
CS−F low : The Engineering of Pervasive

Workflows

Hussein Zedan

c©Software Technology Research Laboratory (STRL)

Opatija, September 2012

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Why?

A workflow is a set of activities, each performs a piece of

functionality within a given context and may be constrained by

some security requirements . These activities are coordinated to

collectively achieve a required business objective.

The specification of such coordination is presented as a set of

"execution constraints” which include parallelisation, serialisation,

restriction, alternation, compensation and so on.

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Why?

Activities within workflows could be carried out by humans,

various software-based application programs, or processing

entities according to some organisational rules , such as meeting

deadlines or performance improvement.

Workflow execution can involve a large number of different

participants, services and devices which may cross the

boundaries of various organisations and accessing variety of

data.

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Therefore....

Modern workflows are CRITICAL systems.

They are

Highly distributed

Context-critical

Security-critical

Time-critical

Business-critical

We need a unified model within which modern workflows can be

modelled, analysed and, being critical, be provably correct

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Computational Model

our model has three distinct components:

Context

Activity and

Guard

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Context

Contexts can take a variety of forms : different platforms and

operating systems, hand-held devices, web-services, etc.

A context is characterised by, what we call context frame , which

is a set of variables (or attributes) of interests.

For

PDAs attributes of interests could be processor speed, memory

size, battery life time .

a human context, age, qualification, work experience may be of

interest.

a patient context, body temperature, blood pressure, kidney

functions are more appropriate attributes.

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Context

The changes in the attributes are only observed and then acted

upon.

Context attributes are predicated upon to form a context guard

so as a decision may be taken to execute an activity or choose

different but more suitable context, etc.

Context guards are also important as mechanisms to express

security policies and for the design of variety of enforcement

mechanisms of these policies that, for example, controls access

to sensitive data/information.

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Context

An activity in our model does not exist in isolation. Indeed it

requires a context to house it.

Activities within a workflow move into a context to be executed

but may choose to move out to another context in order to

complete its functionality.

In this way, context can be nested in a larger context in a

compositional fashion.

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Activity

An activity is a computational unit that describes a piece of work

that contributes toward the accomplishment of a given goal.

An activity has

a goal,

an input,

an output,

performed in a particular order,

associated with a particular context ,

uses resources/information,

may affect more than one organisation unit,

creates some value for users. and

properly terminates – in the same or in a different context.
Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Activity

An activity starts in one context but may terminate in a different

context. This means that an activity has the ability to be mobile

and moves from one context to another.

But as an activity in our model is tightly associated with a context,

mobility occurred at a context level , i.e. an activity moves with its

context.

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Activity

Activities may be composed concurrently to produce a new

activity which terminates if and only if all of its components

terminate, i.e. we adopt the distributed termination convention.

we assume a single clock for an instant of a workflow.

Activities are also composed in alteration and in a

non-deterministic fashions.

An activity can also be conditionally executed after the passability

of its condition or guard.

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Guards

Each activity/context is governed by a set of context and/or

security policies/constraints which are continually changing due

to either the occurrence of an event and/or the passage of time.

access control policies: subjects – such as human, activities,

platforms; object – This is a resource which is there to be used. It

has a state where a subject can alter once it is granted to do so

and action – is an activity where once the access is granted, it

can be executed.

ECA is another formulation of policy.

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

CS−F low : Graphical Representation

Context_id : 〈Frame〉

Policies_Constraints

‖ Context_Constraints

‖ Behavioural_Description

where Frame is given as:

Frame :: 〈Context_Attributes〉

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

CS−F low : Graphical Representation

PDA1 : 〈s,w ,p〉

(PDA1(s,w ,p) ‖ PPDA1(Ch,x ,y ,z))

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

CS−F low : Graphical Representation

Ali : 〈loc, t〉

PDA1 : 〈s,w ,p〉

(PDA1(s,w ,p) ‖ PPDA1 (Ch,x ,y ,z))
‖PAli

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

CS−F low : Graphical Representation

PDA1 : 〈s,w ,p〉

(PDA1(s,w ,p) ‖ PPDA1 (Ch,x ,y ,z))
‖

PDA10 : 〈s1,w1,p1〉

PDA10(s1,w1,p1)‖

PPDA10 (Ch,a,b,c)

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

CS−F low : Graphical Representation

Activities can communicate by exchanging messages over

channels.

The communication is synchronous and is modelled using

handshake message passing communication primitives: C ! v

(output) and C ? x (input).

PPDA1 =̂ ...; Ch ! Tempvalue ; ...

and

PPDA10 =̂ · · · ; Ch ? x ; · · · .

