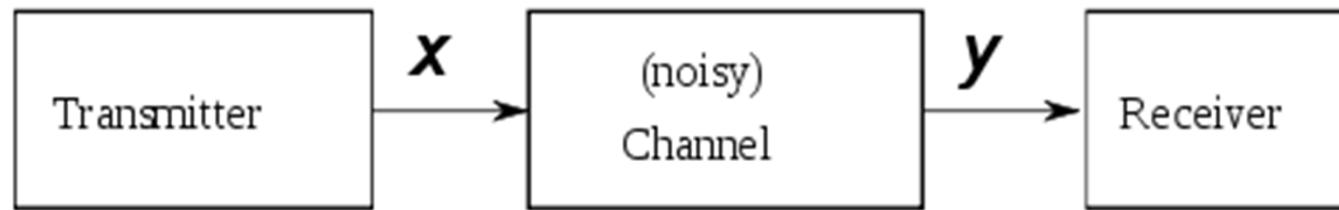


Drahtlose Breitbandkommunikation – Link Budget

**Humboldt-Universität zu Berlin, Institut für Informatik,
IHP, Leibniz Institut für innovative Mikroelektronik, Frankfurt (Oder)**

Vorlesung Drahtlose Breitbandkommunikationssysteme


Prof. Dr. Eckhard Grass

grass@ihp-microelectronics.com

grass@informatik.hu-berlin.de

<http://www.informatik.hu-berlin.de/~grass/bbk>

Channel Capacity: Shannon Theorem [Wikipedia]

- The **Shannon limit** or **Shannon capacity** of a communications channel is the theoretical maximum information transfer rate of the channel, for a particular noise level.
- Stated by Claude Shannon in 1948 (with sketchy proof)
- The first rigorous proof by Amiel Feinstein in 1954.
- The Shannon theorem states that given a noisy channel with channel capacity C and information transmitted at a rate R , then if $R < C$ there exist codes that allow the probability of error at the receiver to be made arbitrarily small.
 - This means that, theoretically, it is possible to transmit information nearly without error at any rate below a limiting rate, C .

Link Budget Calculation

Shannon channel capacity:

$$C = B \log_2 (1 + \frac{S}{N})$$

How to calculate the S/N at the receiver?

- > Need to know how much signal is attenuated at a given distance
- > This can be calculated with Friis equation

Path loss (PL) in free space (Friis equation):

$$PL(a) = (4\pi d f / c)^2 \quad (\text{direct form})$$

$$PL(\log) = 10 \log_{10} (4\pi d f / c)^2 = 20 \log_{10} (f) + 20 \log_{10} (d) + 20 \log_{10} (4\pi / c) \quad (\text{logarithmic form})$$

- d: Distance between Sender and Receiver
- f: Carrier Frequency
- c: Speed of light ($\sim 300\ 000\ km/s$)

Noise Power Spectral Density N_o

$$C_{awgn} = W \log_2 \left(1 + \frac{\bar{P}}{N_0 W} \right)$$

$$N = N_o * W = N_o * B$$

$$N_o = k * T \text{ [W/Hz]}$$

k : Boltzmann constant [J/K] ($= 1.38 \times 10^{-23} \text{ J/K}$)

T : Temperature [K] ($\sim 300 \text{ K}$ @ room temp.)

$$\begin{aligned} N_o &= k * T = 1.38 \times 10^{-23} \text{ J/K} * 300 \text{ K} \\ &= 4.14 * 10^{-21} \text{ J} \\ &= 4.14 * 10^{-21} \text{ Ws} \quad (\text{for room temperature}) \end{aligned}$$

- Friis Equation
- Link Budget Calculation

Path Loss Exponent

Path loss (PL) in free space (Friis equation):

$$PL(a) = (4 * \pi * d * f / c)^2 \quad (\text{direct form})$$

- The additional losses caused by fading, blockage ... can be simply modeled by modifying the path loss exponent E_{PL}
- The path loss exponent $E_{PL} = 2$ for free space, line-of sight scenario
- For indoor and urban areas the path loss exponent can range from $E_{PL} = 2 \dots 4$
- In some lossy environment, the path loss exponent can reach even $E_{PL} = 6$
- In a specific tunnel scenario the path loss exponent can be $E_{PL} < 2$

