
1

1

The delivery of the module
“Architecture, Design, and Patterns”
as part of the Master’s studies in
Novi Sad and Skopje

Ioan Jurca (“Politehnica” University of Timisoara - Romania)

2

Initial contents proposal
1. Introduction to SA (58)The history of SA; Modern SA
2. Analogy with classical architecture (109)Buildings; Space and structure in OO;
Objects as virtual spaces; Dependency management; Principles of OO design; Stability
/ volatility metrics
3. Master plans vs. piecemeal growths (34)Software patterns; Pattern languages (some
of: Wright (CMU), ACME (CMU), C2, (UCI), Darwin (ICL),…);
4. Deliverables of SA (23)
5. Elements of SA (68)Architectural styles (ABAS); Architectural description languages;
Intro to patterns; Architectural patterns; Event-based, Layered, Pipes&Filters, Process
control systems, Batch sequential, virtual machines, …;
6. Architecture analysis and evaluation (26)SAAM; ATAM, ARID
7. Architecture, processes and organization (44)Architecture and process (ATAM,
SCRUM, RUP)
8. Visual Architecting process (33)
9. Model driven architecture (20)
10. From architecture to design (i.e., how to link them, i.e., how to introduce design)
Architecture vs. design; Elements of aspect-oriented design We should also cover
somewhere traceability from requirements to architecture
11. Reusing architectures: Product lines; Reference architectures; Frameworks and kits
12. Design patterns (93)Motivation; Characteristics of DP (from Gamma et all);
Elements of patterns; Characteristic patterns (selected choice of patterns); Detailed
example: state pattern;
13. Framework and tools, (A4, Came, Rose pattern wizard, Together, J2EE → practical
experience)

3

List of topics
1. Introduction to Software Architecture
2. Analogy with classical architecture
3. Master plans vs. Piecemeal Growth
4. Deliverables of Software Architecture
5. Elements of Software Architecture
6. Analysis and Evaluation of Software
Architecture
7. Architecture, processes and organization
8(9). Model Driven Architecture (MDA)
9(12). Design Patterns

4

A sample from “Elements of
Software Architecture”

Probably the most significant topic
related to architecture
The sample is based on the
style/pattern concept
“Software Architecture” is seen
sometimes as a separate discipline
(Shaw, Garlan)
“Style” and “pattern” are often used
as interchangable concepts

5

Architectural Styles
Shaw and Garlan present a number of
architectural styles, identified by asking:

What is the design vocabulary ?
types of connectors and components

What are the allowable structural patterns?
What is the underlying computational model?
What are the essential invariants of the style?
What are some common examples of its use?
What are the advantages/disadvantages of use?
What are the common specialisations?

6

Common Architectural Styles

Shaw and Garlan identify seven common
architectural styles

Pipes and filters
Objects
Implicit invocation
Layering
Repositories
Interpreters
Process Control

2

7

Pipes and Filters
Each component has a set of inputs and
outputs
Component reads streams of data on input
and applies local transformation
incrementally

Output begins before input is fully consumed

Components are termed filters, connectors
termed pipes
Filters must be independent entities

Should not share state with other filters
Should not know identity of upstream and
downstream filters

8

Pipes and Filters: Structure

9

‘Data Abstraction and OO
Organization’

Data representation captured as
Abstract Data Type
An ADT (or object) is representative
of a ‘manager’ component

Responsible for preserving integrity of a
resource
Hides representations from other objects

Object Ids are a disadvantage

10

Event-based, Implicit
Invocation

Style historically rooted in systems based
on actors, constraint satisfaction, daemons
and packet-switched networks
Components’ interfaces present a set of
procedures and a set of events
Announcers of events do not know who will
react
Events are “broadcast”
Provides strong support for reuse

11

Repositories
Two major subcategories

Databases
Transaction types are main triggers

Blackboard architectures
Current state is main trigger

Blackboard architectures have three main
parts

Knowledge sources
Blackboard data structure
Control

12

Interpreters
A virtual machine is produced in software.
Interpreter includes

pseudoprogram
Which includes program and activation record

interpretation engine
Which includes definition of interpreter, and its
current state of execution

Four components
Interpretation engine, a memory, representation
of control state, representation of current state
of program being simulated

3

13

Pattern-Oriented Software
Architecture

Frank Buschmann, Regine Muenier, Hans
Rohnert, Peter Sommerlad, Michael
Stal.1996.Patterns of Software Architecture
Presented three categories of patterns

Architectural Patterns
Design Patterns
Idioms

Have been confused with Architectural
Styles

To see difference we need to look at origins of
Software Patterns

14

A Pattern Language

Alexander’s book: “A Pattern Language”
presents 253 patterns for the built
environment

Written in a standard, narrative form supported
by hand-drawn sketches
Includes patterns to build alcoves, rooms,
houses, towns, cities and even global society

Together the patterns form a network
A “pattern language”

15

Example of an Alexandrian
pattern

“Waist-High Shelf”
Proposes that every domestic home needs a
“waist-high shelf”
A convenient place to deposit office keys, car
keys, mobile phone etc.

