
1

Metric Tools for
Java Programs

Zoran Putnik
Department of Informatics and Mathematics,
Faculty of Science, University of Novi Sad

4th Workshop on SEE and RE 2

Free Metric Tools for Java

JCSC
CheckStyle
JavaNCSC
JMT
Eclipse plug-in

2

4th Workshop on SEE and RE 3

JCSC – Java Coding Standard Checker

4th Workshop on SEE and RE 4

Overview
JCSC is a powerful tool to check source code
against a highly definable coding standard and
potential bad code.
The standard covers:

naming conventions for class, interfaces, fields,
parameter,
the structural layout of the type (class/interface)
finds weaknesses in the the code -- potential
bugs -- like empty catch/finally block, switch
without default, throwing of type 'Exception',
slow code, ...

It can be downloaded at:
http://jcsc.sourceforge.net/

3

4th Workshop on SEE and RE 5

Performed Checks
The default
checking rules
adhere to the Sun
Code Conventions
with some
additional auditing
for weak code.

4th Workshop on SEE and RE 6

General Checks
correct class/interface header
line length
NCCS (non commenting source statements = real code)
count for class
NCSS checking for method length
CCN (cyclomatic complexity number) checking for methods
tabulators in source code allowed
.* imports allowed or use fully qualified imports
only catch subclassed exceptions; not Throwable and
Exception
check declaration modifier order (also in nested classes)
interface are not declared abstract
'l' for long values allowed ('l' if often mistaken for '1' ->
use 'L'; i.e. 40l or 40L)
space after statement (if, else, while, ...)
space after method name
spaces around binary expression
throwing of 'Exception' or only of subclasses types allowed
only catching of specialized Exeptions (not Throwable,
Exception) is allowed
switch statement requires default
assignments in conditional expressions allowed
(if (a = 5))
only one declaration per line

allow 'get' prefix for method returning a boolean or
enforce 'is', 'has', 'are' instead
allow type 'Vector' to be returned, use 'List' or
'Collection' instead; new faster Collection API
allow type 'Hashtable' to be returned, use 'HashMap'
instead; new faster Collection API
allow String literals or only constants (final static
String) in code. Important for internationalization
empty catch block allowed or indicated
empty finally block allowed or indicated
complex loop expression allowed or customizable
conditional expression allowed or indicated
number of arguments of method calls; too many
arguments indicate procedural programming
semicolon after type declaration allowed (this is C++)
single line block without '{', '}' allowed
(if, else, ...)
Array specifier at type (ie. String[] names and not
String names[])
allow public, protected or package private
fields
allow public fields or not
check [] at type and not at field name
indicate when too many parameters are passed
...

4

4th Workshop on SEE and RE 7

Metrics - 1
NCSS (non commenting source
statements- real code) are being
calculated for the whole project,
individual classes and methods
NCSS is an acronym for Non
Commenting Source Statements.
This number represents pure
functionality code lines in a source
file. Comparing this number and
the violations count, the quality can
be eassier assest.

4th Workshop on SEE and RE 8

Metrics - 2
CNN (cyclomatic complexity
number - possible number of pathes
through a method) are generated
for all methods and constructiors
CCN is an acronym for Cyclomatic
Complexity Number. This number
indicates the number in how many
branches the flow is split. Each
method has a CCN of 1 per default.

5

4th Workshop on SEE and RE 9

Recommendations
Bruce Eckel used
JCSC to validate
the code
examples in his
3rd edition of
Thinking in Java

4th Workshop on SEE and RE 10

Usage
Used as a command-line tool
Through commercial extensions,
offers several GUI’s for work:

Rules Editor UI
Ant
IntelliJ IDEA
CruiseControl

Cannot scan more than one file at
the time, cannot scan the whole
folder recursively.

6

4th Workshop on SEE and RE 11

Usage – command line
jcsc [option] <file>

with the option being:
-h : show the help
-r <rule> :the rule
file is read from
the file system
-j <rule> :the rule
file is read from
the jcsc.jar file

Violations:
c:\SemOrg\test\timeverifier.java:11:1:class Declaration
JavaDoc does not provide the required '@author‘
tag:TypeDeclarationAuthor:3

c:\SemOrg\test\timeverifier.java:11:1:class Declaration
JavaDoc does not provide the required '@version‘
tag:TypeDeclarationVersion:3
…
5 violation(s) found

Metrics:
13:43:TimeVerifier.verify():NCSS-10:CCN-6

NCSS count : 16
Lines count : 30
Methods count : 1
Unit Test Class count : 0
Unit Tests count : 0

