actions without a tea action in between”

 \[X^{\text{max}} = [\text{coin}] Y \land [tt] X \]
 \[Y^{\text{max}} = [\text{coin}] ff \land [\text{tea}] Y \]

- Variables may even depend on each other cyclicly

 \[X^{\text{max}} = [a] Y \]
 \[Y^{\text{max}} = \langle a \rangle X \]
Mutually recursive equational systems

Semantics of an equational systems

\[
\begin{align*}
X_1^{\min/\max} &= F_1(X_1, X_2, \ldots, X_n) \\
X_2^{\min/\max} &= F_2(X_1, X_2, \ldots, X_n) \\
&\vdots \\
X_m^{\min/\max} &= F_m(X_1, X_2, \ldots, X_n)
\end{align*}
\]

where all equations are either lfp or all are gfp.

- The semantics associates a set of states to each recursion variable
- The new domain is \(\mathcal{D} = (2^{Proc})^n \)
The pair \((\mathcal{D}, \sqsubseteq)\) with\[
(S_1, \ldots, S_n) \sqsubseteq (S'_1, \ldots, S'_n) \text{ iff } S_1 \subseteq S'_1 \land \ldots \land S_n \subseteq S'_n
\]
is a complete lattice.

Notation:
\[
(S_1, \ldots, S_n) \cap (S'_1, \ldots, S'_n)' = (S_1 \cap S'_1, \ldots, S_n \cap S'_n)
\]
\[
(S_1, \ldots, S_n) \cup (S'_1, \ldots, S'_n)' = (S_1 \cup S'_1, \ldots, S_n \cup S'_n)
\]
Mutually recursive equational systems

- Define $O_F : \mathcal{D} \Rightarrow 2^{\text{Proc}}$ such that $O_F(S_1, \ldots, S_n)$ is the set of states for which formula F holds under the assumption that X_i holds precisely in the states from S_i.

\[
\begin{align*}
O_{X_i}(S_1, \ldots, S_n) &= S_i \\
O_{tt}(S_1, \ldots, S_n) &= \text{Proc} \\
O_{ff}(S_1, \ldots, S_n) &= \emptyset \\
O_{F_1 \land F_2}(S_1, \ldots, S_n) &= O_{F_1}(S_1, \ldots, S_n) \cap O_{F_2}(S_1, \ldots, S_n) \\
O_{F_1 \lor F_2}(S_1, \ldots, S_n) &= O_{F_1}(S_1, \ldots, S_n) \cup O_{F_2}(S_1, \ldots, S_n) \\
O_{\langle a \rangle F}(S_1, \ldots, S_n) &= \langle \cdot a \cdot \rangle O_F(S_1, \ldots, S_n) \\
O_{[a]F}(S_1, \ldots, S_n) &= [\cdot a \cdot] O_F(S_1, \ldots, S_n)
\end{align*}
\]
Mutually recursive equational systems

- Define $\llbracket D \rrbracket = D \rightarrow D$
 $$\llbracket D \rrbracket(S_1, \ldots, S_n) = (\mathcal{O}_{F_1}(S_1, \ldots, S_n)), \ldots, \mathcal{O}_{F_n}(S_1, \ldots, S_n))$$
- $\llbracket D \rrbracket$ is monotonic over (D, \sqsubseteq)
- Define $\llbracket X_1, \ldots, X_n \rrbracket \in D$
 For a system of least fixed point equations take the least fixed point of $\llbracket D \rrbracket$:
 $$\llbracket X_1, \ldots, X_n \rrbracket = \sqcap\{(S_1, \ldots, S_n) \in D \mid \llbracket D \rrbracket(S_1, \ldots, S_n) = (S_1, \ldots, S_n)\}$$
 For a system of greatest fixed point equations take the greatest fixed point of $\llbracket D \rrbracket$:
 $$\llbracket X_1, \ldots, X_n \rrbracket = \sqcup\{(S_1, \ldots, S_n) \in D \mid \llbracket D \rrbracket(S_1, \ldots, S_n) = (S_1, \ldots, S_n)\}$$
Mutually recursive equational systems

Computing the solution of a block of least fixed point equations

Let $Proc$ be a finite set.

