
Technical and Managerial Principles of a Distributed

Cooperative Development of a Multi-Lingual

Educational Course

K. Bothe1, K. Schuetzler1, Z. Budimac2, K. Zdravkova3, D. Bojic4 and S. Stoyanov5

1 Humboldt-University Berlin, {bothe, schuetzl}@informatik.hu-berlin.de
2 University of Novi Sad, zjb@im.ns.ac.yu

3 University ”Sts. Cyril and Methodius”, Skopje, keti@pmf.ukim.edu.mk
4 University of Belgrade, bojic@EUnet.yu

5 University ”Paisii Hilendarski”, Plovdiv, stani@ecl.pu.acad.bg

Abstract. Seven universities of four countries are developing a joint course on
software engineering which is web-based and has to cope with the challenges
coming from different languages of the participating parties as well as with the
distribution of work over the internet.
This article describes the experience of this ongoing project in a generalized
form to offer advice to similar forthcoming projects.

1 Background

There is an ongoing educational project with participants from seven universities of four
countries with the goal to develop a joint course on software engineering. This course
is web-based, i.e. all course materials are available over the internet. Due to partici-
pants coming from Germany, Serbia and Montenegro, the Former Yugoslav Republic
of Macedonia and Bulgaria, two main problems had to be solved: the four languages
involved and the coordination of distributed work.

This project has been realised with the support of the ”Stability Pact for South
Eastern Europe” and has started in 2001. The original of the course material already
existed at Humboldt-University of Berlin: However, in German and adapted to the spe-
cific situation at Humboldt-University. Nevertheless, this material proved being useful
as a starting point. In particular, reuse of this material resulted in reduced efforts
needed to develop slides and in a transfer of methodological principles. By now, the
first version of the course has been finished and first lectures based on this material
have been held successfully. As hoped and expected, involving several partners has
contributed to improvements and extensions of the original course material.

This article evaluates the experience of this project and describes the principles on
which the work has been based. To support similar projects in other fields besides soft-
ware engineering, we will not confine ourselves to the actual work done. We will instead
present a generalized list of principles which may prove useful in similar projects, too,
and we will give explanatory details from our project for particular points on this list.
We will classify the items on this list on being either technical or managerial princi-
ples. Before discussing these priciples in detail we will at first cover the involved course
material in the next section.

2 Overview of the Course Material

The project web-site contains different kinds of information connected with the joint
course. This information concerns the course as well as aspects of project organisation.
Figure 1 provides an overview of the different fields involved.

Information about the participants, the schedule, basic principles, FAQ and the
discussion forum serve the project organisation. The slides make up the core of course
materials. There is a close connection between the slides and the involved case stud-
ies, assignments and recommended literature. An overview of the contents is provided
through the topics and in more details throughout the syllabus.

principles
Basic

Discussion

(ppt, pdf)
Slides

Topics

F.A.Q. Literature

Syllabus

Assignments

Case studies

Schedule

Participants

Fig. 1. Overview of the course materials and project organisation

The title slide of each topic covers project and management information: topic
contents, project name, participants with their logos and the document version. As an
example, see Figure 2.

3 Technical Principles for a Distributed Course Development

1. Define the subject, the contents, the structure and the syllabus of the course

This is an important part of the requirements specification of each software project
adapted to the development of e-learning material. In our project we oriented ourselves
by the contents of acknowledged software engineering textbooks [1, 3] as well as by the
CC2001 curriculum [2]. Division of our course into parts was done according to general
software development phases.

2. Determine the prerequisites of the audience and the place of the course in the infor-
matics curriculum

There is a big difference whether software engineering is tought in the beginning of
a study or later in the curriculum. In our case we decided to offer software engineering

Fig. 2. Example of a title slide

courses after students got familiar with programming, especially with object-oriented
languages. Thus, our software engineering course should be offered to third- or fourth-
year-students.

3. Be aware of the specific conditions concerning the offered basic curricula at the
participating universities.

Software engineering has to deal with all aspects of software development. Therefore
it should be analysed, for example, if the students are familiar with the concept of
object-orientation or with coding style guides. On the other hand, complementary
lectures in the existing curriculum1 should be identified in order to decide whether
the software engineering course should contain them or not. In any case, differences
between universities can be solved by declaring certain parts of a lecture as optional,
so that they can be left out when needed.

4. Determine the prerequisites of the proposed lecturers of the course

There are two kinds of users of the course: students and lecturers. In our project
we even had to be aware of different kinds of lecturers. All of them are experts in
general informatics. However, the degrees of familiarity with certain aspects of software
engineering differ. Some of the lecturers even are experts in software development
through having conducted larger industry projects.