Link Budget Calculation

- TX-Power P_{TX}
- Friis equation (path loss) L_{FS} (=PL)
- Antenna gain TX G_{TX}
- Antenna gain RX G_{RX}
- RX Losses (cables, connectors, ...) L_{RX}
- Miscellaneous losses (Implementation losses) L_M

- RX-Noise Figure NF
- Shannon channel capacity C

Received Power (all in dB):

$$P_{RX} (\text{dB}) = P_{TX} + G_{TX} + G_{RX} - L_{FS} - L_{RX} - L_M$$

Required Signal/Noise at the Receiver

- During transmission and reception noise will be added to the signal
 - Thermal noise (Boltzmann noise)
 - Receiver Noise (Noise Figure)
 - Transmitter Noise caused by non linearities
 - etc.
- The effect for the received signal is that, in the constellation diagram, not a single point but a cloud of points around the expected point are received.
- Due to these noise and distortion impacts, the signal/noise (S/N) ratio to correctly receive an uncoded signal is at least around 6 dB in case of BPSK modulation.
- The required SNR is dependent on the modulation and the transmission type
 - For 64 QAM, the required SNR is at least 4 dB higher than for 16 QAM etc.

Receiver Sensitivity

The receiver sensitivity S_{\min} is the minimum input signal power required at the receiver input to provide **sufficient** SNR at receiver output to do data demodulation for a specific modulation scheme

- S_{\min} depends on:
 - Required SNR for desired modulation = SNR_{req}
 - Thermal noise floor at RX antenna = kT_oB
 - Noise Figure of the receiver = N_F

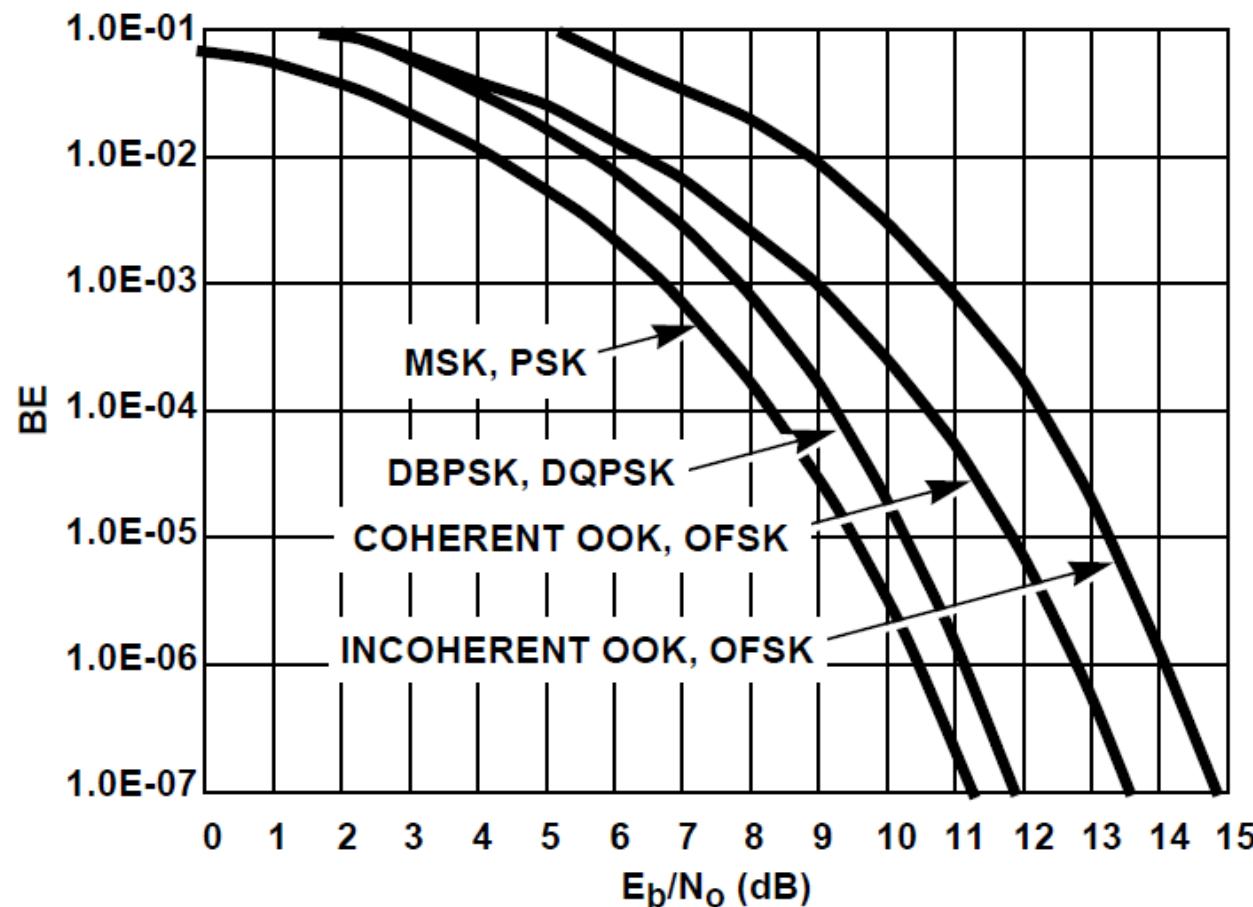
$$S_{\min} = \text{SNR}_{\text{req}} * kT_oB * N_F \quad (\text{all in absolute numbers})$$

