8. Simulation und Äquivalenz

8.2 Bisimulation
How gain a simulation congruence?

Observation:
A slightly more tight relation
makes simulation equivalence a congruence:

R simulates L with ρ and
L simulates R with $(\rho)^{-1}$.
R simulates L with

L:
- $l_0 \xrightarrow{a} l'_1 \xrightarrow{a} l_1 \xrightarrow{b} l_2$

R:
- $r_0 \xrightarrow{a} r_1 \xrightarrow{b} r_2$
L simulates R with

L: $l_0 \rightarrow l_1 \rightarrow b \rightarrow l_2 \rightarrow a \rightarrow l'_1$

R: $r_0 \rightarrow a \rightarrow r_1 \rightarrow b \rightarrow r_2$

is not the reverse of
Theorem. Bisimulation is a congruence.

Def. ρ is a *bisimulation from L to R* iff R simulates L with ρ and L simulates R with $(\rho)^{-1}$.

Def. L and R are *bisimilar* iff there exists a bisimulation from L to R.

$$\text{sim} = \text{def} \quad \{(l_0, r_0), (l_0, r_2), (l_1, r_1), (l_2, r_1)\}$$ is a bisimulation from L to R.

mutual simulation by ρ and $(\rho)^{-1}$
Bisimulation harmonizes with the *Temporal Logic CTL*.

Theorem.
Two states are bisimilar iff they share the same *CTL* properties.

Consequence:
Specify a system in terms of *CTL*.
This may yield various different implementations.
They all are bisimular.
Variant: L is weakly simulated by R

a) \[l_0 \xrightarrow{\alpha} l' \]
\[r_0 \] „ \(r_0 \) simulates \(l_0 \) “

b) If
\[l \xrightarrow{\alpha} l' \]
\[r \xrightarrow{\tau^*} \alpha \xrightarrow{\tau^*} r' \] then there exists

Caution!
Weak bisimulation is no congruence
Examples for weak Bisimilarity

P and Q are weakly bisimilar:

R, S and T are pairwise *not* weakly bisimilar:

Caution!
Weak bisimulation is no congruence
8. Simulation und Äquivalenz

8.2 Bisimulation

Ende