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Motion Control

Commands for the actuators (motors) to reach next pose(s)
determined e.g. by
e agiven (predefined) trajectory
e maintaining special conditions (e.g. PID controller)
e reply to sensor input (e.g. sensor actor coupling)
regarding e.g.:
* Positions, Forces, Speed
* Real time requirements
« Compensation for
- Environmental disturbance (short term)
- Battery, temperature (middle term)

- Wear (long term)
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Motion control

Feedforward control/open loop control:
— Fixed predefined control
— Simple realization
— No adaptation

,olind"

Keyframe motions?

Feedback control/closed loop control:
— Sensor controlled motions
— Adaptation using sensor signals
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Afraid from light

Braitenberg Vehicle
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Closed Loop Controller

Controls a process such that specified objectives are
achieved or maintained.

Setpoint:
The desired value of the process to be reached or maintained
(e.g. bring the arm to a position or hold it on a position)

Segway
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Control loop

The controlled variable y(t) should be equal to setpoint w(t).
The error e(t) := w(t) — y(t) is determined by feedback.
The controller determines the control variable u(t) related to e(t).

. Control Control l'Nmse Controlled
Setpoint  deviation variable variable

w(t) e(t) Controller u(t) 3 Process y(t)

feedback
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Control loop
Description without noise:  y(t+1) = fp, cess(feontrol(W(E)-Y(1)))

Objectives: e(T) = w(T)—-y(T) =0
atacertaintime T (or forall t >=T)

@Design of individual control from formal description.
@Usage of generic methods (fuzzy control, PID control).

, Control Control l'Nmse Controlled
Setpoint  deviation variable variable
w(t) e(t) Controller u(t) 3 Process y(t)

fControI fProcess

feedback
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Control loop J

Can lead to overshooting
Problems: and oscillations

» Delayed control.

* Noise of process, sensors, and controls.

* Inertia of process.

, Control Control l'Nmse Controlled
Setpoint  deviation variable variable
w(t) e(t) Controller u(t) 3 Process y(t)

fControI fProcess

feedback
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Control loop

A

Control
variable

Set poi

From WikiMedia,
Author Magnus Manske

>
time
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Proportional Control (P-Control)
control u(t) ~ deviation e(t) := w(t)-y(t)

u(t) = K- e(t) with some constant K

Small K: slow movement to setpoint w(t)
Large K: overshooting, oscillations

. Control Control l'Nmse Controlled
Setpoint  deviation variable variable
w(t) e(t) P-Control u(t) 3 Process y(t)

K- e(t) ormeess

feedback
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Integral Control (I-Control)

control u(t) ~ duration and amount of deviation e(t) := w(t)-y(t)

ut) = K- é:zle(ti)Dti with some constant K

Can compensate for low proportional control,
but continues changing for some time

, Control Control l'Noise Controlled
S%gxmnt d?yauOn v??aMe variable
W et _ ut y(t)

I-Control ___  Process
K 'aizle(ti)Dti fProcess

feedback
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Derivative Control (D-Control)

control u(t) ~ change of deviation e(t) := w(t)-y(t)

u(t) = K- 1/Dt-[e(t) - e(t-1)] with some constant K

Fast respond to a "jump" of deviation.

No respond to permanently constant error.

Problem for noisy measurements.

Can only be used in combination with other controls .

J'Noise

Setpoint gonnol COD%SI
etpoin eviation variable
w(t) (1) D-Control u(t)

K/Dt -[e(t)-et-D)] T >

Process

f

Process

Controlled
variable

y(t)

feedback
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_ _ Similarly:
Combination: PID-Controller Pl-Controller

PD-Controller

u(t) = Kp - e(t) + K, Q,t)Dt + Ky/Dt [e(t)-e(t-1)]
with appropriately chosen constants K, K, and K,

_ Control Control J'Nmse Controlled
Setpoint  deviation variable variable
w(t) e(t) P-Control u(t) Process y(t)

) Kp - e(t) Torocess

|-Control
K, &L et)ot™>

D-Control
=2 K,/Dt [e(t)-e(t-1)]

feedback

Burkhard Cognitive Robotics Motion 14



(Empirical) Design

Control
variable

Set poin

Adapt PID-parameters

according to control behavior

From WikiMedia,
Author Magnus Manske

Burkhard

Cognitive Robotics Motion
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Further Controllers

* Fuzzy-Control:
— Fuzzification:

Transformation of controlled values y(t) to linguistic terms
— Application of Fuzzy-rules for linguistic terms
— Defuzzification:

Transformation of linguistic terms to control values u(t)
Neural Networks etc.

. Control Control ‘LNmse Controlled
Setpoint  deviation variable variable
w(t) e(t) Controller u(t) 3 Process y(t)

feedback
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Keyframe Controller

Fixed time to arrive at target keyframe.
(Linear) interpolation according to time.
Some smoothness by inertia of imbs/motors.

Customized motors have their own controllers ...

