
How to contribute to the joint course on
software engineering by case studies

Zoran Budimac, Klaus Bothe

Version: February 27, 2004.

Abstract. This document describes where and how the joint course on software engineering [1]
uses case studies in the course and in assignments. Therefore, this document also serves as an
instruction on how to build new case studies (which activities should be performed and which
documents produced) in order to successfully replace the existing case studies.

1 Introduction

The Joint Course on Software Engineering (JCSE) [1] currently uses the following case studies
throughout the course and in some assignments:

- the main one, used in 13 topics of the course,
- the supporting one, used in 4 topics of the course,
- additional ones, used in individual topics and in assignments.

There are always on-going efforts to include these case studies in even more topics and also to
use additional case studies in some topics.

Currently,

- the main case study is ‘Seminar Organization’, taken from [2]
- the supporting one is ‘XCTL’
- additional ones are local (i.e. are not used in more than one topic or assignment, but still

pretty important) and will not be separately discussed in this text.

 1

Topics Main

(the
number of
slides

Supporting
(the number of
slides

Additional
(the name of the example)

1. What is software engineering
2. Quality criteria for software products
3. Software process models
4. Basic concepts for software development documents
5. Results of the “analysis and definition” phase 24 1
6. Cost estimation 20
7. Function-oriented view 12 2
8. Data-oriented view 5
9. Rule-oriented view 8 Policy in paying off

checks (8 slides)
10. Structured analysis 19
11. State-oriented view 5 Setting of the digital

watch (7 slides)
12. Scenario-oriented view 4
13. Object-oriented analysis 13
14. Formal software specification and program verification 3 The tank (reservoir) (9

slides)
15. Overview of design activities
16. Structured design 5
17. Object-oriented design 1
18. Implementation
19. Systematic testing
20. Functional testing - Building blocks (6

slides)
- Coverage test (23

slides)
21. Software metrics 18
22. Maintenance
23. Reverse engineering 12
24. Quality of software development process and its standardization
25. Introduction to software ergonomics ??
26. User manuals ??
27. Project management
28. Configuration and version management
Assignment 1 – review of requirements specification document √
Assignment 2 – cost estimation √
Assignment 3 – review of the product model according to structured
analysis

√

Assignment 4 – derive a use case and class diagram for a new software
specification

 An independent problem
(req. spec.)

Assignment 5 – derive a formal specification for a new software
subsystem

 The queue

Assignment 6 – apply regression testing tool to a new small example
program

 An independent program
(program source)

Assignment 7 – build a classification tree for one use case √
Assignment 8 – apply some software metric tools to a new software An independent program

(program source)

 2

2 The main case-study – Seminar Organization

2.1 Topic 5: Results of the “Analysis and Definition” phase

The main case study is for the first time mentioned and used in Topic 5: Results of the “Analysis
and Definition” phase. It is used to show and describe the requirements documents for a software
product.

To do:
Develop a preliminary requirements specification and requirements specification for a software
product that should be:
- of similar size as the current one (based on the number of use cases, for example),
- business-oriented (with data), such that function point method can be applied for cost-
estimation,
- of such complexity:

- that use cases can be used to illustrate include, extend, and generalize relations,
- that entity-relationship diagrams illustrating important notations can be created,
- that decision tables illustrating important notations can be created,
- that data-flow diagrams can be refined reasonably deeply,
- that class diagram can illustrate all important aspects,
- etc. (see sections for topics 7 – 13 in this text)

Two mentioned documents should:
- be based on use-cases,
- follow the structure and contents given in [3, 4] (e.g. graphical and textual representation of use
cases, data, quality expectance, etc.),

Option:
Preliminary requirements specification may not be produced. In that case however, one of the
assignments should be changed (see Topic 6: Cost estimation for further details).

Remark:
It is also possible to use a different document structure (e.g. IEEE standard).

