Dirac's Difference Equation and the Physics of Finite Differences
Coauthor Beate Meffert, Humboldt-Universität, Berlin. In the series "Advances in Imaging and Electron Physics" (P.W.Hawkes, editor), vol. 154.
Elsevier/Academic Press, Amsterdam 2008.

page	para	line	
XVII			third line from bottom: m (Euler Roman Medium m , not m Slanted Roman Medium m); page 272, Eq.(9)
XVIII		13	Z (Euler Roman Medium Z); page 279, Eq.(3)
1		2	headline: 1.1 Maxwell's Equations
28	3	2	n=3 instead of $n=4$
30	2	5	39 instead of 33
33	1	6	becomes
58			in Fig.2.1-1: $\Psi_0(y)$ not $\Psi_0(z)$ along y-axis
72		1	first line of Eq.(20): $v^2 + (2 \dots \text{ not } \dots v^2 = (2 \dots$
73			after Eq.(29): terms in large parentheses in Eq.(18)
94			Eq.(13): replace $(\lambda_1^2/4 + \beta_{\kappa}^2)$ by $(\lambda_2^2/4 + \beta_{\kappa}^2)$
95			Eq. (18): replace $\lambda_1(\lambda_1^2 - \lambda_2^2 + \lambda_3^2)^{1/2}/4$ by $\lambda_2/2$
95			Eq.(18): replace $(\lambda_1^2 + \lambda_3^2)/4$ by $(\lambda_1^2 + \lambda_2^2)/4$
96			Eq. (24): $(q_{\kappa} + \Delta q_{\kappa}) - (q_{\kappa} - \Delta q_{\kappa})$
100			Eq.(3): Change summation index $\kappa = 0$ to $n = 0$
167			second line of text from bottom: Eqs.(4.1-12)-(4.1-14)
178			left part of Eq. (37): $v(\theta)$,
235			line before Eq.(1): v_{11} not v_1
240			caption of Table 5.3-1, see Eq.(32): $k^2 = l^2(l+1)^2/4$
258			line before Eq.(76): that [see Eq.(3.4-48)]:
260			Sec.6.5, line 2: Eqs.(5.1-15), (5.1-17), and (5.1-18).
283			Eq. (27): $(s_0^2 - 1)^2 / s_0^2 = \omega_m \omega_p$
288			Left sides of Eqs.(48), (49) are determinants. () \rightarrow
289			Left side of Eq.(50) is a determinant. () \rightarrow