Let $m > 0$ such that

$$\begin{align*}
X_1 &\overset{\text{min}}{=} F_1(X_1, X_2, \ldots, X_n) \\
X_2 &\overset{\text{min}}{=} F_2(X_1, X_2, \ldots, X_n) \\
\vdots \\
X_m &\overset{\text{min}}{=} F_m(X_1, X_2, \ldots, X_n)
\end{align*}$$

There exists a natural number $m > 0$ such that

$$\llbracket X_1, \ldots, X_n \rrbracket = \llbracket D \rrbracket^m(\emptyset, \ldots, \emptyset)$$
Mutually recursive equational systems

Computing the solution of a block of greatest fixed point equations

Let $Proc$ be a finite set.

\[
\begin{align*}
X_1 \overset{\text{max}}{=} & \quad F_1(X_1, X_2, \ldots, X_n) \\
X_2 \overset{\text{max}}{=} & \quad F_2(X_1, X_2, \ldots, X_n) \\
\vdots \\
X_m \overset{\text{max}}{=} & \quad F_m(X_1, X_2, \ldots, X_n)
\end{align*}
\]

There exists a natural number $M > 0$ such that

\[
\lbrack X_1, \ldots, X_n \rbrack = \lbrack D \rbrack^M(Proc, \ldots, Proc)
\]
Example: Consider

\[X^{\text{max}} = \langle a \rangle Y \land [a]Y \land [b]ff \]
\[Y^{\text{max}} = \langle b \rangle x \land [b]X \land [a]ff \]

\[
\begin{pmatrix}
S_1 \\
S_2
\end{pmatrix}
\mapsto
\begin{pmatrix}
\langle \cdot a \cdot \rangle S_2 \cap [\cdot a \cdot]S_2 \cap \{s_1, s_3\}
\\
\langle \cdot b \cdot \rangle S_1 \cap [\cdot b \cdot]S_1 \cap \{s_2, s_4\}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\text{Proc} \\
\text{Proc}
\end{pmatrix}
\leadsto
\begin{pmatrix}
\{s_1, s_3\}
\\
\{s_2, s_4\}
\end{pmatrix}
\leadsto
\begin{pmatrix}
\{s_1, s_3\}
\\
\{s_2\}
\end{pmatrix}
\leadsto
\begin{pmatrix}
\{s_1\}
\\
\{s_2\}
\end{pmatrix}
\leadsto
\begin{pmatrix}
\{s_1\}
\\
\{s_2\}
\end{pmatrix}
\]
Characteristic properties

- Given a finite transition system \(p \),
 we want to find a formula \(F_p \) such that for all processes \(q \)

\[
q \models F_p \iff q \sim p
\]

- For image-finite processes, the equivalent class that contains \(p \) is
 \([p]_\sim = \{ q \mid q \sim p \}\).

Theorem

If the LTS is finite, then we can characterize the equivalence classes for strong bisimulation with a single formula and the formula is unique.

This formula is called the characteristic formula.
Characteristic properties

Example:

\[
\begin{array}{c}
p \quad \text{to} \quad q \\
\hline
m \quad \text{to} \quad m \\
\hline
\bar{t} \quad \text{to} \quad \bar{t} \\
\hline
\bar{k} \quad \text{to} \quad \bar{k}
\end{array}
\]

\(p\) characteristic formula can be constructed as follows:

- \(p\) can perform \(m\) and become \(q\).
- No matter how \(p\) performs \(m\) it becomes \(q\).
- \(p\) cannot perform any action other than \(m\).

\[X_p = \langle m \rangle X_q \land [m]X_q \land [\{\bar{t}, \bar{k}\}] ff\]

\(q\) characteristic formula is:

\[X_q = \langle \bar{t} \rangle X_p \land \langle \bar{k} \rangle X_p \land [\{\bar{t}, \bar{k}\}] X_p \land [m] ff\]
HML with one recursively defined variable
 - Syntax and semantics
 - How to compute lfp or gfp and when to use them
 - Some temporal properties

Mutually recursive equational systems
 - Syntax and semantics
 - How to compute lfp or gfp

Characteristic properties