
1

SE curriculum in CC2001 
made by IEEE and ACM:

Overview and Ideas for Our Work

Katerina Zdravkova
Institute of Informatics
E-mail: Keti@ii.edu.mk

What is Software Engineering?

SE is the discipline concerned with the
application of theory, knowledge, and 
practice for effectively and efficiently building 
software systems that satisfy the 
requirements of users and customers.
It encompasses all phases of the life cycle of 
a software system.
The life cycle includes requirement analysis 
and specification, design, construction, 
testing, and operation and maintenance



2

Suggested SE courses

Advanced Software Development
Software Engineering
Software Design
SE and Formal Specifications
Empirical Software Engineering
Software Process Improvement
Component-Based Computing
Programming Environment
Safety-Critical Systems

Software Engineering
(core lectures)

Software design
Using APIs
Software tools and environments
Software processes
Software requirements and specifications
Software validation
Software evolution
Software project management



3

Software Engineering
(elective lectures)

Component-based computing
Formal methods
Software reliability
Specialized systems development

SE1. Software design 
(8 hours)

Topics: 
Fundamental design concepts and principles 
Design patterns 
Software architecture 
Structured design 
Object-oriented analysis and design 
Component-level design 
Design for reuse 



4

SE1: Learning objectives / 1

1. Discuss the properties of good software 
design.

2. Compare and contrast object-oriented 
analysis and design with structured analysis 
and design. 

3. Evaluate the quality of multiple software 
designs based on key design principles and 
concepts. 

4. Select and apply appropriate design patterns 
in the construction of a software application.

SE1: Learning objectives / 2

5. Explain the value of application 
programming interfaces (APIs) in software 
development. 

6. Use class browsers and related tools during 
the development of applications using APIs. 

7. Design, implement, test, and debug 
programs that use large-scale API 
packages.



5

SE2. Using APIs (5 hours)

Topics:

API programming 
Class browsers and related tools 
Programming by example 
Debugging in the API environment 
Introduction to component-based computing

SE2: Learning objectives

1. Explain the value of application 
programming interfaces (APIs) in software 
development. 

2. Use class browsers and related tools during 
the development of applications using APIs. 

3. Design, implement, test, and debug 
programs that use large-scale API 
packages.



6

SE3. Software tools and 
environments (3 hours)

Topics:

Programming environments 
Requirements analysis and design modeling 
tools 
Testing tools 
Configuration management tools 
Tool integration mechanisms

SE3: Learning objectives

1. Select, with justification, an appropriate set 
of tools to support the development of a 
range of software products. 

2. Analyze and evaluate a set of tools in a 
given area of software development (e.g., 
management, modeling, or testing). 

3. Demonstrate the capability to use a range 
of software tools in support of the 
development of a software product of 
medium size.



7

SE4. Software processes
(2 hours)

Topics:

Software life-cycle and process models 
Process assessment models 
Software process metrics

SE4: Learning objectives / 1

1. Explain the software life cycle and its 
phases including the deliverables that are 
produced. 

2. Select, with justification the software 
development models most appropriate for 
the development and maintenance of a 
diverse range of software products. 

3. Explain the role of process maturity models. 



8

SE4: Learning objectives / 2

4. Compare the traditional waterfall model to 
the incremental model, the object-oriented 
model, and other appropriate models. 

5. For each of various software project 
scenarios, describe the project's place in the 
software life cycle, identify the particular 
tasks that should be performed next, and 
identify metrics appropriate to those tasks

SE5. Software requirements 
and specifications (4 hours)

Topics:

Requirements elicitation 
Requirements analysis modeling techniques 
Functional and non-functional requirements 
Prototyping 
Basic concepts of formal specification 
techniques



9

SE5: Learning objectives / 1

1. Apply key elements and common methods 
for elicitation and analysis to produce a set 
of software requirements for a medium-
sized software system. 

2. Discuss the challenges of maintaining 
legacy software. 

3. Use a common, non-formal method to 
model and specify (in the form of a 
requirements specification document) the 
requirements for a medium-size software 
system.

SE5: Learning objectives / 2

4. Conduct a review of a software 
requirements document using best 
practices to determine the quality of 
the document. 

5. Translate into natural language a 
software requirements specification 
written in a commonly used formal 
specification language.



10

SE6. Software validation
(3 hours)

Topics:
Validation planning 
Testing fundamentals, including test plan 
creation and test case generation 
Black-box and white-box testing techniques 
Unit, integration, validation, and system 
testing 
Object-oriented testing 
Inspections 

SE6: Learning objectives / 1

1. Distinguish between program 
validation and verification. 

2. Describe the role that tools can play in 
the validation of software. 

3. Distinguish between the different 
types and levels of testing (unit, 
integration, systems, and acceptance) 
for medium-size software products



11

SE6: Learning objectives / 2

4. Create, evaluate, and implement a 
test plan for a medium-size code 
segment. 

5. Undertake, as part of a team activity, 
an inspection of a medium-size code 
segment. 

6. Discuss the issues involving the 
testing of object-oriented software.

SE7. Software evolution
(3 hours)

Topics:

Software maintenance 
Characteristics of maintainable software 
Reengineering 
Legacy systems 
Software reuse



12

SE7: Learning objectives / 1

1. Identify the principal issues associated with 
software evolution and explain their impact 
on the software life cycle. 