Excerpts from these two documents are used in the lecture (topic 5). Lecture also elaborates on
how requirements can change over the time. Therefore,
Option:
Develop a previous version of the requirements. These two documents should follow the
structure given in [5, 6] and should be not based on use-cases.
Remark:
Since it may be hard to produce these two documents, this activity can be omitted. In that case
the topic should be changed by deleting corresponding slides.

Slides where the case study (i.e., the requirements specifications) are used are the following1:

1 Please note that the slide title is a unique identifier of a slide inside the topic.

 3

General slides describing only the summary of the product and giving an excerpt from the
glossary (part of requirements specification).

Slides describing documents that show characteristic parts of both documents.

 4

 5

Slides comparing two versions of requirements (optional) that summarize differences between
the previous and the current requirement specifications.

 6

2.2 Topic 6: Cost Estimation

Documents produced in the previous step are used to calculate cost estimation that will be partly
shown during this topic.

To do:
Develop a cost estimation calculation using a function point method, based on preliminary
requirements specification produced in previous step.
Option:

 7

If the preliminary requirements specification has not been produced in the previous step, then
cost estimation must be shown on requirements specification! Since this was intended as a
student assignment (see later), in this case another student assignment (i.e. example) must be
devised.
Remark:
It is also possible to use another cost estimation method (e.g. COCOMO) but it should be done
only as an additional method. Function point (at this time) has the priority.

Slides where the cost estimation calculation is used are the following2:

Introductory slides used to support the introduction of FP method.

2 Please note that the slide title is a unique identifier of a slide inside the topic.

 8

Detailed slides showing detailed parts of calculation.

 9

 10

2.3 Topic 7: Basic concepts of the functional view

Requirements for a software product should now be analyzed according to several
methodologies/views. First we take into consideration a functional view and should illustrate
function tree, data flow diagram, and use case diagram on the requirements specification of the
case study.

To do:
- Develop a full data-flow diagram of requirements – it will be needed also later.
- Develop a function tree of main functions of requirements (function tree is implicitly contained
in a data-flow diagram, so it just have to be recognized).
Option:
In fact not the full data flow diagram is needed, but at least three subsystems have to be fully
developed.
Remark:
If requirements specifications are developed as requested previously, then there is no special
activity related to use cases in this lecture – we shall just use some excerpts from the already
produced document.

 11

This topic also elaborate on the difference between functions and use cases near the end, using
the example from two versions of requirement specification: the old one without use cases, and
the new one with use cases.

Remark:
If the previous version of requirements has not been produced earlier, then this elaboration must
be illustrated differently in this topic, i.e., changes will be necessary.

Slides on function tree.

Slides on data-flow diagram.

Slides on use cases.

 12

 13

Slides comparing use cases with functions.

2.4 Topic 8: Basic concepts of data oriented view

Data dictionary and entity-relationship model should be illustrated with the case study.

To do:
- Design a user-interface form for which a relatively complex data dictionary can be created (see
slides). Such data dictionary should illustrate most important data dictionary notations.
- Develop several entity-relationship diagrams from case study illustrating important entity-
relationship notations (see slides).

Slides related to case study can be grouped in two groups:

Slides related to data dictionary.

 14

Slides related to entity-relationship model.

2.5 Topic 9: Basic concepts of the rule oriented view

Decision tables should be illustrated with the case study.

To do:

 15

- Develop an example suitable for description with decision tables (checks, rules, sequence of
activities that can be done under certain conditions, …) (see slides).

All slides related to case study belong only to one group:
Slides illustrating decision tables.

 16

2.6 Topic 10: Structured analysis

This topic is essentially driven by the data-flow diagrams developed for the case study. They are
gradually refined, and finished with mini-specifications and data dictionaries. This topic also
presents once more an already developed function tree that is implicitly contained in diagrams.

To do:
- Develop an example for mini-specification for at least one illustrative data flow diagram.
- Develop an example for a data dictionary that will be used with refinement of data flow
diagrams.

All slides related to case study belong to three groups:

Slides illustrating refinement of data flow diagrams.

 17

Slides illustrating mini-specifications (and function tree).