RoboNewbie uses some kind of proportional controller
(difference to target angles)

Burkhard Cognitive Robotics Motion
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Jacobi-Matrix

Relation between workspace with poses p=(p4,...,p,,) and
configuration space with configurations g=(q,...,qd,)

IS given by Kinematics: p=f(q)

Kinematics of motions (velocities) with control parameters g

dp/dt = df(q)/dt = 8f(q)/dq « dg/dt = J dg/dt

Jacobi-Matrix: J= &f(q)/aq = [éf/aq;];

ofIaq, ... ofaq,

J=C .
/0y ... /o0,

18
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Jacobi-Matrix

Approximation of small deviations Dp near p=f(q) is given by
Dp = J(p) Dg

To reach a position p‘= p+Dp from p=f(q)
the control can calculate Dg such that

p'=p+DOp =1(q)+ J(p) 9
and then perform Dq .

Burkhard N _ _ 19
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Inverse Jacobi-Matrix

Kinematics of motions:
dp/dt = J(p) dg/dt
Inverse Kinematics of motions:
dg/dt = J-1(p) dp/dt

The change [qg of control parameters ¢

Dg =J*(p) Dp

for change Dp of position p is approximated by:

Burkhard N _ _
Cognitive Robotics Motion
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Example ,Planar Leg"

Work space X,y

AY

foot
(X.y)

Burkhard Cognitive Robotics Motion
Burkhard/Domanska

Control space q,, 0

A 05

l(ql, qZ)
d,

=
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Example ,Planar Leg”

Kinematics:
—Rotation by Q,

—Translation by I,

—Rotation by Q,

—Translation by |,

x] _, ﬂﬂs{ﬂ.}} i cos(8; + &)
v| — ' | sin(@;) * | sin(g, + 6)
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Example ,Planar Leg"

x] _, ﬂﬂﬁff}g}} ot cos(@; + &)
v| — ' | sin(@)) * | sin(8, + )

fx(Qsz) l,cos(Q,) + 1,c0s(Q;+ Q,)

p=1(q) = —
fy(Ql,QZ) I, sin(Q,) + Lsin( Q, + Q,)
af(a) aq = -1,8IN(Qy) - 1,8IN(Q; + Q,)  -,sIN(Q, + Q)
J= (q) q= l,cos(Q,)+ l,cos(Q, + Q,) l,cos(Q, + Q,)
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Example ,Planar Leg"

Determinant of Jacobi Matrix:

of(q)/ aq

= Il sin(Q) =0  for Q,=0, p,-p

-l;sin(Qy)-1,sin(Q, + Q,)  -l,sin(Q; + Q,)
,cos(Q,)H,cos(Q, +Q;)  1,08(Q, + Qy)

Restricted motion

for Q, =0, p,-p
(singularities)

Example from Dudek/Jenkin:

Computational Principles of Mobile Robotics

Burkhard

Cognitive Robotics Motion
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Singularities of Jacobi Matrix

p = f(q) is not invertible at p if |J(p)|=0:

Some points in the neighborhood of p are not reachable.
Values of control parameters can become very high in
the neighborhood of p.

Controls avoid neighborhood of p
because of problems for control.

Burkhard Cognitive Robotics Motion 25




Pseudo Inverse of Jacobian Matrix

(Moore-Penrose-Inverse)

Pseudo-Inverse J* can be used
instead of J-* for non-quadratic m™n - matrices J :
(n = number of control parameters)

If rank J(p) =n then
e Pseudo-Inverse J*=(J' J)* Jt
o J* Is Left-Inverse of J
Dp = J(p) Dg
J*(p) Dp = J*(p) I(p) Dg = (JI'(p) I(p) )* I*(p) I(p) Da
= (J'(p) I(P) )* (I (p)I(p) ) Dg = Dq
Dg = J(p)" Dp

Burkhard Cognitive Robotics Motion 26



Pseudo Inverse of Jacobian Matrix

(Moore-Penrose-Inverse)

Problems near singularities at p (rank J(p)<n):

« Several neighboring points are not reachable from exactly p
(no motion into that direction)

« Small changes of Dp lead to very huge changes Dg of control
parameters in the neighborhood of p

More complex calculation of J(p)* if rank J(p) <n:

Dqg = J(p)" Dp
gives best possible solution Dq,
l.e. minimizes the quadratic error (Dp - J(p) Dq )?

Burkhard Cognitive Robotics Motion 27



Keyframes define
Control by Keyframes characteristic* poses

of a trajectory.

Keyframe Motions:
Trajectories are traversed by transitions
between keyframes (predefined poses) in predefined times.

7]
They are given as sequences | fL
or nets of keyframes. J L —EEEa
Branching in nets according ll ﬂ—l C_
to different situations gy \ B® /R
e.g. user commands N T
Or Sensor inputs. L

Burkhard Cognitive Robotics Motion 28



Control by Keyframes

For control of a keyframe motion,
the actuators are controlled accordingly by a “keyframe player”,
e.g. interpolation by automatically calculated intermediate poses.

gt

Sensor feed back can be used to adapt the interpolated poses.