5. Develop a course as a whole - not only lecture slides

Introducing a new course demands more than just the lecture part. In addition we
need appropriate assignments, case studies, examination guides, and literature recom-
mendations. Especially software engineering lectures can get boring, if they are just
straight-forward and are not accompanied by interesting case studies and motivating

1 e.g. lectures on UML, OOA/OOD, software testing etc.

exercises. These additional parts have been included in our course and can be found in
Figure 1.

6. Reuse and adapt existing core material

Developing software is expensive - there is no exception with developing e-learning
”software” like, for example, ppt-slides. It can easily take several person-months or
even person-years. In our project we could start from a stock of about 1200 German
ppt-slides which have been adapted and extended by the project participants.

7. Choose a suitable intermediate language for the course material

Partners from four countries are using in our project four different languages (see
Figure 3). Although the actual lectures should be held in the respective native language,
there is a need for an intermediate communicational language which should be, by
default, the English language.

German
original

English
version

version
Bulgarian

Macedonian
version

version
Serbian

Fig. 3. Translation issues in our project

8. Define style guides for a unified appearance of the course material

In our project ten persons were involved in developing the course material. To insure
a unified style there should be style guides for the slides appearance in the same way
as there are coding style guides for programming tasks. In Figure 4 we present some
of our project style guides. The unified appearance of the topic title slides (see Figure
2) is a result of them.

9. Provide lecture notes with additional structured information for the lecturer

As mentioned in point 4 of this section we have to take care of different preconditions
of the lecturers. That is why it is a crucial point to deliver not only the pure slides
but also additional information. This information covers the slide contents as well as
methodological hints, e.g. on how to involve the students through questions to the
audience. The lecture notes section of each title slide includes special management
information.

Figure 5 gives an excerpt from lecture notes in tabular form. Note that the slides
and the lecture notes are both part of the same ppt-document from which this table has

Explanation of pictures:

− in the Lecture Notes
− on the same slide (animated)
− on the slide(s)

Answers to questions:

− in the Lecture Notes only
− on the same slide (animated)
− on the next slide(s)

− to be animated
− to be put into clouds
Remarks, questions:

Headline:

− usually on top of page
− only first letter as capital
− unique headline for each slide

− on slide(s) not in Lecture Notes

Sources:
− source of figures etc. have to

− defined in SE_Template.pot

− not too dark
Colors:

− readable in presentation and print

 be referenced exactly

Fig. 4. Some of the style guides in our project

Fig. 5. Excerpt from lecture notes from one topic

been generated. It is of great help for overview and comprehension to have standard
keywords to structure the lecture notes.

10. Support adaptability of the slides to different languages

A purely textual slide has two disadvantages in the framework of our project: The
whole text has to be translated from the intermediate English to the respective native
language and such slides - as a general rule of methodology - tend to be boring to the
audience. That is why we generally recommend to prefer pictures with short textual
explanations. Figure 6 shows an example of such a slide.

Fig. 6. Example for using figures instead of long texts

4 Principles of Project Management for a Distributed Course

Development

1. Define a schedule of tasks to be done

Developing a course as a whole (see point 5 of section 3) means to be aware of a
couple of tasks to be done. These have to be fixed in a schedule. However, this does
not necessarily mean to have fixed deadlines, too: In our case we received no additional
man-power, so all the work had to be done besides the daily educational work of the
participants at their universities.

Figure 7 gives details from the schedule in our project.

2. Organise a broad distribution of work

A lot of work had to be done in our project: translation of German slides into
English, adaptation of these slides to the project needs, extention of topics contents,
production of lecture notes, preparation of case studies etc.

Fig. 7. Excerpt from the project schedule

To cope with this long list of tasks and for a bigger identification of the participants
with the project a broad distribution of work is needed. In our case ten colleagues from
five universities had been concerned with the slides, another one with the physical
management of the web-site and two students implemented a case study.

3. Recognize special interests and particular competence in the distribution of work

To distribute the work means to assign certain persons to particular subjects or
topics of the course. Such an assignment is, of course, most successful, if the special
interests and competences of each participant are taken care for.

For example, if someone is rather familiar with reverse engineering - possibly through
work in industry projects - she or he should take the responsibility for providing slides
and lecture notes for that topic.

4. Define roles: For each task roles need to be defined for the participating colleagues

Involving about ten colleagues means to take care of the coordination of their work
and to define the competences for each of them. This means that there is no essential
difference to ordinary software projects where persons are assigned to roles. In our case
we distinguished the following most important roles:

– Project manager: technical and organisational coordination
– Web-site administrator: publication and update management of the documents
– Developer (of slides): translation, adaptation, improvement, extention and testing

of slides for particular topics
– User: application of the developed materials in lectures, provision of feedback

through reviews

Project
Manager

Web−Site
Administrator

DeveloperUser

Fig. 8. Overview of roles in our project and their typical communication

Figure 8 provides an overview of the roles in our project together with their re-
spective communication paths. Note that there is typically no direct communication
between the developer and the web-site administrator. It is also worth mentioning that
the communication between the web-site administrator and the user only considers the
technical aspects of accessing the documents via the internet.

