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Festplattentransport von Berlin nach Hamburg (300 km): 

18.01.2018 4 

Ladevolumen:  100 l = 570 Festplatten 

Fahrtzeit:           1,5 h 

1 TB 2,5“ Festplatte: 0,11 x 0,08 x 0,02 = 176 cm³; 100 g Gewicht (inkl. Verpackung) 

Ladegewicht: 40.000 kg = 400.000 Festplatten 

Fahrtzeit          4 h 

  570 Terabyte / 5400 s = 105 Gigabyte/s 
 

 400 Petabyte / 14.400 s =  28 Terabyte/s 
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Die Latenz beeinflusst die Gesamtübertragungszeit: 
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 ABER:  Auch einzelne Platte benötigt 4 h! 

 Nicht die theoretische PHY-Datenrate, sondern die Gesamtübertragungszeit ist entscheidend! 

gszeitVerzögerun
Datenrate

Datenmenge
ittragungszeGesamtüber 
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Die Latenz hat einen großen Einfluss auf den Datendurchsatz 
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(theoretische) Datenrate ≠ Datendurchsatz 

  

Datendurchsatz: Anzahl fehlerfreier (Paket-)Übertragungen pro Zeiteinheit 

 

Beinhaltet auch die Bestätigung empfangener Pakete 

 

Beeinflussung durch Verzögerungszeiten (Latenz) 

 

Steigerung nomineller Datenrate + größere Latenz: 

 Geringerer Datendurchsatz möglich 
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Einfluss von Latenzen auf den Datendurchsatz 
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Paketübertragungszeit inkl. unmittelbarer Empfangsbestätigung: 
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Steigerung der Datenrate mit Vergrößerung der Latenz: 

   

                 Rneu = nR  TLneu = mTL 

 

    

 Wie stark darf sich die Latenz bei einer Datenratensteigerung vergrößern,  
um die Paketübertragungszeit zu verringern? 
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Einfluss von Latenzen auf den Datendurchsatz 
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Bsp: Paketgröße 2 kB,   R = 500 MB/s,  TL= 4 µs,        n = 2 

     

    m = 1,25 

 

Vergrößert sich bei einer Verdoppelung der Datenrate die Latenz um 50 %, verringert 

 sich die Übertragungsrate um 15 % ! 
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Was ist das Basisband? 
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Was ist das Basisband? 
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Basisband: 

„Natürlicher Frequenzbereich des Nutzsignals“ , fmin = 0 Hz 

 

Basisbandverarbeitung:  

 Unterste Ebene eines Kommunikationssystems 

  Detaillierte Beschreibung durch das horizontale Modell 

 

 Algorithmen zur Generation und Anpassung des Nutzsignals an den (äquivalenten Basisband-) Kanal  

  Realer Kanal ist analog, Beschreibung durch digitalen Kanal 

 

Abstrakte Modellierung durch Bitfehlerraten 
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Latenzen im digitalen Basisband 
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Jeder Block trägt zur Gesamtlatenz des Systems bei 

 

Implementierung hochperformanter Systeme deutlich komplexer 
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EASY-A VHR-Implementierung der Kanaldekodierung 
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Das Ganze ist mehr als die Summe seiner Teile! 
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Gesamtlatenz: 

  Latenzen der Einzelmodule  

  Zusammenspiel der Einzelmodule 

 p: Abhängigkeit von Parametern und gegenseitige Beeinflussung 
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abhängigkeit 

 
 

Ursachen von Latenzen in der Basisbandverarbeitung 
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Latenzanalyse paralleler Verarbeitungsstrukturen 
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Parallelverarbeitung zur Durchsatzsteigerung üblich 

 

 Parallele Verarbeitungsstrukturen beeinflussen Latenz 

 

 Unterscheidung in bitparallel und blockparallel 

 

  Bit: Verallgemeinerung auf atomare Einheit an der Schnittstelle 

   (z.B. Datenwort aus 8 Bit bei RS-Kodierung) 
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Bitparallele Verarbeitung 

18.01.2018 16 

FE 1

FE 2

FE NN
 p

a
ra

lll
e

le
 E

in
g

a
n

g
s
d

a
te

n

N
 p

a
ra

lll
e

le
 A

u
s
g

a
n

g
s
d

a
te

n

F
u

n
k

ti
o

n
se

in
h

ei
t

N
 p

a
ra

lll
e

le
 E

in
g

a
n

g
s
d

a
te

n

N
 p

a
ra

lll
e

le
 A

u
s
g

a
n

g
s
d

a
te

n

Gleichzeitige Anwendung einer Operation auf die parallel eingehenden Bits 

 

2 Varianten: unabhängige und abhängige Verarbeitung  

Bsp: Paralleles Mapping         Parallele Faltungskodierung 

 (Unequal FEC)   
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Beispiel: Bitparalleler Faltungskodierer 