Usually, keyframes are not changed during motion.

Burkhard Cognitive Robotics Motion 29



Smoothness of keyframe motions

Smoothness of keyframe motion is influenced
By physical properties of (real) robots and environment,
e.g. inertia, friction, backlash, parameters of motors, ...
(servo motors have separate controllers)
By keyframe player:
e Splines etc. instead of linear interpolation
can be used for smoothing (especially in simulation)

By design of keyframes:

* Designer of keyframes can introduce more keyframes at
,critical“ parts of the desired trajectory.

e Machine learning can be used to optimize keyframes
(resp. the common result of keyframe and keyframe player)

Burkhard Cognitive Robotics Motion 30



Simple Physical Controls

Control by simple physical processes without calculations,
e.g.

— Thermostat

— Braitenberg vehicle

— Dynamic Passive Walker (see below)

Burkhard Cognitive Robotics Motion 31




Model Based Motion Control

Actuation for next pose(s) determined by some model:

Calculation by some criteria to be maintained,
e.g. stability/balance by CoM, ZMP (see below).

Actuator commands by Inverse Kinematics
(for drives, for limbs ...)

Burkhard Cognitive Robotics Motion 32




Outline

ntroduction

Kinematics of Poses

Kinematics of Drive Systems
Trajectories

Motion Planning

Motion Control

Motions of Legged Robots
Optimization/Learning of Motions
Biologically Inspired Motions

Burkhard Cognitive Robotics Motion

33




Motions of Legged Robots

For unstructured terrain, stairs, ...

Rollerwalker H+Y, Japan
Lauron Ill (Laufender Roboter, neuronal gesteuert) FZI Karlsruhe

Burkhard Cognitive Robotics Motion 34




Statically Stable Balance

Projection of center of mass (CoM) within the convex
hull of the ground contact points ("support-polygon™)

2 Legs
6 Legs

o Stable walk with 4 legs:
Only 1 leg lifted with shift of weight

« Stable walk with 6 legs:
Simultaneous movement of 3 legs without shift of weight

Burkhard Cognitive Robotics Motion 35



Dynamic Balance

Projection of CoM may be outside of support polygon
Appropriate movements prevent falling over

Burkhard Cognitive Robotics Motion 36



Dynamic Balance

Segway

Burkhard Cognitive Robotics Motion
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Equilibrium/Balance

Static equilibrium: Robot in persistent state (e.g. standing)
Dynamic equilibrium: Robot in persistent motion (e.g. walking)

After disturbance:

e Return to equilibrium by itself: Stable equilibrium

o Further departure from equilibrium: Unstable equilibrium

 |Indifference: Indifferent equilibrium
O e

‘\Q/ /\
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Running patterns

Complete cycle of all leg movements:
2 phases for each leq:
e Support phase (stance): ground contact
contact points to body and ground determine joint angles
« Transfer phase (swing): Free movement
trajectory to next attachment point determines joint angles

Duty-factor = Percentage of the ground contact time
e.g. Trot (always 2 of 4 feet on the ground): Duty factor = 0.5

Further details with more phases, e.g.:
lift - move forward — put down — roll off

Burkhard Cognitive Robotics Motion 39




Statically Stable 4 Legged Walk

R1. Shift CoM
R2. Right hind leg in the air

R3. Right hind leg on ground

R4. Right front leg in the air
R5. Right front leg on ground

L1. Shift CoM
L2. Left hind leg in the air

Burkhard 40




Statically Stable Walk

Robot can stop at any given time in statically stable balance.
Transitions between statically stable balance states.

CoM always above support polygon.

Statically stable walk with 6 legs:
Always 3 feet on the ground
CoM above support triangle

A S
T 1

Burkhard Cognitive Robotics Motion 41



Statically Stable Walk of Humanoid

Diploma Thesis
Oliver Welter

(a) Double Support (b) Single Support (c) Double Support (d) Single Support
Left Left Right Right

Projection of CoM

Burkhard Cognitive Robotics Motion 42




Design of Static Stable Walk

Motion by transitions between static stable equilibriums

Control of the legs by means of inverse kinematics,
calculation along the kinematic chains:

e Define path of CoM

e This defines connection points between body and legs
e Foot point of standing legs

* Trajectories of moving legs

Further parameters by optimization methods

Burkhard Cognitive Robotics Motion
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Dynamic Walk Jprevented falling over*

No universally accepted definition
(“not statically stable walk”)

Unlike stable running:
CoM at least temporarily outside support polygon

(not statically stable equilibrium when interrupting)

Possible definiton by
"dynamically stable equilibrium" for trajectory

Burkhard Cognitive Robotics Motion 44
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Humanoid Robots

Cognitive Robotics Motion 46



Humanoid Robots: RoboCup




Humanoid Robots: ASIMO (Honda)

Burkhard Cognitive Robotics Motion



Humanoid Robots HRP-x (Kawada)