Everything you don’t need at home, but do
need for work
Can be implemented in a number of ways

Shelf; kitchen worktop; particular stair on stairway

Is an abstract solution to a general, recurring
problem in a particular context

16

Example of a Design Pattern
(Simplified)

Example Design Pattern: State
Use when

Behaviour depends on current state or mode
When otherwise a large switch statement or long
if statement would need to be used

These are difficult to maintain

Solution
Abstract state-specific behaviour into a shallow
inheritance hierarchy; instantiate the
appropriate state object as needed at run-time

17

The “Gamma Patterns”
The patterns in the Design Patterns book
are sometimes called “Gamma patterns”

After the lead author, Erich Gamma
Also called GoF or Gang-of-Four patterns

They are a catalogue of 23 patterns
NOT a pattern language
Each pattern is written in a standard template
form
Classified into Structural, Behavioural and
Creational patterns
Links shown via a Pattern Map

18

The Gamma Pattern Template

Intent
A.K.A.
Motivation
Applicability
Structure
Participants
Collaborations
Consequences
Implementation
Sample Code
Known Uses
Related Patterns

4

19

Characteristics of Software Design
Patterns (e.g. Gamma et al)*

Problem, not solution-centred
Focus on “non-functional” aspects
Discovered, not invented
Complement, do not replace existing
techniques
Proven record in capturing,
communicating “best practice” design
expertise

*Gamma E., Helm R., Johnson R., Vlissides J. 1994.Design
Patterns- Elements of Reusable Object-Oriented
Software. Addison-Wesley

20

Architectural Patterns

“An architectural pattern expresses a
fundamental organising structural
organization schema for software
systems. It provides a set of
predefined subsystems, specifies their
responsibilities, and includes rules
and guidelines for organizing the
relationships between them” (p.12)

21

Architectural Patterns
Buschmann et al., present a catalogue that
includes 8 architectural patterns in 4
categories

“From Mud to Structure”
Layers, Pipes and Filters, Blackboard

Distributed Systems
Broker

Interactive Systems
Model View Controller, Presentation-
Abstraction-Controller

Adaptable Systems
Microkernel, Reflection

22

The Model-View-Controller
Pattern

Model
View

Controller

•M-V-C originated with Smalltalk-80
- Informs the entire architecture of modern Smalltalk
environments

•Microsoft’s Document-View architecture is an instance of
M-V-C

•Model = Document, View = View
-So where is the Controller? (answer: it is MS Windows!)

23

Layers Pattern:Example

FTP FTP

TC P TC P

I P I P

Ethernet Ethernet

FTP protocol

TCP protocol

IP protocol

Ethernet protocol

Physical connection

TCP/IP protocol

24

Layers Pattern

Context
large system needing decomposition

Problem
How to structure systems that contain a
mix of high and low-level functionality

Solution
Conceptually layer the system, from
level 0 upwards

5

25

Layers Pattern: Consequences
Benefits

Reuse of Layers
Support for standardisation
Localisation of dependencies
Exchangeability

Liabilities
Cascades of Changing Behaviour
Lower Efficiency
Unnecessary work
Difficulty of getting ‘granularity’ right

26

Broker Pattern

Context
Distributed, possibly heterogeneous system of
independent co-operating “components”

Problem
How to partition functionality to deliver a set of
decoupled, interoperating components

Solution
Introduce a Broker component to decouple
clients and servers

27

Broker Pattern:Structure

Client
call_server()
start_task()
use_Broker_API

Client-side
Proxy
pack-data()
unpack_data()
send_request()
return()

Client-side
Proxy
pack-data()
unpack_data()
send_request()
return()

Server-side
Proxy
pack-data()
unpack_data()
call_service()
send_response()

Broker
main_event_loop()
update_repository()
register_service()
acknowledgement()
find_server()
find_client()
forward_request()
forward_response()

Bridge
pack_data()
unpack_data()
forward_message()
transmit_message()

Server
initialise()
enter_main_loop()
run_service()
use_Broker_API

calls

calls

calls

transfers
message

transfers
message

uses API uses API

1..*

1..*

1..*
1..*

1..*

1..*
1

1

1

1

1

1

1
0..1

28

Broker Pattern: Variants
Direct Communication Broker System

Clients communicate directly with servers,
broker identifies the communication channel

Message Passing Broker System
Servers use type of message to determine
action

Trader System
Client-side servers provide service ids rather
than server ids

Adapter Broker System
Callback Broker System

Reactive, event-driven model; makes no
distinction between clients and servers

29

Broker Pattern: Consequences
Benefits

Location transparency
Changeability/Extensibility of components
Portability
Interoperability between Broker Systems
Reusability
Testing and Debugging

Liabilities
Restricted efficiency
Lower fault tolerance
Testing and Debugging

30

Presentation-Abstraction-
Control

Context
Interactive systems with the help of
agents

Problem
Partitioning of interactive systems
horizontally and vertically

Solution
Structure the solution as a tree-like
hierarchy of PAC agents

6

31

Presentation-Abstraction-
Control: Structure

Data repository

Access to data

Spreadsheet View Co-ordinator

pie chart
bar chart

seat distribution

Top-level PAC agent

Intermediate-level PAC
agent

Bottom-level PAC agents 32

Presentation-Abstraction-
Control: Consequences

Benefits
Separation of Concerns
Support for Change/Extension
Support for multi-tasking

Liabilities
Increased system complexity
Complex control components
Efficiency
Restricted applicability

33

Delivery in Novi Sad

Two weekends (in March and April)
Total delivery hours:20
Attendance: 12-15 students from
Novi Sad and Nis
Not accompanied by exercises
Lectures recorded
Small number of questions from the
students

34

Delivery in Skopje

One weekend (in April)
Total delivery hours:16
Attendance: 12-15 students from
Skopje
Not accompanied by exercises
Some topics covered only summarily
Reasonable number of questions from
the students

35

A few conclusions (1)
New topics have to be developed over the
summer/atumn
20 hours for lectures is not enough to cover
in-depth all topics
Students involvement during lectures must
be increased
Development of assignments: first attempt
can be study and reporting of ‘classical
papers’
Desirable assignment: analysis and critics
of the architecture of an open-source
application of medium size

36

A few conclusions (2)

I would like to continue involvement
in developing the module
The relation between requirements
and architecture is an important topic
There is considerable research
interest in this topic
Patterns can be separated into a
‘stand-alone’ module, possibly
covering all types of software
patterns