4th Workshop on SEE and RE 12

Usage – Ant tool (demo data)
ant -buildfile jcsc.xml all

REPORT
/cygdrive/e/jakarta-ant-1.5/lib/ xml-apis.jar:
/cygdrive/e/ jakarta-ant-1.5/lib/xercesImpl.jar:
/cygdrive/e/jakarta-ant-1.5/lib/optional.jar:
/cygdrive/e/jakarta-ant-1.5/lib/gnu-regexp.jar:
/cygdrive/e/jakarta-ant-1.5/l
…
e:\jaxp-1.1\jaxp.jar;e:\jaxp-1.1\crimson.jar;
e:\jaxp-1.1\xalan.ja;e:\jakarta-ant\lib\ant.jar;
e:\jakarta-ant\lib\jakarta-ant-1.4.1-optional.jar

Buildfile: jcsc.xml

Results are stored in a XML file that can be
viewed via XSL compliant browsers.
Tested with Mozilla 1+ and IE6
all:

[jcsc] Package Count: 10
[jcsc] Class Count: 26
[jcsc] Methods Count: 281
[jcsc] Total Violations Count : 153
[jcsc] Avg Violations per Class: 5.8846154
[jcsc] Total NCSS Count: 3430
[jcsc] Avg Violations per NCSS: 0.044606414
[jcsc] Unit Test Class Count: 2
[jcsc] Unit Tests Count: 83

BUILD SUCCESSFUL

7

4th Workshop on SEE and RE 13

Metrics results for SemOrg

8; 715; 13ClientList

8; 715; 13CompanyPresentationList

8; 715; 14CanConductList

8; 715; 13ClientPresentationList

8; 716; 14ClientBookingList

8; 716; 14CompanyBookingList

CCNNCSSName

4th Workshop on SEE and RE 14

Free Metric Tools for Java

JCSC
CheckStyle
JavaNCSC
JMT
Eclipse plug-in

8

4th Workshop on SEE and RE 15

CheckStyle
Checkstyle is a development tool
to help programmers write Java
code that adheres to a coding
standard.
It automates the process of
checking Java code to spare
humans of this boring (but
important) task.
This makes it ideal for projects that
want to enforce a coding standard.

4th Workshop on SEE and RE 16

Usage
Checkstyle is highly configurable
and can be made to support almost
any coding standard.
It can be used as:

An Ant task.
A command line tool.

It can be downloaded at:
http://checkstyle.sourceforge.net/

9

4th Workshop on SEE and RE 17

Features
The things that
Checkstyle can check
for are:

Javadoc Comments
Naming Conventions
Headers
Imports
Size Violations
Whitespace
Modifiers

Blocks
Coding Problems
Class Design
Duplicate Code
Metrics Checks
Miscellaneous
Checks
Optional Checks

4th Workshop on SEE and RE 18

Metrics Checks
BooleanExpressionComplexity
ClassDataAbstractionCoupling
ClassFanOutComplexity
CyclomaticComplexity
NPathComplexity

10

4th Workshop on SEE and RE 19

Command line usage
The command line usage is:

java -D<property>=<value> \ com.puppycrawl.tools.checkstyle.Main \ -
c <configurationFile> [-n <packageNameFile>] \ [-f <format>] [-p
<propertiesFile>] [-o <file>] \ [-r <dir>] file...

Command line options are:
-n packageNamesFile - specify a package names file to use.
-f format - specify the output format. Options are "plain" for the
DefaultLogger and "xml" for the XMLLogger. Defaults to
"plain".
-p propertiesFile - specify a properties file to use.
-o file - specify the file to output to.
-r dir - specify the directory to traverse for Java source files.

4th Workshop on SEE and RE 20

Features
Checkstyle will process the
specified file and report errors to
standard output in plain format.
Checkstyle requires a configuration
XML file that configures the checks
to apply.
Checkstyle reports errors, but
reports “metric errors” only if a
program has measured value
greater than default.

11

4th Workshop on SEE and RE 21

An example of configuration XML file is:
<module name="Checker">

<module name="TreeWalker">

<!-- Default value is 3 -->
<module name="BooleanExpressionComplexity">

<property name="max" value="1"/>
</module>

<!-- Default value is 7 -->
<module name="ClassDataAbstractionCoupling">

<property name="max" value="1"/>
</module>

<!-- Default value is 20 -->
<module name="ClassFanOutComplexity">

<property name="max" value="1"/>
</module>

<!-- Default value is 10 -->
<module name="CyclomaticComplexity">

<property name="max" value="1"/>
</module>

<!-- Default value is 200 -->
<module name="NPathComplexity">

<property name="max" value="1"/>
</module>

</module>

</module>

4th Workshop on SEE and RE 22

An example of a result:

An example of a result on a known
“bad” function:

12

4th Workshop on SEE and RE 23

Most distinct characteristics

It checks a project as a whole, yet
a it gives a report only on items
greater than the default values.

It gives different results than all of
the other checks.