Assistance Robot:
HRP-2 HRP-4

Burkhard Cognitive Robotics Motion 49



Humanoid Robots: BOSTON DYNAMICS

“ATLAS”

Burkhard Cognitive Robotics Motion
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Humanoid Robots: Avatars

B

Asimo + Hanson Robotics

Burkhard Cognitive Robotics Motion 51



Biped Walk (Humanoid Robots)

Statically Stable Walk: Projection of CoM inside support area
- slow “walk”

Diploma Thesis 1l

Oliver Welter D O O 0 Q

Dynamic Walk: Projection of CoM may be outside support area
- faster walk

- problem: how to prevent from falling

Burkhard Cognitive Robotics Motion 52



Model Based Dynamic Walk

Calculate trajectories by physical models like
* Inverted pendulum for stand leg

e Pendulum for swing leg

e Center of Mass

e Zero Moment Point (ZMP)

Problem:
Model based control needs
precise hardware.

No elasticity as in nature.

Burkhard Cognitive Robotics Motion
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Zero Moment Point (ZMP)

ZERO-MOMENT POINT — THIRTY FIVE YEARS OF ITS LIFE

MIOMIR VUKOBRATOVIC

Institute Mihajlo Pupin, Volgina 15
11000-Belgrade, Serbia and Montenegro
vuk@robot.amp. bg. ac.yu

BERANISLAV BOROVAC

Unaversity of Novi Sad, Faculty of Technical Sciences
21000-Nowvi Sad, Trg D, Obradovica 6, Serbia and Montenegro
horovac@uns.ns. ac.yu

Received 24 October 2003
Accepted 8 January 2004
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Zero Moment Point (ZMP)

,Its first practical demonstration took place in Japan in
1984, at Waseda University, Laboratory of Ichiro Kato, in
the first dynamically balanced robot WL-10RD of the
robotic family WABOT. The paper gives an in-depth
discussion of source results concerning ZMP, paying
particular attention to some delicate issues that may lead
to confusion if this method is applied in a mechanistic
manner onto irregularcases of artificial gait, i.e. in the
case of loss of dynamic balance of a humanoid robot.”

(Introduction M.Vucobratovic, B.Borovac:
,Zero-Moment Point: 35 Years of its Life®)
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Zero Moment Point (ZMP)

Forces and moments in single support phase are considered:
Forces/moments acting on the support foot:
Influence of body to ankle, gravity, ground reaction, friction.
Dynamic equilibrium:
* horizontal moments M, =M, =0
at CoP (= center of pressure) of foot

If such a point does not exist inside support polygon,
the robot will rotate over the foot edge and overturn.

“Zero-Moment-Point” if inside (!) support polygon.

Different (sometimes conflicting) definitions in the literature.

Burkhard Cognitive Robotics Motion 56



M.Vucobratovic, B.Borovac:
- I Vol - g : . . e u
166 M. Vukobratovic & B. Borovac  7arg.Moment Point: 35 Years of its Life

(a) (b) (c)

FZMP

_ ZMP

:'_,.l-"
R S
R

Possible relations between ZMP and CoP :

(a) dynamically balanced gait,

(b) unbalanced gait where ZMP does not exist and the ground
reaction force acting point is CoP while the point where Mx =
0 and My = 0 is outside the support polygon (FZMP). The
system as a whole rotates about the foot edge and overturns,

(c) tiptoe dynamic balance (“balletic motion”).

FAEFSTESETTT STy
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ZMP Control

Condition for dynamically stable walk:
ZMP within support polygon (projection of CoM may be outside)

Conditions for control using ZMP:
 Keep ZMP of stand leg inside support polygon
 ZMP of swing leg inside support polygon at touch down

Define Trajectories (e.g. by forward simulation):
e Maintain conditions
(e.g. by related shift of CoM using hip)

Different implementations.

Burkhard Cognitive Robotics Motion 58



Calculation of ZMP

By laws of mechanics along kinematic chain

:.:';.::E""'Ambarish Goswami Postural Stablllty of

Department of Computer and Information Science

University of Pennsvlvania B ip e d RO b Ot S a n d

Pluladelphia, Pennsylvania 19104-6389, USA

goswami@ graphics.cis.upenn edu the FOOt-ROtation
Indicator (FRI) Point

Burkhard Cognitive Robotics Motion 59



Approximated Calculation of ZMP

Calculate ZMP = CoP (Center of Pressure) on feet
(as long as not on the foot edge)
ZMP as result of measured forces at the feet
(cf. FRP in SimSpark)

Image:
Diploma thesis
O. Welter

Burkhard Cognitive Robotics Motion
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Approximated Calculation of ZMP

Calculate ZMP from CoM by physical model:
CoM at the top of stand leg as inverted pendulum
Forward simulation for optimal ZMP positions

Image:
Burkhard Cognitive Robotics | Yuan Xu (NaoTH)