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

CS−F low : Mobility

Warehouse

PDA1

Q ; to (Van) ; R
‖

PDA10
‖

PDA3

‖

Van

Laptop2
‖

PDA31

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

CS−F low : Mobility

Warehouse

PDA10
‖

PDA3

‖

Van

PDA1

R
‖

Laptop2
‖

PDA31

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

CS−F low : textual Representation

P,Q ::= skip | abort | x := v | delay(t) | [t1 . . . tn] P | c ! v | c ? x

| α 〈x̃〉 : {P} | to(α) | var x̃ in P {Q} | chan c̃ in P {Q}

| in α · P(x̃) | P ;Q | P ‖ Q | P .G
t Q | while G · do P od

| [p1] : G1→ P 2 [p2] : G2→ Q

G ::= true | b | not G | G1 and G2 | somewhere(α) · G

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Context

α 〈x̃〉 :

{

P

}

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Context: Ikea

Ikea : 〈 〉

{

PIkea ‖ PDA23 : {Q }

}

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Context: Ikea

Ikea : 〈DampLevel ,SmokeAlarm〉

{

PIkea ‖ PDA23 : {Q}

}

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Context: Ikea

Ikea : 〈DampLevel ,SmokeAlarm〉

{

PIkea ‖ PDA23 :

{

TakeStock ;

not (DampLevel ≥ 25 ∨ SmokeAlarm) →

to(Van) ; Place Order

}

}

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Context, Location and Holes

Central to our model is that activities do not operate in the ether.

They need contexts which identify their locations and within which

they execute, terminate and may move out of them to another

contexts.

Unlike other formalisms, the notion of holes exists in which

processes can move to. This makes the models rather clumsy

and static with a fixed number of holes.

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Context, Location and Holes

The term "context” is used here instead of "location” for the later

can indicate/require notions such as

Proximity,

Coordinates,

Neighborhoods, etc.

which in our view adds extra complication which is not needed.

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Context, Location and Holes

Two special contexts, which we call SKIP and STOP:

SKIP is an empty context and nothing is happening in it and there

are no observables.

STOP is the most un-inhabited context and will remain so forever!

Further, if it moves into another context, it makes the host context

un-inhabitable too. It is a context that needs to be avoided at all

cost.

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Context, Location and Holes

Context, like activities, can communicate synchronously via

channels. Whenever a context moves, its channels move with it.

This is a powerful mobility notion as all what we needed is a

single label to identify a context. The connectivity’s between

contexts (or their exact coordinates, neighborhoods, etc.)

becomes irrelevant.

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Examples: Adaptable activities

ShopFloor :

{

win ‖ linx

}

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Examples: Adaptable activities

win :

{

var f in edit

{

notepad(f)

}

}

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Examples: Adaptable activities

linx :

{

var f in edit

{

emacs(f)

}

}

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Examples: Adaptable activities

Employee :

{

somewhere (ShopFloor) · edit(file) }

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Examples: Adaptable activities

win :

{

var f in edit

{

notepad(f)

}

‖

Employee :

{

somewhere(ShopFloor) · edit(file) } }
Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Examples: Adaptable activities

linx :

{

var f in edit

{

emacs(f)

}

‖

Employee :

{

somewhere(ShopFloor) · edit(file) } }
Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Examples: Policies – ECA

while true

do

{

Gevent1 and Gcondition1 → P

2

Gevent2 and Gcondition2 → Q

· · ·

2

} od

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Examples: Policies – ECA

System =̂

Flows ‖ EventAnalyser‖ECA

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

LAYERS: Assumptions

Without lose of generality, we assume that

There is only one parallel operator, ‖, in our system. Nesting

concurrency can be dealt with by applying the transformation to

the most inner ‖ and continue to move to the outer constructs.

The length of all activities in the system are the same. This can

be easily achieved using the semantics of skip. I.e.

skip ; S ≡ S ; skip ≡ S

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

C1 〈ã〉 : C2 〈b̃〉 :

{ {

var x̃ , ỹ in var x̃1, ỹ1 in

{ {

P1; Q1;

P2 ; Q2 ;

P3; ‖ Q3;

P4;

P5 ;

} }

} }

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

C1 〈ã〉 : C2 〈b̃〉 :

{ {

var x̃ , ỹ in var x̃1, ỹ1 in

{ {

P1; skip;

P2 ; Q1;

P3; ‖ skip;

P4; Q2 ;

P5 ; Q3;

} }

} }

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Let us consider an example:

R =̂ C1 〈ã〉 : { P } ‖ C1 〈b̃〉 : { Q }

C1 〈ã〉 : C2 〈b̃〉 :

{ {

var x , y , z, chan1 in var x1, chan1 in

{ {

y := y + x ; chan1 ? x1;

z := y × z; ‖ x1 := x1 × x1;

chan1 ! z;

} }

} }
Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Definition

A layer, L of a workflow, S , is a logical horizontal partition that cut

across all concurrent threads of S .