 18

Slides illustrating data dictionary and its use with data-flow diagrams.

 19

2.7 Topic 11: Basic concepts of state oriented view

The topic uses case study to illustrate notational elements of automata and activity diagram. Also,
two slides of with excerpts from two CASE tools are given.

To do:
- Develop an example for an object life cycle that can illustrate important notational aspects (see
slides).

 20

- Develop an example for an activity diagram that can illustrate important notational aspects (see
slide).
Remark.
Additional slides can be also produced.

All slides related to case study belong to three groups:

Slides illustrating object life cycle.

Slide illustrating activity diagram.

Slides illustrating CASE tools.

 21

2.8 Topic 12: Basic concepts of scenario-based view

The topic uses case study to illustrate principles of sending messages and notational elements of
collaboration diagram and sequence diagram.

To do:
- Develop an example that can be used to illustrate the principle of sending messages in OO
world. (see slides).
- Develop an example for a collaboration diagram that can illustrate important notational aspects
(see slide).
- Develop an example for a sequence diagram that can illustrate important notational aspects (see
slide).

Remark.
Additional slides can be also produced.

All slides related to case study belong to two groups:

Slides illustrating sending of messages.

 22

Slides illustrating diagrams.

2.9 Topic 13: Object-oriented analysis

This topic uses case study to introduce all notational aspects of class diagrams and to elaborate on
possible other in designing classes. Topic also uses already presented slides form Topic 10:
Structured Analysis.

To do:
- Develop a full class diagram for a case study, in such a way that elaboration of other
possibilities (choice of classes, etc.) can be done.

All slides related to case study belong to three groups:

Slides comparing OOA with SA.

 23

Slides introducing notations and problems (other possibilities) of class diagrams.

 24

 25

Slides illustrating packages.

2.10 Topic 14: Formal specifications

Parts of already developed documents/slides are used here in order to clarify the need for formal
specifications. No special effort is neede here, except to use and slighly adapt already existing
slides.

 26

2.11 Topic 16: Structured design

This topic uses case study to introduce basic principles of structured design. It takes one data-
flow diagram and proceeds in designing the software for it.

To do:
- Develop a structured design for at least one data-flow diagram from structured analysis..

All slides related to case study belong to one group:

Slides introducing notations and principles of structured design.

 27

2.12 Topic 16: Object-oriented design

This topic uses just one slide describing a case study – the slide that elaborates on how class
libraries can be used. However, this slide can remain even if the case study is changed, because it
is general enough.

 28

2.13 Topics 25 and 26: Introduction to software ergonomics and User manuals

These two topics are not yet available in English.
Nevertheless:

To do:
- Implement a case study or provide a design of user interface.
- Write parts of user manual.

2.14 Summary

Activities in building a new case study are summarized as follows (this is only an approximation
– for full description, you should nevertheless read the whole text). Activities are ordered by
importance!

- Find a problem of reasonably large size an complexity (for example from textbooks, real
projects or educational projects)

- Develop requirements specification
- Develop a full class diagram as the basis of object-oriented analysis
- Develop accompanying diagrams for the dynamic view of object-oriented analysis: state

automata (object life cycle), activity diagrams, collaboration diagram, sequence diagram
- Develop a data-flow diagram for a significant part of requirements
- Perform the structured analysis of the system: develop a hierarchy of data flow diagrams

for a significant part of the requirements
- Do a cost estimation
- Implement the case study
- Write parts of user manual

To replace the existing case study with the new one, one should replace about 120 slides in the
lecture.

 29

3 The supporting case-study – XCTL

XCTL is a realistic program used mainly in the lecture to illustrate a process of reverse
engineering. To find out its basic characteristics a software measurements has been applied and
also presented in the lecture.
 In the same way another case study could replace XCTL or illustrate other important
aspects of software development.

3.1 Topic 5: Results of the “Analysis and Definition” phase

The supporting case study is for the first time mentioned in Topic 5: Results of the “Analysis and
Definition” phase. It is used only in one slide to show how many notions are there in the
glossary.