2. Discuss the challenges of maintaining 
legacy systems and the need for reverse 
engineering. 

3. Outline the process of regression testing 
and its role in release management.

4. Estimate the impact of a change request to 
an existing product of medium size. 

SE7: Learning objectives / 2

5. Develop a plan for re-engineering a 
medium-sized product in response to 
a change request. 

6. Discuss the advantages and 
disadvantages of software reuse. 

7. Exploit opportunities for software 
reuse in a given context.



13

SE8. Software project 
management (3 hours)

Topics:
Team management 
Team organization and decision-making 
Project scheduling 
Software measurement and estimation 
techniques 
Risk analysis 
Software quality assurance 
Software configuration management 
Project management tools

SE8: Learning objectives

1. Demonstrate through involvement in a team 
project the central elements of team building and 
team management. 

2. Prepare a project plan for a software project that 
includes estimates of size and effort, a schedule, 
resource allocation, configuration control, change 
management, and project risk identification and 
management. 

3. Compare and contrast the different methods and 
techniques used to assure the quality of a software 
product.



14

SE9. Component-based 
computing

Topics:
Fundamentals 
Basic techniques
Applications (including the use of mobile 
components) 
Architecture of component-based systems 
Component-oriented design 
Event handling: detection, notification, and 
response 
Middleware 

SE9: Learning objectives

1. Explain and apply recognized principles to the building of 
high-quality software components. 

2. Discuss and select an architecture for a component-based 
system suitable for a given scenario. 

3. Identify the kind of event handling implemented in one or 
more given APIs. 

4. Explain the role of objects in middleware systems and the 
relationship with components. 

5. Apply component-oriented approaches to the design of a 
range of software including those required for concurrency 
and transactions, reliable communication services, database 
interaction including services for remote query and database 
management, secure communication and access.



15

SE10. Component-based 
computing

Topics:

Formal methods concepts 
Formal specification languages 
Executable and non-executable specifications 
Pre and post assertions 
Formal verification

SE10: Learning objectives

1. Apply formal verification techniques to software segments 
with low complexity. 

2. Discuss the role of formal verification techniques in the 
context of software validation and testing. 

3. Explain the potential benefits and drawbacks of using formal 
specification languages. 

4. Create and evaluate pre- and post-assertions for a variety of 
situations ranging from simple through complex. 

5. Using a common formal specification language, formulate the 
specification of a simple software system and demonstrate 
the benefits from a quality perspective.



16

SE11. Software reliability

Topics:

Software reliability models 
Redundancy and fault tolerance 
Defect classification 

Probabilistic methods of analysis

SE11: Learning objectives

1. Demonstrate the ability to apply multiple methods to develop 
reliability estimates for a software system. 

2. Identify and apply redundancy and fault tolerance for a 
medium-sized application. 

3. Explain the problems that exist in achieving very high levels 
of reliability. 

4. Identify methods that will lead to the realization of a software
architecture that achieves a specified reliability level.



17

SE12. Specialized systems 
development

Topics:

Real-time systems 
Client-server systems 
Distributed systems 
Parallel systems 
Web-based systems 
High-integrity systems

SE12: Learning objectives

1. Identify and discuss different specialized systems. 
2. Discuss life cycle and software process issues in the context 

of software systems designed for a specialized context. 
3. Select, with appropriate justification, approaches that will 

result in the efficient and effective development and 
maintenance of specialized software systems. 

4. Given a specific context and a set of related professional 
issues, discuss how a software engineer involved in the 
development of specialized systems should respond to those 
issues. 

5. Outline the central technical issues associated with the 
implementation of specialized systems development.



18

Comparison with the current 
60+30+30 SE syllabus

Part I: Introduction to Software 
Engineering (5 hours)
Part II: Requirements engineering 
(analysis and definition) (19 hours)
Part III: Software Design (5 hours)
Part IV: Implementation and Testing
(10 hours)
Part V: Further problems (21 hours)

Part I in CC2001

What is SE (2 lh): N
Quality criteria for software products (1 
lh): SE4/2
Software process models (1 lh): SE4/1; 
SE5/4
Basic concepts and software 
development documents (1 lh) SE1/1; 
SE2; SE3



19

Part II in CC2001 / 1

Results of the “Analysis and Definition” phase 
(1 lh): SE3/2
Cost estimation (2 lh): N
Basic concepts of the function-oriented view 
(1 lh): SE5/5
Basic concepts of data-oriented view (1 lh): 
SE5/5
Basic concepts of rule-oriented view (1 lh): 
SE5/5

Part II in CC2001 / 2

Structured analysis (1 lh): SE1/4
Basic concepts of state-oriented view (1 
lh): SE5/5
Basic concepts of scenario-oriented 
view (1 lh): SE5/5
Object-oriented analysis (6 lh): SE1/5
Formal software specification and 
program verification (3 lh): N



20

Part III in CC2001

Overview of design activities (2 lh): 
SE1/6; SE1/7
Structured design (1 lh): SE1/4
Object-oriented design (2 lh): SE1/5

Part IV in CC2001

Implementation (2 lh): SE3/1; SE2
Systematic testing (6 lh): SE3/3; SE6/1 
– SE6/6
Functional testing (2 lh): SE3/3



21

Part V in CC2001

Software metrics (4 lh): SE4/3
Maintenance (2 lh): SE7/1
Reverse engineering (4 lh): SE7/3; SE7/5
Quality of software development process and 
its standardization (3 lh): SE7/4
Introduction to software ergonomics (4 lh): N
Project management (4 lh): SE8

Uncovered CC2001 topics

SE2: Using APIs [core] (5 hours)
SE5/1: Requirements elicitation
SE6: Software validation / Part IV
SE9: Component-based computing (III)
SE10: Formal methods (in parts)
SE11: Software reliability (V 24)
SE12: Specialized systems development



22

Ideas for Our Work

Current syllabus 
the most of core CC2001 topics
Small differences can be either 
neglected or modified during course 
evolution
Uncovered CC2001 topics (SE2) could? 
replace some of the topics in part II
Current course should be implemented!