Definition
A Layer L is called communicating layer if it contains at least one

communication primitive. It is called communication-closed if a

communication starts and terminates in the same layer.

A non-communicating layer is that which contains no communication

primitives.

Definition

A super-structure over a workflow, S , is a quasi-sequential

composition of layers from S .

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

L1 =̂ y := y + x ‖ chan1 ? x1

L2 =̂ z := y × z ‖ x1 := x1 × x1

L3 =̂ chan1 ! z ‖ skip

L4 =̂

y := y + x; skip;

‖

z := y × z skip

L5 =̂

z := y × z ; skip ;

chan1 ! z ; ‖ chan1 ? x1 ;

skip x1 := x1 × x1

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

The following are some super-structures:

1 SR1 =̂ R

2 SR2 =̂ L1 ; L2 ; L3

3 SR3 =̂ L4 ; L5

Under what condition(s) will a super-structure workflow be

equivalent to the original one? .

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

It is clear that, in the example above, L2 and L4 are non-communicating

layers while L1,L3 and L5 are communication-closed. SR3 and SR1 are

a quasi-sequential workflow whilst SR2 is not.

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Theorem

For any CS−F low workflow system S there exist a semantically

equivalent quasi-sequential system, SL .

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Proof: Choices

G1 → P

2

G2 → Q

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Proof: Choices

The following workflow, S ′ , is a such safe decomposition:

S ′ =̂




G1 → P ; GFlag := false

2

G2 → GFlag := true

 ; (S11)


GFlag → Q

2

not GFlag → skip

 (S12)


Now, if we have another workflow D of the same structure as S then

S ‖ D

can be "safely” decomposed into the structure:

((S11 ‖ D11) ; (S12 ‖ D12))2 ((S21 ‖ D21) ; (S22 ‖ D22))

where each Sij , for all i, j = 1,2, is either a non-communicating layer or a communication-closed layer.

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Proof: Choices

This can be rewritten as

((S11 ‖ D11)2(S21 ‖ D21));

((S11 ‖ D11)2(S22 ‖ D22));

((S12 ‖ D12)2(S21 ‖ D21));

((S12 ‖ D12)2(S22 ‖ D22))

These structures demonstrate that layers can be composed, respectively, as a series of

alternative or sequentially. In fact, structures such as iteration, conditional, interrupt, etc. can

also be used.

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Proof: Iterations

We assume that

1 Loops are finite

2 Communication symmetry is assured (i.e., communication-deadlock free)

It should be noted that due to (1) above, a finite loop can be replaced as a set of sequentially

composed statements and because of (2), we can always ensure (using skip) that each layer is

communication-closed layer.

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Proof: Iterations

Using

while G do{P} ≡ G → P ; (while G do{P})

then, if we have

while G do{P} ‖ Q

Then we can transform this to the semantically equivalent CS−F low system

((G → P) ‖ Q) ; (while G do{P})

Then, we layer ((G → P) ‖ Q) into communication-closed layers (depending on the structure

of P and Q, and repeat the process on the while G do{P}, and so on.

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Layers: Fault-Tolerance

P Q

L

L

L

1

2

n

Save

CommitE

Backwardrecovery

R
ol

lb
ac

k

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Layers: Fault-Tolerance

P Q

L
1

Save

Commit

E

forward recovery

Rollback to the top

E

Handler

Error exception

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Layers Usages

Analysis

The idea here is to transform the existing CS−F low design into a

semantically equivalent communication-closed layer design in

which the analyses are easier than the original one. The rational

is that the resulting layer-design is quasi-sequential and hence all

existing formalisms for sequential systems can be deployed.

Design

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Layers Design Methodology

1 Requirements Decomposition.

decompose the given workflow requirements into a number of

sub-requirements which can be as fine or coarse grain as we

wish. This process iterative in nature.

Experience has shown that, identifying, what we call Actors helps

in specifying layer interfaces.

2 Layer Design.

Design layers which conform/satisfy its requirement.

The layers however have to be communication-closed layers.

3 Integration.

Compose/integrate all layers into a complete CS−F low workflow.

