What else we did to assess the students

Zoran {Putnik, Budimac}
{putnik, zjb}@im.ns.ac.yu
Dept. of Mathematics and Informatics
Faculty of Science, Univ. of Novi Sad

Agenda

- Preliminaries
- Self-assessment
- Small exams
- Final marks
Preliminaries

- Commitment of our Chair to continuously assess students
- Soon → the explicit obligation
- Easier for students, easier for us (in the long term)
- Therefore,
 - everything that student do we shall take into consideration.
 - Points from assignments will be used to form the final mark (not just the prerequisite)

Complications

- Since assignments are done by teams, we should differentiate the influence of each particular person
 - Small surprise ad-hoc tests (worth one point) to repeat some parts of their solutions. The chance to increase the number of points, if the student really was included in the team solution.
 - Self-assessment of team members – promised to be used in ‘research purposes’ only
Not a “monolithic” exam at the end

- But rather several smaller ones, organized as tests.
- Small surprise ad-hoc tests (worth one point) where some part of the lecture should be ‘repeated’ (e.g., ‘what is considered as the ‘good’ cyclomatic complexity’)
- Small sudden questions (worth one to two points) to motivate them to discuss and follow the lecture (e.g. ‘what this uncommented, unstructured C++ program does?’)

Agenda

- Preliminaries
- Self-assessment
- Small exams
- Final marks
Self-assessment inside teams 1

- For each (other) of the team members, every person from the team answered the following questions, awarding between 0 and 25 points:
 - Did a team member read the assignment and the preparation material before the beginning of a meeting of a team?
 - Did a team member made an equal contribution to the final solution as the rest of the team?
 - Did a team member explicitly and creatively contributed to the final solution?
 - Was a team member cooperative during work?

Self-assessment 2

- Most of the students tried to “cover” for their non-working colleagues. Proof:
 - 67% of marks were maximal – 25 points;
 - additional 21% of marks were 20 points or more – again “excellent” marks;
 - two teams gave each other maximal number of points for each assignment, to each member;
 - another five teams gave each other such marks, that the average mark for each member of a team was higher than 20 points.
 - Some students complained that their team members do not contribute to the team solutions. However, they refused to report that officially or in self-assessment forms.
Self-assessment 3

- Still, after scaling, gained results were quite useful:
 - each team has easily distinguishable “best” and “worst” member;
 - the “best” member most freely gave “bad” marks to other members;
 - the “worst” member, on the other hand, gave the others all the “best” marks
 - there is an equal number of students starting “excellent” but going down to “bad”, and vice versa
 - the “worst” marks were given to students who didn’t attend classes regularly

Agenda

- Preliminaries
- Self-assessment
- Small exams
- Final marks
Small exams

- During the course, 3 tests are organized, each one with 20 questions, valued with 20 points.
 - In the future more smaller exams
 - 3-4 of all questions were also related to the assignments – another tool to distinguish between the team members
- Student may fail at most one small exam
- If not satisfied, he can take the analogous test later, during the examination period

Results

- Results were more or less divided into 4 groups, for each test:
 - about 15% achieved around 85-95% of correct answers
 - about 30% achieved around 75% of correct answers
 - about 25% achieved around 50% of correct answers
 - about 20% achieved less than 20% of correct answers
- Only around 60% of students took the first test. Later tests had higher attendance, up to 80%.
Did we do well?

- Students gaining the most points at tests, were at the same time students-members of teams that had the most points at assignments.
- Students from the teams with the worst results, had 0 to 50% of the points, or hadn’t attend the tests.
- (Almost) ALL members of the best teams gained the most points at tests.

Some questions - 1

- There were different types of questions at the tests. For example, open questions:
 - State the basic 4 phases of a waterfall model and its biggest flaw.
- Questions of a “practical” nature:
 - Analyze and critically review given part of a requirement specification for “Seminar Organization” v3.0, and create a report giving all eventual errors, ambiguities, and imprecisements.
- or
 - Reconsider correctness of a given diagram
Some questions - 2

- Questions where *one* correct answer should be selected:
 - On what kind of notation is based data dictionary:
 - Bacus-Naur form
 - Syntax tree
 - Function tree
 - Decision tables

- Questions where *all* correct answers should be selected:
 - Which documents are result of a planning phase:
 - dictionary
 - product model
 - preliminary requirements specification
 - cost estimation
 - GUI prototype
 - project plan

Some questions - 3

- We have more
- Towards the repository?
Agenda

- Preliminaries
- Self-assessment
- Small exams
- Final marks

Final mark - definitions

- We sum all earned points.
- However points are in two different groups:
 - Theory (with accompanying small test and ‘sudden’ questions) are worth 60%
 - Assignments (with accompanying small tests) are worth 40%
- We also take in the consideration the following definitions:
 - Small exam passed = earned more than 50% of points on a small exam
 - Assignments passed = earned more than 50% of points for all of the assignments in total
 - Earned final mark = passed at least 2 small exams earning at least 50% points in total + passed assignments
- If the student passed only two of small exams, his/her maximum mark can be no more than 7
Final mark – contd.

- Final mark: First 10% the highest mark, then 25%, 35%, 25%, 10%, with small modification depending on where the border line is (see later!)
- Whoever did not take part in the continuous assessment, will take the classical exam
 - The whole or
 - The missing parts

Examples-1

- Of maximum 62 points on assignments:
 - The best team won 57 points
 - The worst successful team won 34
 - The team of Živana and Filip: 56 points
 - 43 out of 49 successfully solved the assignments; 3 did not because of force-majeure and 3 (the whole team) won just 29 points and completely missed the last assignment
- Ad-hoc tests and sudden questions (max. 6)
 - The best persons won 4 points
 - The worst persons won 0 points
 - Živana and Filip / Filip and Živana won 4 and 2
 - Of three small tests (‘proving the team solutions’) only two won 0 points.
Examples-2

- Small exams – test (max. 60)
 - The best person won 57 points
 - The worst successful person won 31 points
 - Živana and Filip / Filip and Živana won 56 and 53
 - 28 students passed all three tests
 - 6 students – 2
 - 9 students less than 2
 - 6 students did not take any test

Final marks, again

- Plan: Final mark: First 10% the highest mark, then 25%, 35%, 25%, 10%, with small modification depending on where the border line is (see now!)
- Implementation (34 of 49 passed the exam, > 69%):

<table>
<thead>
<tr>
<th>Mark</th>
<th>Percent (successful)</th>
<th>Percent (all)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>24%</td>
<td>16 %</td>
</tr>
<tr>
<td>9</td>
<td>26 %</td>
<td>18 %</td>
</tr>
<tr>
<td>8</td>
<td>18 %</td>
<td>12 %</td>
</tr>
<tr>
<td>7</td>
<td>18 %</td>
<td>12 %</td>
</tr>
<tr>
<td>6</td>
<td>14 %</td>
<td>10 %</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>30 %</td>
</tr>
</tbody>
</table>
Points distribution among students

Marks distribution among students
What else?

- Wait how distribution will look like after the September exam
- Deeper analysis of self-assessments inside teams: cross-analysis between self-assessment marks, final marks, number of points, number of points, number of points on ad-hoc tests,…