To do:
Develop at least glossary and use case diagram (as part of requirements specification) for a
software product, that should be:
- of similar size as the current one (based on the number of use cases, for example),
- possibly already existing and of unknown structure (such that it is suitable for finding out the
structure ☺)
- of such complexity:

- that various software metrics methods can be applied

Option:
Develop a full requirements specification.

3.2 Topic 7: Function-oriented view

This topic uses the supporting case study to show its use cases.

 30

3.3 Topic 21: Software metrics

This topic uses the supporting case study to illustrate the application of several software metrics
methods (see slides).

To do:
- Develop several characteristic measurements that can be used to illustrate major measurement
techniques

 31

 32

 33

3.4 Topic 23: Reverse engineering

This topic uses supporting case study to show a realistic process of a reverse engineering.

To do:
- Develop (or simulate) a similar process to be shown to students.

Slides are used in two ways in the lecture.
Slides illustrating wrapping and giving overview of used tools.

 34

Slides illustrating the whole process of reverse engineering, incl. history.

 35

 36

 37

3.5 Summary

Activities in building a new supporting case study should be summarized as follows (this is only
an approximation – for full description, you should nevertheless read the whole text).
 To replace the existing case study with the new one, one should replace about 33 slides in
the lecture.
 A supporting case study can be developed either to replace XCTL (mainly in topics on
software metrics and reverse engineering) or to illustrate other important aspects of software
development.

 38

4 Possible further extensions

This section lists possibilities to further include the main case study into the lecture’s topics.

Topics Currently Possibilities to

include
also in

1. What is software engineering
2. Quality criteria for software products
3. Software process models
4. Basic concepts for software development documents
5. Results of the “analysis and definition” phase √
6. Cost estimation √
7. Function-oriented view √
8. Data-oriented view √
9. Rule-oriented view √
10. Structured analysis √
11. State-oriented view √
12. Scenario-oriented view √
13. Object-oriented analysis √
14. Formal software specification and program verification
15. Overview of design activities
16. Structured design √
17. Object-oriented design √
18. Implementation √
19. Systematic testing √
20. Functional testing √
21. Software metrics √
22. Maintenance
23. Reverse engineering
24. Quality of software development process and its
standardization

25. Introduction to software ergonomics √
26. User manuals √
27. Project management
28. Configuration and version management
Assignment 1 – review of requirements specification
document

√

Assignment 2 – cost estimation √
Assignment 3 – review of the product model according to
structured analysis

√

Assignment 4 – derive a use case and class diagram for a new
software specification

Assignment 5 – derive a formal specification for a new
software subsystem

Assignment 6 – apply regression testing tool to a new small
example program

 √

Assignment 7 – build a classification tree for one use case √
Assignment 8 – apply some software metric tools to a new
software

 √

 39

References

[1] ***, Joint Course on Software Engineering web site, http://www.informatik.hu-
berlin.de/swt/intkoop/se/index.htm
[2] Balzert, Lehrbuch der Software-Technik, Spektrum Akademischer Verlag, - Vol. 1, 2nd
Edition 2001 (in German).
[3] Preliminary requirement specification ver 3.0, http://www.informatik.hu-berlin.de/swt
/intkoop/se/prelreqspec3_0.htm
[4] Requirement specification ver 3.0, http://www.informatik.hu-berlin.de/swt
/intkoop/se/reqspec3_0.htm
[5] Preliminary requirement specification ver 2.3, http://www.informatik.hu-berlin.de/swt
/intkoop/se/Sem_Org_Prel_Req_Spec.v23.htm
 [6] Requirement specification ver 2.3, http://www.informatik.hu-berlin.de/swt
/intkoop/se/Sem_Org_Req_Spec.v23.htm
[7] XCTL behavioral specification, http://www.informatik.hu-
berlin.de/swt/intkoop/se/XCTL_Man_Adj.htm

 40

	Topics
	Topics
	References