61




Zero Moment Point (ZMP) ‘

Displacement of the projections of CoM (red) and ZMP (blue)
while walking (Diploma thesis O. Welter)
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Walk for Nao

Walk by Yuan Xu
NaoTeam Humboldt

8 NaoTH st | BeforeKickOff t=6. 00

omnidirectional walk
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Machine Learning, Optimization

Many parameters are used for control.
Problem of optimal choice, optimization

e.g. by

- -Experiments with real
e Gradient descent periments with rea

robots are expensive

* Evolutionary methods —Experiments with simulated
* Reinforcement learning robots are not strictly
equivalent
Fitness (Quality) of walk:
eduration @Combination of both.
*speed
saccuracy of path @PhD thesis of Yuan Xu

eenergy consumption
saesthetics
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Machine Learning, Optimization

Simloid (Diploma thesis Daniel Hein):
Evolved walks of simulated Bioloid

Sirntirne: 0,00 Sirtel: 0005 [Feal] fis: 2500 Walk: 0.00 mis

Sirntime: 000 Simvel: 0.00% [real] fips: 2500 Walk: 0.00 miés

Burkhard Cognitive Robotics Motion 66




Case Study: Optimized walk for AIBO

Diploma thesis Uwe Duffert 2004
e Optimize omnidirectional walk
o (Calibrating the running movements (correct control)

Walk parameters:
Forward velocity dx/dt
Sideward velocity dy/dt
Rotation velocity dfidt

Automate:

e Learning process
e Tests

e Evaluation (test environment)

Burkhard Cognitive Robotics Motion
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AIBO: Requirements for Walk

Omnidirectional walk: Optimization: Find optimal walk

« walk in any direction
(forward, backward, sideways, diagonally)

 rotate while walking
e smooth transitions between the directions

(Without "stop" or “switch")
* high speeds possible
e correct implementation of the required movements
e aesthetics

e Tp LT

Vf,f “.—Example course for learning 68



AIBO: Basic Design Decisions

Define trajectory of CoM (according to desired path).
This defines coordinates of shoulders.
Define foot positions by “Wheel model”
according to desired path
(maybe with slipping during changes).
Duty factor = 0.5:
Only the 2 diagonally positioned feet have ground
contact (not statically stable).
Define trajectory of feet according
to given curve template.

Burkhard Cognitive Robotics Motion 69




AIBO: Parameters for Optimization

Reduce parameters to few parameters which
 have great impact
e can be predefined

1. Rest position of feet relative to the body
2. Trajectory of the legs (height, length)
3. Gait: time points for swing and stance

Burkhard Cognitive Robotics Motion
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AIBO: Decomposition of Task

Experience: Optimal parameter sets for fast forward walk
are not optimal for fast backward etc.

Consequently: Different parameter sets P, = (p;y,...,P;,) for
different requirements A, :

In total: 127 different requirements for

* Direction (8 values) Not all combinations are used.

« Ratio Walk/Turn (7 levels) | The combinations are more

« Speed (3 levels) uniform than a combination by
forward/sideways/turning speed.

Burkhard Cognitive Robotics Motion 71



‘AIBO: Decomposition of the Task
and restriction to discrete values

Direction ; @« = arctan(z,7)
of Walk -
3T w0 T w37
s -, ——, ——, ——, 0, —, —, —
4 2 4 4 2 4
Ratio 5 2 ¢ U P
Walk/Turn T Umaz Pmaz
3 1 3
— —1 ——, — 77 0, —, —
— 10 10° 10° 10
| right
v ’ P ’
Speed | r = ( f)"’(-ty)
Urnax ¥maz
— slow middle fast

Burkhard Cognitive Robotics Motion
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AIBO: Setup of Experiments

Optimization by evolutionary methods:

— Fitness of parameter sets (individuals) P = (p4,-..-,p,)
evaluated by walks in real environment

— Fitness by correspondence to required path and time

Automatization of experiments

by appropriately designed environment:
— Robot tries to walk according to required path and time
— Robot measures path and time using special landmarks

— Robot evaluates fithess by comparing actual with
requested path and time

Burkhard Cognitive Robotics Motion 73



AlIBO: Setup of Experiments

Landmarks for orientation snpenfunng B

e Used for determining control requiremen path
corrections

o Used for evaluation of actual path (fithess)

o

srslinm

Burkhard Cognitive Robotics Motion

Image by AIBO Camera

with identified landmarks
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AIBO: Fitness F(P)

F(P) = z—Ay/6—33Ap — 1:1'[]""’53 — 5) — 40pying

dx/dt : average speed in x direction (along the course)
Dy : average deviation of y-position (distance to requested line)
Df . averaged deviation from requested direction
d?z/dt? : averaged acceleration in z direction
(unpleasant hard pounding)
Puing - PErcentage of images where landmarks are not identified
(strong deviation or strong vibration)

Burkhard Cognitive Robotics Motion 75



AIBO: Experiments

Optimal parameter P; = (piy,-..-,Pin)

were determined for the 127 walk requirements A; by

- Evolutionary methods for some (not all) requirements
- Good parameter sets already known and evaluated