4th Workshop on SEE and RE 24

Free Metric Tools for Java

JCSC
CheckStyle
JavaNCSC
JMT
Eclipse plug-in

13

4th Workshop on SEE and RE 25

JavaNCSS - A Source
Measurement Suite for Java

… is a simple command line utility that
measures two standard source code metrics
for the Java programming language.
Metrics are:

LOC (lines of code)
NOC (number of classes)

The metrics are collected globally, for each
class and/or for each function.

Can be downloaded at
http://www.kclee.de/clemens/java/javancss/

4th Workshop on SEE and RE 26

JavaNCSS extensions
To interactively
select Java source
files for counting,
Jacob
(a Java class
browser and project
manager) can be
used.

JavaNCSS can also
be used out of an Ant
build.xml script.

14

4th Workshop on SEE and RE 27

JavaNCSS extensions
JavaNCSS can
optionally present its
output with a little
graphical user interface.

… or as a result in a
command line. (If no
option is given,
JavaNCSS only
calculates the total non
commenting source
statements (NCSS) of
the given input.)

4th Workshop on SEE and RE 28

Complete results for “SemOrg” - Packages

15

4th Workshop on SEE and RE 29

Complete results for “SemOrg” - Classes

4th Workshop on SEE and RE 30

Complete results for “SemOrg” - Methods

For “Methods”, two additional
mestrics are added:

• CCN – cyclomatic
complexity number

• JVDC – indication
whether this method is
formally documented
or not.

Results are the same as with
the previous tool.

16

4th Workshop on SEE and RE 31

Usage
Multiple java source files can be specified in the
command line:

If a '@' char is put in front of a file name, then not
this file will be measured but its content will be
interpreted as a list of Java source files that shall
be counted.
Wild cards are not supported yet. (If the operating
system processes the command line for the
program, then you are lucky. Windows doesn't do
that.)

Yet … the following line processes all files:

javancss –gui *.java

4th Workshop on SEE and RE 32

Usage and options 1/2
Synopsis

javancss [-option] stdin | [@]source_file*

Options
-ncss
This is the default which counts total NCSS.
-package
Collects the metrics data for each package. This is the most
top level view javancss offers for your projects.
-object
Collects the metrics data for each class/interface.
-function
Collects the metrics data for each function.
-all
The same as '-package -object -function'.

17

4th Workshop on SEE and RE 33

Usage and options 2/2
-gui
Opens a gui to presents the '-all' output in tabbed panels.
-xml
Output in xml and not in ascii format. Additional option '-
all' is recommended.
-out file
Output goes normally to standard output, with this option
an output file can be specified.
-recursive
Java file in sub directories will be parsed as well.
-check
Trigger JavaNCSS self test suite.
-version
Prints out the version of JavaNCSS.
-help
Prints out some basic information.

4th Workshop on SEE and RE 34

Result for known “bad” functions

18

4th Workshop on SEE and RE 35

Free Metric Tools for Java

JCSC
CheckStyle
JavaNCSC
JMT
Eclipse plug-in

4th Workshop on SEE and RE 36

JMT – Java
Measurement Tool

Authors:
Otto-von-Guericke-Universität Magdeburg, Germany,
Department of Software Engineering
Developed by Ingo Patett as his Diplom-Arbeit
Supervised by Prof. Dumke and Dr. Köppe. It was improved by
Christian Kolbe under supervision of Dipl.-Inf. Wille
Can be downloaded from
http://ivs.cs.uni-magdeburg.de/sw-eng/agruppe/forschung/tools/

Purpose:
The Java Measurement Tool realizes a static measurement of
Java applications. It analyzes the Java classes and the relations
between them.

19

4th Workshop on SEE and RE 37

Application usage
Two ways of analyzing Java classes.

The first way is to analyze one single Java class -
select ‘Analyze a File’.
There is also the possibility to analyze an entire
project - select ‘Analyze a Project’.

To process an entire project you have to analyze it
file by file. Click the button ‘Load File’ and select a
Java file.

File to be analyzed must be a source code file, it
is impossible to process a compiled class file.

4th Workshop on SEE and RE 38

Procedure
After loading the file click the button
‘Analyze File’ to process it.
Message about the success or an
occurring error will appear.
If you are analyzing a project, continue
with the next file.
After processing the files, the results of
the measurement are displayed.
It is possible to have a look:

at the data of the classes, or
the data of the methods contained within
the project.

20

4th Workshop on SEE and RE 39

JMT Tool

4th Workshop on SEE and RE 40

Results for a file analysis – “Method Data”

21

4th Workshop on SEE and RE 41

Results for a file analysis – “Class Data”

4th Workshop on SEE and RE 42

An example of a single measure

22

4th Workshop on SEE and RE 43

Complete results for “SemOrg”

4th Workshop on SEE and RE 44

List of available metrics 1/4
Metrics on Class Level

DIT – Depth of Inheritance Tree
Is the maximum length of the way from the class to the root.
Classes without a parent class have a DIT of 0.
NOC – Number of Children
Number of direct successor classes.
WMC – Weighted Methods per Class
here: number of methods of the considered class.
WAC – Weighted Attributes per Class
here: number of attributes of the considered class.
CBO – Coupling between Object Classes
Number of classes, which are coupled with this class.
Classes are coupled, if one class uses methods or attributes
of the other class.

