Formal kernel of ASM
1. Prologue
System specification

“systems specification” is about “algorithms”, affecting real world objects
(which may include implementable components.)

Is there anything mathematically interesting to say about such algorithms?
ASM: Yes!!
the math background: General Algebra

Algebraic Specifications:
“What can you say by help of a signature Σ, the ground terms T_Σ and (quantified) general terms $T_\Sigma(X)$ about the Σ-structures?”

ASM:
“What can you say by help of a signature Σ, the ground terms T_Σ and (quantified) general terms $T_\Sigma(X)$ about pairs of Σ-structures ("steps") ?”
Yuri’s theorem

... is 90% a theorem on General Algebra, and 10% on exploiting the 90% in a syntax.

... seems to be just one example in the so far unknown world of algorithms.
1. Prologue

the end
2. Tarski-Structures and Signatures
assumed:

1. notion set

2. For a set U, the notion of a function over U of arity n written $f: U^n \to U$.

From this we derive

Def.: (Tarski-)structure S:
the universe of S, frequently written U_S, finitely many functions φ_i over U_S.
Canonically: signature

Def.: (Tarski-)structure \(S \):
the *universe* of \(S \), frequently written \(U_S \),
finitely many functions \(\varphi_i \) over \(U_S \).

Def.: Signature \(\Sigma \): Finite set of symbols \(f_i \), each with its arity \(n_i \).

Def.: \(S \) is a \(\Sigma \)-structure iff \(\varphi_i \) has the arity \(n_i \) of \(f_i \).

Observation. The signature \(\Sigma \) of a structure is unique up to re-naming the symbols in \(\Sigma \).
Canonically: Molecules of S

Def 4: Let S be a Σ-structure, let $f \in \Sigma$ with arity n, let $u_0, \ldots, u_n \in U_S$, $f_S(u_0, \ldots, u_{n-1}) = u_n$. Then (f, u_0, \ldots, u_n) is a molecule of S.

Lemma 2: A structure S can be re-gained from its molecules, provided S has at least one function with arity ≥ 1.

In the sequel: A structure S is assumed to be given as a set of molecules.
Canonically: Ground Terms interpretation

for a signature Σ
the set T_{Σ} of *ground terms over* Σ

For a Σ–structure S and $t \in T_{\Sigma}$,
the element $t_S \in U_S$
Canonically: Generated molecules

Def 7: i. Let S be a Σ – structure, let $f \in \Sigma$ and let $t_0, \ldots, t_n \in T_{\Sigma}$.

The tuple (f, t_0, \ldots, t_n)

generates the molecule (f, u_0, \ldots, u_n) in S

iff $t_iS = u_i$ (i = 0, ... ,n).

ii. For $T \subseteq T_{\Sigma}$, a set M of molecules is *T-generated*

iff each molecule in M is generated by terms in T.

[classically: term generated subalgebra]
Canonically: T - equality on structures

Def: Let S be a signature, let R, S be Σ-structures, let $T \subseteq T_S$.
Then $R =_T S$ iff $t_R = t_S$ for all $t \in T$.
Canonically: T-Equivalence \approx on structures

Def 8: Let S be a signature, let R, S be Σ-structures, let $T \subseteq T_S$.

$R \approx_T S$ iff for all $t, t' \in T$, $t_R = t'_R$ iff $t_S = t'_S$.

Lemma 3. Let Σ be a signature, let $T \subseteq T_\Sigma$.

If T is finite, \approx_T has finitely many equivalence classes.

Lemma 4. Let Σ be a signature, let $R =_T S$.

Then $R \approx_T S$.
2. Tarski-Structures and Signatures

the end
3. Isomorphism
A new notion: Isomorphism

Def 9: Let R, S be Σ – structures

Let $h: U_R \rightarrow U_S$ be a bijection such that for all $f \in \Sigma$, f n-ary,

and all $u_1, \ldots, u_n \in U_R$:

$h(f_R(u_1, \ldots, u_n)) = f_S((h(u_1), \ldots, h(u_n)))$,

Then h is an *isomorphism from R to S*, written $h: R \rightarrow S$.