- Regarding good transitions between adjacent
requirements

Burkhard Cognitive Robotics Motion 76




AIBO: Calibration

Calibration is needed for good match of requested and

actually achieved speed

Measurement for low / medium / high speed

without resp.
5 400 — 1 r T r 1 E 400
S 350 F %* 350
% 300 | £ 300
& 250 T 250
& 200} & 200
< 150 F o 150
% 100 - Er'c;" 100
% 50 -;, irﬁéﬂeS;fDrward — % 50
o 0 s o 0

0 100 200 300 400
angesteuerte x-Geschwindigkeit

Burkhard Cognitive Robotics Motion

with calibration
1 T | I |

kalibriert
ideal  -ereeee-
| N | N | M 1

0 100 200 300 400
angeforderte x-Geschwindigkeit
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AIBO: Further Options:

Pre-evaluation and selection of parameter sets before test with
real robot by
« Comparison with similar known parameter sets

e Simulation
 Hill Climbing in parameter space

More complex trajectories of feet

Much efforts in RoboCup:
§ Dortmund (Ingo Dahm and others)
§ NuBots (Michael Quinlan)

§ Austin (Peter Stone)
Speeds of up to 50cm/sec
(2-times length of body)

Burkhard Cognitive Robotics Motion 78



Outline

ntroduction

Kinematics of Poses

Kinematics of Drive Systems
Trajectories

Motion Planning

Motion Control

Motions of Legged Robots
Optimization/Learning of Motions
Biologically Inspired Motions

Burkhard Cognitive Robotics Motion

79




Outline

ntroduction

Kinematics of Poses

Kinematics of Drive Systems
Trajectories

Motion Planning

Motion Control

Motions of Legged Robots
Optimization/Learning of Motions
Biologically Inspired Motions

Burkhard Cognitive Robotics Motion

80




Biological Models

Can be exploited for

Hardware, e.g.:

 Mechanical design (legs, elasticity,...)

e Actuators (muscles, tendons, springs...)
e Sensors (skin sensors, ... )

Software, e.g.

o Control loops

e Local/distributed control

e Dynamic systems control

« Perception, sensor data integration

Burkhard Cognitive Robotics Motion
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Biological Models

Emergence:

Complex behavior emerges from

simple principles by clever design
Situatedness:

Appropriate behavior emerges by
Appropriate interaction with the environment

Examples:

« Put the foot down until ground reaction is sensed on foot
(knee, hip, proprioceptive sensors ...)

 Move the arms, the upper body etc.
to compensate acceleration (prevent from falling)
o Shift of CoM at slopes

Burkhard Cognitive Robotics Motion
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Mechanical Design

Passive walker: Using gravity for walking
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Mechanical Design

Passive walker

Inverse pendulum (Stand leg) + Pendulum (Swing leg)

High center of gravity (hip)
Additional compensation by arms

Energy-efficiency

Cornell University

Burkhard

Cognitive Robotics Motion
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Mechanical Design

Body Shape:

Walking emerges from well
designed shape

Blickhan, Seyfarth (Jena)

Burkhard Cognitive Robotics Motion 85




Mechanical Design: BigDog
(Boston Dynamics)

Burkhard Cognitive Robotics Motion
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Mechanical Design

B . ’
“

BigDog Architeu e

- Ty

' A= g! ® .
I W, t v, ) : s — \

) :
[ 1 e . ‘
< 3

Heat Exchanger

Gyro/IMU ‘ '
’ =
3 Engine/Pump

W

iy
a

Hip A\

Computer
Knee —— __I((_.-,ff’.e:_

Actuators

g Leg Spring
.' . Force Sensor
’ | W

http://www.bostondynamics.com/img/BigDog_Overview.pdf
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Mechanical Design

sostonynamics PIg
ostonDynamics
4 i

Multi-jointed Legs
Animal BigDog
Actuation Actuation
< |8
S|<
T |2
Compliance | 2 [ Compliance
SRS
+ © |9 +
Actuation | 3 | Actuation
318
S
Compliance
+ | Dissipation
Dissipation N

http://www.bostondynamics.cﬁﬁ?fﬁ%‘@”}%ig Dog_Overview.pdf
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Mechanical Design and Control

BostonDynamics | 4
os1ton Namics
Trot Control d Y

« X - Closed loop. Speed error corrected
by x direction foot forces.

« Y — Lateral foot position chosen to offset  *
unwanted lateral body velocity.

™
e Z
. Roll Coupled Controller.
::;— Corrections for height and
» Pitch Euler errors map to y and z
e Yaw direction foot forces.
_

http://www.bostondynamics.com/img/BigDog_Overview.pdf
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Central Pattern Generator (CPG)

Hypothesis:
Cyclic motions of animals (walk, fly, swim, wind, ...)
are controlled by oscillating CPG.