18.01.2018 17 

if rising_edge(clk) 
  out1 <= d1 xor in; 
  out2 <= d1 xor d0 xor in; 
  d1    <= d0; 
  d0    <= in; 
end; 

if rising_edge(clk) 
  d0t := d0; 
  d1t := d1; 
  for n in 1 to 2 loop 
    out1(n) <= d1t xor in(n); 
    out2(n) <= d1t xor d0t xor in(n); 
    d1t := d0t; 
    d0t := in(n);  
  end loop; 
  d0 <= d0t; 
  d1 <= d1t; 
end; 
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+ + 
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Beispiel: Bitparalleler Faltungskodierer in Software 
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Strukturelle Parallelisierung in Hardware sinnvoll 

 

In Software  LUT besser 

 

Vereinheitlichung mit Punktierung möglich 

addr = n Eingangsbits + m 
Zustandsbits 

data = n / coderate Ausgangsbits + m 
Folgezustandsbits 
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Blockparallele Verarbeitung 
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Beispiel: Blockparalleler Reed-Solomon-Dekodierer 
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Gesamtdurchsatz: 3x Durchsatz der Einzeldekoder 

 
Diese Lösung ist so nicht richtig!!! 

 

 Block für den ersten Pfad besteht aus 255 Eingangsbytes, es werden jedoch  

 stets Vielfache von 4 eingeschrieben 

 Kopieren von einzelnen Bytes und Einfügen von Dummy-Bytes notwendig! 
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Beispiel: Korrekter blockparalleler Reed-Solomon-Dekodierer 
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4. Kopieren von Bytes zum vorherigen Block, Einfügen von Dummy-Bytes am 
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Sonderform: Streambasierte blockparallele Verarbeitung 
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Aufteilung der nicht in Blöcken organisierten Rohdaten in Teilströme 

 Zuordnung kann nicht wahlfrei getauscht werden 

Teilströme werden jeweils einer Block-FE zugeordnet 

Zwischen den einer FE zugeordneten Blöcken bestehen Abhängigkeiten 
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Latenzanalyse paralleler Verarbeitungsstrukturen 
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EASY-A VHR-E: Analyse der Verarbeitungslatenzen 
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Aber: 
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Parallelität ermöglicht auch Latenzverringerung! 
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Latenzverringerung durch Parallelität 
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Latenzreduktion durch Bitparallelität möglich 

 

  Verzicht auf dedizierten Interleaver 

 

  Nutzung des impliziten Interleavings 

 

Implizites Interleaving: 

 

  Aufteilung der Bits auf unterschiedliche Funktionseinheiten 

 

  Umwandlung von Bündelfehlern in Einzelfehler 

 

Analyse der Systemperformance notwendig (Framefehlerraten) 
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Latenzverringerung durch Spekulation 
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Spekulation: Schlussfolgerung ohne gesicherte Erkenntnis 

 

Gebräuchliche Anwendung in Datenverarbeitung: 

-  Sprungvorhersage 

-  spekulative Befehlsausführung 

-  Prefetching 

 

spekulative Verfahren zur Latenzverringerung: 

1.) Spekulative Demodulation  

  Spekulation auf die verwendeten Übertragungsparameter 

      (Modulation, Kodierung, Punktierung) 

 

2.) Spekulative Dekodierung 

  Spekulation auf Fehlerfreiheit der übertragenen Daten 
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Typische Basisbandverarbeitung 
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Präambel DS 2SF DS 1 DS NDS 3

∫∫

∫∫
SF: Signalfeld

DS: Datensymbol
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Spekulative Demodulation 
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 1. Einschreiben des Blocks 

 

 2. (iterative) Blockdekodierung 

 

 3. Blockausgabe 
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Block-

dekodierer

Prüfsummen-

berechnung

Ausgangs-

puffer

 

 

 

 

 

 

 

 

 

 Voraussetzung: systematischer Blockcode 

 

  Erfolgsfall: Verringerung der Latenz um Blockdekodierungszeit 

 

  Prüfsummenalgorithmus  Blockcode 
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Empfängerlatenz (BPSK, RS, 4 Streams):  21,5 µs 
   
Implizites Interleaving:   - 1,2 µs (5,6 %) 
 
Spekulative Demodulation (erfolgreich): - 1,7 µs (8 %) 
 
Spekulative RS-Dekodierung (erfolgreich): - 2,9 µs (13,4 %) 
 

  Gesamt:  16,3 µs  - 5,2 µs (24,2 %) 
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Steigende Datenraten durch komplexe Algorithmen 

   zunehmender Einfluss von Latenzen auf Datendurchsatz 

 

Systemkonzeption nicht unabhängig von Implementierung + Beachtung 
Hardwarekenngrößen möglich 

 

Spekulative Verfahren: Verringerung von Latenzen aufgrund von Parameter-
abhängigkeiten + Blockverarbeitung 

  Variable Latenzen: Anpassung MAC-Verarbeitung erforderlich 

 

Deutliche Latenzverringerung durch gezeigte Verfahren in realem 60-GHz-
Kommunikationssystem 
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