Lemma 5: Let R, S be Σ – structures,

let $t \in T_\Sigma$,

let $h: R \rightarrow S$ be an isomorphism,

Then $h(t_R) = t_S$.
Implications

Lemma 6: Let R and S be isomorphic.
Then for each $T \subseteq T_\Sigma$:
$R \approx_T S$

Lemma 7: Let $h: R \rightarrow S$ be an isomorphism.
Then (f, u_0, \ldots, u_n) is a molecule of R iff
$(f, h(u_0), \ldots, h(u_n))$ is a molecule of S.

Lemma 8: Replacing some $u \in U_S$ by some new element $v \notin U_S$
yields a structure R, isomorphic to S,
with $U_R = U_S \setminus \{u\} \cup \{v\}$.
Lemma 9. Let R, S be Σ-structures, let $T \subseteq T_\Sigma$, let $R \approx_T S$. Then there exists some Q isomorphic to R with $Q =_T S$.

short hand: If $R \approx_T S$ then $R \rightarrow Q =_T S$.

Proof.
The RQS construction, graphically

Lemma 9. Let R, S be Σ-structures, let $T \subseteq T_\Sigma$, let $R \approx_T S$.

For each $t \in T$
then holds

$$Q^{t_Q} = t_{\approx S}$$
The RQS construction, graphically

Lemma 9. Let R, S be Σ-structures, let $T \subseteq T_\Sigma$, let $R \cong_T S$.

Proof.

For each $u \in U_R \cap U_S$ replace:

$$R \xrightarrow{u \text{ by } v \notin U_R \cup U_S} P$$

iso \quad (triv.)

For each $t \in T$ replace:

$$P \xrightarrow{t_P \text{ by } t_S} Q$$

iso

then holds:

$$t_Q = t_{SS}$$

iso by $P \cong_T S$
3. Isomorphism

the end
4. Steps
A new notion: steps

Def 10: A *step* is a pair \((S,S')\) of structures \(S\) and \(S'\), where
\[
S \text{ and } S' \text{ have the same signature and the same universe.}
\]

Def 11: For a step \((S, S')\), let \(\Delta(S,S') =_{\text{def}} S\setminus S\).

Def 12: A set \(\Xi\) of steps is *isomorphism closed* iff for each \((R,R') \in \Xi\)
and each isomorphism \(h: R \to S\) holds:
\[(S,S') \in \Xi, \text{ with } S' = h(R').\]
Lemma 10. Let \((R, R')\) and \((S, S')\) be steps, let \(h: R \rightarrow S\) and \(h: R' \rightarrow S'\) be an isomorphism, let \(T \subseteq T_\Sigma\). Then \(T\) generates \(\Delta(R, R')\) iff \(T\) generates \(\Delta(S, S')\).

Proof.
\((f, u_0, \ldots, u_n)\) is generated by \((f, t_0, \ldots, t_n)\) in \(R\) (in \(R'\), resp.) iff
\((f, h(u_0), \ldots, h(u_n))\) is generated by \((f, t_0, \ldots, t_n)\) in \(S\) (in \(S'\), resp)
(by Lemma 7).
Then \((f, u_0, \ldots, u_n) \in R\setminus R = \Delta(R, R')\) iff
\((f, h(u_0), \ldots, h(u_n)) \in S\setminus S = \Delta(S, S')\).
Hence, \(\{t_0, \ldots, t_n\}\) generates \(\Delta(R, R')\) iff
4. Steps
5. Witnesses [Discriminators]
A new notion: Witness of a set of steps

idea of witness T:
If $\Delta(R, R') \neq \Delta(S, S')$ then $t_R \neq t_S$ for some $t \in T$.

Def 14: Let Ξ be a set of steps.
A set $T \subseteq T_\Sigma$ of terms is a witness for Ξ iff for each two steps (R, R') and $(S, S') \in \Xi$ $R \implies_T S$ implies $\Delta(R, R') = \Delta(S, S')$.