Oscillations can be produced by

e Sine-Function(s)
» Recurrent Neural Networks

Burkhard Cognitive Robotics Motion
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Oscillations by Sine Function(s)

The trajectory of a joint (e.g. knee joint) oscillates
while following the sine function as motor control:

N

angle
angle(t) = offset + A sin(w t + T)

S N4 7 N N G

time
A = amplitude (vertical scaling)

w = angular frequence (horicontal scaling)
= phase (horicontal shift)
offset (vertical shift)

Burkhard Cognitive Robotics Motion
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Oscillations by Sine Function(s)

More complex oscillations are performed by combinations
of different sine functions (cf. Fourier-series)

angle(t) = offset + A; sin(w, t + ;) + A, sin(w, t + f,)

Examples of more complex curves (from Dipl.Thesis D. Hein):

I |
B ginfe-0.3) — _| 1 \'.'I?—D.H'ﬂl‘il’ﬂ-'k‘]—tl-l‘ﬁl‘ul?‘l:l-o-ﬂjl — q 01 = DEsinlef) 1) - 03I R 0E) & D4 Sin(I o086} —— |

L/ AV LN

a/ \ . \ N/aNw, \'\

NG 0 P
| Vil \/

=
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Human, vqx = 1.5m/s

ma | T T T T T T 'rra' T Y

180

Biology

70 -

160
150

Trajectories of human joints. \mf\ﬁmﬂﬂ/\ﬂl

during walk (1,5 m/sec): .l

*Right hip W T
*Right knee U

N
*Right ankle wf) [ /\”\ AAmaN Hk/\H v
wor| | I| | \ | e
W

=ty VoV Yy

Time [s]

140

Images: S.Lipfert h MM /\\/\7\]
Locomotion Lab. Jena v,

a0

60 -

. 40 1 1 1
Burkhard Cognitive o 05 1 15 .
Timna [8]
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Neural Network Oscillators: Example

” D
H ‘@.@ W22

At each time t, the neurons N; and N,(t) are activated
by a,(t) resp. a,(t) which are recursively computed:

a,(t + 1) = atanh( wy; a,(t) + wy; ay(t) )
a,(t + 1) = atanh( wy, a,(t) + Wy, a,(t) )

aW, W, gaea(t)o
Wy Was Ea(0;

& (Hl)g—aXtanh
ga (t+1)g g
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Neural Network Oscillators: Example

sin(f)

cos(f ‘@.@’ cos(f)

“sin(T)

Simplified special case without tanh, and
forsome fanda=1:

aeal(t+1)'9':aecos(i) -sm(])o 2, (1)
ba,(1+1); EsinG)  cos(i) § §a,(0);

Burkhard Cognitive Robotics Motion
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Neural Network Oscillators: Example

ga,(t+1)¢ _acos(J) -sin(J)¢ za, ()0
ba, ()3 EsinGi) cos(d) § Ba,(0);

. f)§
The Matrix W= EZ?S&) CSO':((II))O defines rotations of a(t) Eal()o
in the a;-a,-space, g & (Ug
.e. Ay
(quasi-)periodic behavior a(t+3)
of a,(t) and a,(t) a(t+4) a(t+2)

a(t+1)
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Neural Network Oscillators: SO(2)-Network

“Special Orthogonal
Group” SO(2)

sin(f)

cos(f ‘@.@’ cos(F)

-sin(f)
with tanh
W, = W,, = cos(f) , wy, = sin(f) , w,, = -sin(f)
forsome a, T

a,(t+ 1) = a tanh (cos(f) a,(t) - sin(f) a,(t) )
a,(t+ 1) = a tanh (-sin(f) a,(t) + cos(f) a,(t) )
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Neural Networks: tanh

tanh(x)= (ex-eX)/(e*+e*) ool Lo
= (e -1)/(e>+1) = 1-2/(e?*+1) o

The activation of a Neuron N; is computed by
Cﬂ/ ai(t+l) = tanh (S, , w; &(t))
<. Where w;is the weight from Neuron N;to N;
(a can be integrated to weights w;; )

tanh and a gives more flexibility in the behaviors,
e.g. decreasing/increasing amplitudes (next slide).
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‘Neural Network Osclillators: Example

Attractor in (a4,a,)-Space QOutput Signals of Neurons
08 —T ——— T 0.8
Dutpui signal

06 — - 0.6

04 - 0.4 .

02 | . 3 02 :
3 '.

) 0 B 0 -

02 . a 02 .
< |

-04 - - 0.4 H

06 : s 06 L

08 1 1 1 ; 1 1 1 08 l 1 1 1

-0.8 0.4 0 04 0.8 0 20 40 60 80 100
ay Time [steps]

Figure 4.8: Example of a SO(2)-network output: Phase trajectory in (a,az)-space
(left), and output signals of neuron 1 and 2 (right) for @ = 1.1, ¢ = 0.5. Graphs show

the initial phase up to reaching the quasi-attractor range within the first 100 time steps.