$$S_{\min} (\text{dB}) = \text{SNR}_{\text{req}} (\text{dB}) + 10 * \log_{10}(kT_oB) + N_F (\text{dB})$$

- In some (generic) cases: $\text{SNR}_{\text{req}} = 0 \text{ dB}$

SNR \leftrightarrow E_b/N_o

For the evaluation of the efficiency of a specific implementation, the parameter E_b/N_o is often used.


$$E_b/N_o = \text{SNR} * (B_T/R)$$

$$\text{SNR} = (E_b/N_o) * (R/B_T)$$

- SNR = Signal-to-noise ratio
- E_b = Energy required per bit of information
- N_o = thermal noise in 1Hz of bandwidth
- R = system data rate
- B_T = system bandwidth
- (R/B_T) = spectral efficiency

Source: Intersil, Tutorial Link budget Analysis 1998

Required Signal/Noise at the Receiver

FIGURE 4. PROBABILITY OF BIT ERROR FOR COMMON MODULATION METHODS

Source: *Intersil, Tutorial Link budget Analysis 1998*

Link-Budget Calculator

- Excel Sheet

Channel Parameters (T_{RMS} , Mobility, ...)

- Strong multipath propagation and high bit rate
 - OFDM (otherwise single carrier scheme sufficient)
- Delay spread of channel T_{RMS} determines :
 - guard time (cyclic prefix): $T_{CP} \sim 2 \dots 4 \times T_{RMS}$
 - $T_{OFDM} \sim > 5 \times T_{CP}$ $\rightarrow (T_{sym} = T_{CP} + T_{FFT})$
 - $T_{FFT} \sim > 4 \times T_{CP}$
- Number of subcarriers:
 - $N_{sub} = B * T_{FFT}$
 - $N_{sub} = \text{target bitrate} / (\text{bitrate}/\text{subcarrier})$ (\rightarrow modulation scheme)
- Channel Coherence Time T_C determines:
 - Pilot scheme (time axis)
- Channel Coherence Bandwidth B_C
 - Pilot scheme (frequency axis)

Example scenario for OFDM-parameter choice (@ board)

Channel properties / target parameters:

- Application scenario:
Large office; metal coated windows
- Delay spread of channel: $T_{RMS} = 200 \text{ ns}$
- Available bandwidth: $B = 20 \text{ MHz}$
- Target data rate: $R = 50 \text{ Mb/s}$
- Coherence time of channel: $T_C = 5 \mu\text{s}$
- Coherence bandwidth of channel: $B_C = 5 \text{ MHz}$