Lemma 11. If T is a witness for Ξ and $T' \supseteq T$, then T' is a witness for Ξ, too.
Lemma 13. Let Ξ be an isomorphism closed set of steps
let T be a witness for Ξ,
let $(R,R'), (S,S') \in \Xi$, $R \approx_T S$.
Let T generate $\Delta(R,R')$.
Then T generates $\Delta(S,S')$

Proof. There exists a structure Q isomorphic to R with $Q =_T R$ (Lemma 9).
Then T generates $\Delta(Q,Q')$ (Lemma 10)
Then T generates $\Delta(S,S')$ (Lemma 12)
Structures without witness

Lemma 14. Let \((S, S')\) be a step
where \(\Delta(S,S')\) is not \(T_\Sigma\)-generated.
Then there exists a step \((R, R')\) isomorphic to \((S, S')\)
such that \(S\) and \(R\) have no witness.

Proof. The Lemma’s assumption implies a molecule
\((f, u_0, \ldots, u_n) \in \Delta(S,S')\) and some index \(0 \leq k \leq n\)
with \(u_k \neq t_S\) for all \(t \in T_\Sigma\).
Let \(v\) be any element, \(v \notin U_S\).
In \(S\), replace each occurrence of \(u_k\) by \(v\).
This yields a structure \(R\), isomorphic to \(S\) (by Lemma 8).
As \(u_k \neq t_S\) for all \(t \in T_\Sigma\), it holds \(t_R = t_S\) for all \(t \in T_\Sigma\).
Hence, \(R\) and \(S\) have no witness (by Def. 13).
Term generation of $\Delta(S, S')$

Lemma 15. Let Ξ be a set of isomorphism closed steps, let T be a witness of Ξ. Then for each step $(S, S') \in \Xi$, $\Delta(S, S')$ is T-generated.

Proof. By contradiction, assume $\Delta(S, S')$ is not T-generated. Construct R according to the proof of Lemma 13. Then $(R, R') \in \Xi$ and $\Delta(R, R') \neq \Delta(S, S')$, and S and R have no witness by construction. Hence, Ξ has no witness (by Def. 14).
5. Witnesses
6. Construction of an ASM
the ingredients: Given

- a signature Σ,

- a set Ξ of steps (S,S') with Σ-structures S, S', deterministic (i.e. for each Σ-structure S exactly one (S, S')) and isomorphism closed, (i.e. for each $(R,R') \in \Xi$ and each $h: R \to S$, $(S, h(R')) \in \Xi$).

- a finite witness $T \subseteq T_{\Sigma}$ for Ξ.

What to cook: Construct

1. for each \(\approx_T \) -equivalence class \(A \)

 - a set \(M \) of \(\langle f, t_0, \ldots, t_n \rangle \), generating \(\Delta(R, R') \),
 for some \((R, R') \in \Xi \) with \(R \in A \)

 - the set \(\text{ass}(A) = \text{def} \{ f(t_0, \ldots, t_{n-1}) := t_n \mid (f, t_0, \ldots, t_n) \in M \} \)

 - the set \(\text{eq}(A) = \text{def} \{ t = t' \mid t, t' \in T \text{ and } t_S = t'_S \text{ for some } S \in A \} \)
 \(\cup \{ t \neq t' \mid t, t' \in T \text{ and } t_S \neq t'_S \text{ for some } S \in A \} \)

 - the ASM- rule \(\text{rule}(A) = \text{def} \{ \text{eq}(A) \rightarrow \text{ass}(A) \} \)
The equivalence \approx_T graphically

all Σ - structures the \approx_T equivalence classes
all steps
from A
go to A'
a step from A to A'
a step is a set of updates
an update yields an ass. statement

A
A'

S
$h(S)$
$h(S')$

S'

A to A'

all isomorphic updates are described by one assignment statement.

isom. str. are

an update yields ass. statem. describes all steps from A to A'

a finite set of ass. statem.
The equivalence \approx_T graphically

all Σ - structures the \approx_T equivalence classes

all steps from A go to A'

Construct all equations that hold and all equations that don't hold in A

\land - them as a guard for the ass. statement

A

S

A'

$h(S)$

$h(S')$

\approx_T equivalence class

A step is a set of updates

an update yields an ass. statement

a finite set of updates, statem.

an update

updates all steps from A to A'

Do that for each \approx_T equivalence class

and combine

isom. str. are equivalent.
6. Construction of an ASM

the end