The 1nitial activation was set to a; = 0.01, a>» = 0.0. Diploma Thesis
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Neural Network Controllers

Nets can get inputs from other neurons,
e.g. sensor data which can

- start oscillations

- modify oscillations

- stop oscillations

by changing the activations in the net.

Nets can be connected with other nets,
e.g. for synchronizing pairs of joints
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Neural Network Controllers

Nets can be connected with
a joint control
for oscillating movements

Motion measuring sensors
(e.g. acceleration sensors)
can be integrated directly
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Neural Network Controllers

O

If weights are adjusted accordingly,

the acceleration sensors (in the shoulders)
and the motor control neurons

build an oscillating system

Burkhard Cognitive Robotics Motion
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Case Study Simloid Diploma Thesis

Neural Net Controller for Simloid Daniel Hein
(= simulated robot Bioloid from Robotis)

Sreirani 00 Fasre: @30 20 Sk 00 fpx 2=
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Simloid: Neural Net controller

il
IEIE-llll 1
w
N,
I.I'..-'IH
w, Wy w,,
@
N>
U
w

22

1

&

6,

el

N, A\A>< joint 1
with bias g; for offsets

N, LA/ joint 2

Ni Ao joint k-2
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Simloid: Evolution of Neural Net controller

Optimal weights w;; of the Net were determined by evolution:
Parameters:
o 57 weights for 19 joints (6 per leg, 3 per arm, 1 waist)
+ 4 weights for oscillator
* Reduction by left/right symmetry assumption: 34 parameters

Individuals: (p4,...,P34) With ranges (-4,4)

Fithess: Distance covered in a given constant time
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Simloid: Evolution of Neural Net controller

Covered distance [m/f25s)

Covered distance of individuals per generation (Neural Controller, Symmetric)

12

10

oo
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[ttty
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-:-:_—

] ] ] ]
0 2000 4000 6000 8000 10000
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Figure 4.11: Evolution of Walking Pattern: Example of an evolved walking pattern apply-
ing the neural oscillator approach. Pictures illustrate the start of walking and first steps.

The displayed motion reaches a walking speed of about 0.45m/ s, which corresponds to

a human walking speed of approx. 7km/h.



Simloid: Evolution of Neural Net controller

Attractor in (a4,a5)-Space Output Signals of Neurons
0.8 — — T 08
output
06 - 0.6
04 - 04

0.2

02 L /w N
o 0 y

02+ Qy/ — -[]_2

06 | - -06

08 C 08 | | | | | | | | |
-0.8 04 0 0.4 0.8 0 10 20 30 40 50 60 70 80 90 100

dy Time [steps]

Neural Output

Figure 4.12: Dynamics of the displayed individual in figure 4.11. Phase trajectory in
(a1, az)-space (left), and output signals of neuron 1 and 2 (right). Evolved synaptic
weights of the neural oscillator: wy; = 1.166865, w2 = 0.610873, wy; = —0.467230),
wy2 = 0.834088. Graphs show the initial phase until reaching the quasi-periodic attrac-

tor within the first 100 time steps. The initial activation was set to a; = 0.01, a; = 0.0.



Simloid: Experiments Sensor Coupling

Harmonic Oscillator Impulse Generator

w /b
12 21 E.r.-'12 wﬂ

HJE i

w,

P
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DS T T T T T T
no coupling ———

sine coupling ————
06 . .
04l - u
02+ = .

& 1]
0.2 . =
04 .
0.6 . .
_Ds L 1 L L | L _ﬂ_s 1 1 1 1 1 1
08 -0.4 0 0.4 08 &0 a0 100 120 140 160
a, Time [steps]

Figure 4.14: Example of a harmonic synchronization: Left: Attractor in (ay, a2)-space
of the two neuron oscillator with and without coupling. Right: Output of the two neu-
ron oscillator with and without signal coupling. The SO(2)-oscillator parameters are:
a = 1.1, ¢ = 0.5, the chosen synaptic coupling of the external oscillator is w; = 0.2.
Without coupling, the two neuron network oscillates with a natural frequency of 8 pe-
riods per 100 time steps. The external oscillator generates a sine wave with a frequency
of 5 periods per 100 time steps. After coupling the two neuron oscillator smoothly

adapts its frequency to the external oscillator.



Neural Output

Figure 4.16: Example of an impulse synchronization: Output of the two neuron oscil-

lator. The vertical lines indicate the external impulses with an amplitude of 1.0. The
SO(2)-oscillator parameters are: @ = 0.9, ¢ = 0.5, the synaptic coupling of the exter-

nal oscillator 1s set to wis = 1.0. The neural oscillator synchronizes to the irregularly
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clocked impulses, varying from 8.33 to 12.5 impulses per 100 time steps.




Simloid: Some results
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Simloid: Transfer to Bioloid (A-Series)
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Evolved Neural Nets for Bioloid (A-Series)
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Evolved Neural Nets for Bioloid (A-Series)

(with another simulator from ALEAR project)
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