In vitro investigations of jet-pulses for the measurement of respiratory impedance in newborns

M. Schmidt*, B. Foitzik*, O. Hochmuth**, G. Schmalisch*

ABSTRACT: The aim of this *in vitro* study was to investigate the measuring range and accuracy of a miniaturized equipment for respiratory impedance (Zrs) measurements in newborns using jet-pulses.

Brief flow pulses (peak flow=16 L·min⁻¹, width=10 ms) were generated by a jet-generator consisting of a solenoid valve and an injector, situated between pneumotachograph and outflow resistance. Serially arranged resistance-inertance-compliance (R-I-C) lung models (RM=1.3-6.4 kPa·L⁻¹·s, CM=7.4-36.9 mL·kPa⁻¹, IM=1.5 Pa·L⁻¹·s²) were used to measure the real and imaginary part of Zrs between 4 and 50 Hz and to determine R, C and I by means of the method of least squares.

The median errors for R, C and I were -0.1 kPa·L⁻¹·s (-2%), 2.4 mL·kPa⁻¹ (13%) and -0.2 Pa·L⁻¹·s² (-13%) for measurements without breathing signals and 0.11 kPa·L⁻¹·s (3%), 3 mL·kPa⁻¹ (16%) and 0.28 Pa·L⁻¹·s² (19%) in mechanically ventilated models. During spontaneous breathing the influence of the breathing flow on Zrs was negligibly. The equipment did not show any nonlinearity when different pulse amplitudes were used (Vmax=13–22 L·min⁻¹).

The investigations have shown that jet-pulses allow reliable measurements of respiratory impedance and have the potential to provide valuable information about lung mechanics in spontaneously breathing and mechanically ventilated newborns. The developed measuring head has a low apparatus dead space, is easy to disinfect, has standard connections and can be used as the T-piece in a ventilator circuit.

*Dept of Paediatrics (Charité), D - 10098 Berlin, Germany. **Institute for Computer Science, Humboldt University, Berlin, Germany.

Correspondence: G. Schmalisch, Dept of Paediatrics (Charité), Humboldt University, Schumannstr 20/21, D - 10098 Berlin, Germany, Fax: 49 3028025824

Keywords: Forced oscillation technique newborns pulses respiratory impedance

Received: January 12 1999
Accepted after revision May 31 1999

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) (Schm 1160/1-2) and by the German Ministry for Research and Technology project "Perinatal Lung" (Grant 01ZZ9511).