23

4th Workshop on SEE and RE 45

List of available metrics 2/4
Metrics on Class Level

PIM – Number of Public Methods
NMI – Number of Methods inherited
Number of methods of the direct parent class
NAI – Number of Attributes inherited
Number of attributes of the direct parent class
NMO – Number of Methods overwritten
RFC – Response for a class
Number of methods used by the class plus the methods of
the class. Is the highest possible number of methods, which
can be invoked by a message to this class.
LOC – Lines of Code

4th Workshop on SEE and RE 46

Metrics on Method Level
NOP – Number of Parameter
LOC – Lines of Code

Metrics on Inheritance Level
MIF – Method Inheritance
Factor
Relation of inherited methods to
total number of methods.
AIF – Attribute Inheritance
Factor
Relation of inherited attributess
to total number of attributes.

List of available metrics 3/4

24

4th Workshop on SEE and RE 47

List of available metrics 4/4

Metrics on System Level
COF – Coupling Factor
(= (total number of couplings) / (n²-n) ;
with n = number of defined classes)
A high COF points to a high complexity of
the system.
ANM – Average Number of Methods per
Class
ANM – Average Number of Attributes per
Class
ANM – Average Number of Parameter
per Method

4th Workshop on SEE and RE 48

Most distinct characteristics

It does have a possibility to
analyse a project as a whole, yet a
user has to load individualy tenths,
hundreds or thousands of files.

File analysis requires several (un-
necessary) steps: Analyse a File +
Load File + Select File + Open File
+ Analyse File + OK

25

4th Workshop on SEE and RE 49

Resume
JCSC – OK, but too simple – only 2
checks, only file-per-file checking
CheckStyle – reports only errors, not
check result, gives “wrong” results
JavaNCSS – good, small number of
metrics, but easy to use and with solid
user interface
JMT – most serious, the greatest number
of checks, a slightly too complicated usage

4th Workshop on SEE and RE 50

Free Metric Tools for Java

JCSC
CheckStyle
JavaNCSC
JMT
Eclipse plug-in

26

4th Workshop on SEE and RE 51

Eclipse project

4th Workshop on SEE and RE 52

Basics
Eclipse is an open platform for tool
integration built by an open community of
tool providers.
It operates under a open source
paradigm, with a common public license
that provides royalty free source code
and worldwide redistribution rights.
Eclipse platform provides tool developers
with ultimate flexibility and control over
their software technology.

27

4th Workshop on SEE and RE 53

History
Industry leaders: Borland, IBM,
MERANT, QNX Software Systems,
Rational Software3, Red Hat, SuSE,
TogetherSoft3 and Webgain2 formed the
initial eclipse.org Board of Stewards in
November 2001.
Since then, a lot of new memebers
joined. For example: Fujitsu, Hitachi, HP,
Oracle, Object Management Group
(OMG) Fraunhofer Institute, Ericsson,
QA Systems, Advanced Systems
Concepts, Genuitec, INNOOPRACT
Informationssysteme GmbH, Intel …

4th Workshop on SEE and RE 54

“Metrics” plug – in
Installation of the whole project is
(extremely) simple, and consists of
un-zipping.
The same stands for adding the
“metric” plug-in that should be un-
ziped at the appropriate place and
enabled as an option inside
Eclipse.

28

4th Workshop on SEE and RE 55

GUI of Eclipse + Metric plug-in

4th Workshop on SEE and RE 56

Line-of-code metrics for SemOrg

29

4th Workshop on SEE and RE 57

Example of another “bad” metrics

4th Workshop on SEE and RE 58

More detailed view of the same results

30

4th Workshop on SEE and RE 59

Cyclomatic Complexity Number for known “bad” functions

4th Workshop on SEE and RE 60

Metrics for the project as a whole

31

4th Workshop on SEE and RE 61

Metrics for the certain package

4th Workshop on SEE and RE 62

Metrics for the certain class

32

4th Workshop on SEE and RE 63

Metrics results can be exported to XML

4th Workshop on SEE and RE 64

Dependency graph of a project

33

4th Workshop on SEE and RE 65

More detailed dependency graph

4th Workshop on SEE and RE 66

Path finding in a dependency graph

34

4th Workshop on SEE and RE 67

Adjusting the preferences for metrics 1/2

4th Workshop on SEE and RE 68

Adjusting the preferences for metrics 2/2

35

4th Workshop on SEE and RE 69

Ant task as a part of Eclipse project