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Example: One-place Buffer – Layer Decomposition

We can easily identify two major layers:

1 Initialisation. Involves the Buffer and the Authorised_User , and using channel push.

2 Operations. This involves the Buffer and any other user.

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Example: One-place Buffer – Layer Design

Init =̂

push ! v ‖ (push ? x ; empty := false) ‖ skip

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Example: One-place Buffer – Layer Design

Operation =̂ (

skip ‖



while true do

{

empty → push ? x

2

not empty → pull ! v

}

od


‖

 pull ? x ;

push ! v



Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Example: One-place Buffer – Layer Design

It is clear that each of the above layers are communication-closed and the resulting

quasi-sequential system is

SysL =̂ Init ; Operation

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Example: One-place Buffer – Integration

In this phase, the layers are integrated to obtain the final system:

Sys =̂ Authorised_User ‖ Buffer ‖ User

where

Buffer =̂ (

push ? x ;

empty := false ;

while true

do

{

empty → push ? x

2

not empty → pull ! v ;

empty := true

}

od
Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Example: One-place Buffer – Integration

The users are modelled as

Users :: (

Authorised_User =̂ push ! v

User =̂ pull ? x ; push ! v

We note that, as the layers were designed communication-closed, then Sys_L ≡ Sys.

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Context-Aware Ward: CAW

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

CAW =̂ (

nurse 〈x̃n〉 : {Pn}

‖bed〈w̃〉 : {Pb}

‖patient 〈w̃1〉 : {Pp}

‖nurse−office 〈w̃2〉 : {Pn.o}

‖medicine− room 〈w̃3〉 : {Pm.r}

‖

tray 〈x̃t 〉 : {Pt ‖ Cont1 〈pat1, ã1〉 : {P1}
‖ Cont2 〈pat2, ã2〉 : {P2}

‖ · · · · · · · · ·

‖ Contk 〈patk , ãk 〉 : {Pk}

}



(1)

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Pn =̂ chan chann.t in{

while true

chann.t ! any ;

to(bed) ;

[epr(Pi) ‖ HandOutDrug(Pi)]

chann.t ! any ;

to(nurse−office)

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

HandOutDrug =̂ var T , D, N, i in{

while i ≤ N

do

([T]([D]GiveDrug) ‖ delay(T)) ;

i = i + 1

od

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Animation and Validation

In addition to equational theory and operational semantics for

CS−F low we have

Denotational semantics: A CCA-specification semantics

Reduction semantics

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Reduction Rules

P→ P ′ ⇒ var x̃ in {P }→ var x̃ in {P ′ } (Reduction Var)

P→ P ′ ⇒ chan x̃ in {P }→ chan x̃ in {P ′ } (Reduction Chan)

P→ P ′ ⇒ α < x̃ >: {P}→ α < x̃ >: {P ′} (Reduction Contxt)

P→ P ′ ⇒ C(P)→ C(P ′) (Reduction Contxt)

P→ P ′ ⇒ P ‖Q→ P ′ ‖Q (Reduction Par)

P ≡ Q, Q→ Q′, Q′ ≡ P ′ ⇒ P → P ′ (Reduction ≡)

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Reduction Rules

(Chan ? ỹ) ; P ‖ (Chan ! z̃) ; Q

→ P{ỹ ← z̃} ‖ Q (Reduction Com-1)

α : {((Chan ? ỹ) ; P) ‖ Q} ‖ β : {((Chan ! z̃) ; R) ‖ S}

→ α : {P(ỹ ← z̃) ‖ Q} ‖ β : {R ‖ S} (Reduction Com-2)

α : ((Chan ? ỹ) ; P) ‖ Q) ‖ β : (α : (Chan ! z̃) ; R) ‖ S)

→ α : (P(ỹ ← z̃)) ‖ β : (R‖ S) (Reduction Com-3)

α : (β : (Chan ? ỹ ; P) ‖ Q) ‖ β : (Chan ! z̃ ; R) ‖ S

→ α : (P(ỹ ← z̃) ‖ Q) ‖ β(R ‖ S) (Reduction Com-4)

α : (β : (Chan ? ỹ ; P) ‖ Q) ‖ β : (α : ((Chan ! z̃ ; R ‖ S))

→ α : (P(ỹ ← z̃) ‖ Q) ‖ β(R ‖ S) (Reduction Com-5)

β : {to(α) . P ‖ Q} ‖ (α : {R})

→ α : {β : {P ‖ Q} R} (Reduction Mob)

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

Hussein Zedan CS−F low : The Engineering of Pervasive Workflows