5. Organise a peer-review procedure for the course material developed in the project

Topics developed by a certain person need a review of other independent persons in
the same way as reviews are ordinarily required validation and improvement procedures
in each defined software development process. Of course, the best review will still come
with the concrete preparation of the lecture by the actual users (the lecturers).

6. Organise a rigorous update and version management during the development phase

A distributed software project needs special care to keep the documents from in-
consistency. In the development phase of our project, a simple but rigorous update
management proved to be useful. The principles of this management are shown in
Figure 9.

7. Recognize that there is a distinguished version management in the consolidation
phase (maintenance)

During the development phase there is the particular situation that only one de-
veloper is responsible for one topic at the same time. In the consolidation phase the
situation is different: Different universities will apply the course material and will come
out with a couple of proposals how to improve or extend the material. To handle this
situation a different approach to version management is necessary: The proposals have
to be collected and discussed for some time and then from time to time a new version
of a topic will be produced.

8. Try to organise an e-mail ”hotline” and a discussion forum (mailing list) for lec-
turer’s urgent questions during the ”hot” lecture preparation phase

At least during the first time a lecturer prepares teaching the newly developed
course she or he will have a lot of questions and remarks concerning the slide material.

1. For each topic holds: There is only one current topic ppt−slide
 file which is the one on the Software Engineerin Education
 Web−Site at Humboldt University.

2. For a modification of a topic ppt−slide file, it must be assured
 that only one party is allowed to modify this file at one moment.
 To this end, during the slide modification process this topic is
 marked by "in update by..." In such case the web−site
 administrator should be informed. He will put this message
 on the web−site.

3. ppt−slide files at the project web−site can only be exchanged
 by the web−site administrator.

4. Exchange of an old version by a new version should be
 agreed between the modification authors and by the project
 manager.

Fig. 9. Main rules for update/version management in development phase

To deal with this it proved useful in our experience to have an e-mail ”hotline” between
the lecturer and the developer of the slides.

9. Take care of an effective feedback of lecturers’ experience with the course

This feedback should be organised by a structured questionaire. It should cover the
following problem areas:

– Technical errors

– Slide presentation errors

– Problems with the lecture notes

– Proposals for topic improvement

10. Try to give the first lectures using English slides - however, speaking your native
language

The first (English) version of the course will not be completely stable. Besides
errors there may be the need to improve the style of the slides including the order of
animations. To start too early with the translation into the respective native language
may cause a lot of rework if the original English version changes. Therefore a good
solution would be to use the English slides during the first lectures.

11. Last but not least: Organise workshops

This principle should not be the last step of project organisation. It is very impor-
tant that the project participants get to know each other, discuss fundamental tasks
and present results not only through e-mail.

An ideal event for such issues is a project workshop. In our project two workshops
in Novi Sad (2001) and Plovdiv (2002) constituted the basis of work. The planned third
workshop in Ohrid (2003) will summarize the work done so far.

5 Current Project State and Future Plans

By now, the first English version of the course material has been developed [4] and
the first course at Novi Sad have been held. There was a lot of feedback from these
lectures which led to the improvement and extention of the material. It was possible
to present the first lecture in Novi Sad with English slides. Coordination was easily
achieved through an e-mail ”hotline”.

The introduction of the course at other participating universities will lead to higher
requirements concerning the management of questions and the maintenance of the
teaching materials.

There are several plans concerning the improvement of the course contents: For
example, the participants will introduce new case studies to the course, new topics will
be included, particular topics will be extended and the like.

6 Acknowledgements

We acknowledge the support of DAAD (German Academic Exchange Service) under
the auspices of the Stability Pact for South Eastern Europe through which the work
reported here is being funded.

References

1. Balzert, H.: Lehrbuch der Softwaretechnik, Vol.1, 2nd Edition. Spektrum Akademischer
Verlag, 2001.

2. Engel G, Roberts E, editors. The Joint Task Force on Computing Curricula, Computing
Curricula 2001, Computer Science, IEEE Computer Society & Association for Computing
Machinery, December 2001.

3. Sommerville, I.: Software Engineering, 6th Edition. Addison-Wesley, 2001.
4. Web-Site of ”Joint Course on Software Engineering” HU Berlin. http://www.informatik.hu-

berlin.de/swt/intkoop/see/.

