Plugging into Testovid

lvan Pribela, Zoran Budimac

Content

Automated assessment
Testovid system

Test anatomy

Writing tests
Conclusion

Content

Automated assessment
Testovid system

Test anatomy

Writing tests

Conclusion

Automated assessment

* Assessment done by computers

* Assessment fazes
— question / assighment selection
— question / assessment deployment
— answer / solution gathering
— answer / solution grading
— student / teacher notification
— statistical analysis of results

Advantages (Large groups)

* Faster assessment

 Moving great amount of work load from
teachers

* Leaving more time for more productive
aspects of teaching

Advantages (Small groups)

Enables self-assessment

Teachers can easily note common problems and
difficult topics

Question selection can be better adjusted to individual
needs

Assessment results are immediate

Same questions (assignments) can be repeated an
much times as needed

Questions can contain graphics, sound, animations,
and other multimedia content

Increase of assessment objectivity

Disadvantages

* Type of assessments supported
— short multiple choice tests
— fill-in-the-blanks tests with fixed correct answers

 Automated assessment is used more in
natural sciences, and rarely in social sciences,
where students write essays

Assessment of programming

* Programming assignments are perfect example
for automated assessment

* Besides generic, special systems for assessing of
computer programs were also developed

* There are two distinct types of computer
program assessment:

— correctness assessment
* does the student program solve given problem?

— optimality assessment
* how efficient the student program is?

Assessing correctness

Oldest correctness assessment method is
— running student programs against various sets of input data
— comparing output form student program with correct one
Input data
— created by teacher and given to the student
— created by the student
— hidden from the student
Selecting input data
— fixed
— chosen randomly every time
Output data
— compared with fixed data corresponding to given input
— compared with output from correct solution

Assessing optimality and style

Early systems focused on execution speed and
precision of numeric results

Recently attention has shifted towards
readability and code style

Mostly based on absolute criteria

— identifier length

— line indentation

Few attempts to use a program model

Content

Automated assessment
Testovid system

Test anatomy

Writing tests

Conclusion

Testovid system

Designed for assessment of programming
Batch system

Students can test solutions by themselves
Teacher can test all assignments at once
Generates execution reports

Uses Apache Ant

Desighed to fit in Svetovid system

Apache Ant

Apache Ant is a build process automation tool
Similar to make, but written in Java

Runs on Java virtual machine

Most appropriate for Java projects

Uses XML for description of build processes
Open source

Extensible

Implementation

As a frame for domain-specific testers

One domain-specific tester contains

— Apache Ant file with testing modules

— Configuration file with weights of every module
— Any accompanying files

Modular and extensible

Previous tests can be reused

Content

Automated assessment
Testovid system

Test anatomy

Writing tests

Conclusion

Configuration file

targets.all = test@l, test02, testO3,
testO4, testoO5, testo6

testBl.name
testBOl.score

Compilation

1

test02.name = Up & Down methods
test02.score= 1

test@3.name = Up - Upper restriction
test@3.score= 2

testO4.name
testB4.score

Down - Upper restriction
2

test@5.name = Encapsulation
testO5.score= 1

test@6.name = Code style
test06.score= 1

List of modules
Name of every module

Number of points for
each module

All marks are binary

Testing module implementation

<t t =" "> .
RrEST Mele e One module is one Ant
i lacn . target
failureProperty=" " . .
maxErrors="15"/> e Result of execution is
) string that contains
property=" "
value="There are more than 15 message abOUt dan error
style errors.”> .
<equals Empty advice message
argl="9%{ T .
arg2="true"/> means all is ok
</condition>

</target>

Any accompanying files

Input and output files

Program model (correct solution)
Configuration files

Helper applications and scripts

Content

Automated assessment
Testovid system

Test anatomy

Writing tests
Conclusion

<target name="testX">

<property
name="testX.advice"

Writing tests

* One module is one target
* Write Ant target
* Run intended tasks

value="This is the advice."/> —

</target>

Compile student program
Run student program
Run correct solution
Check the outputs

Check student files
Check style

 Set advice or leave it blank

Types of tasks to use

Built-in tasks

3" party tasks
Custom tasks
Java application
Native application
Native script

Built-in tasks

<target name="testo1">
<trycatch>
<try>

<javac srcdir="." destdir="."
source="1.5" target="1.5"/>

</try>
<catch>
<property
name="test0l.advice"
value="There are compilation
errors."/>
</catch>
<finally/>
</trycatch>
</target>

Running Java compiler

— javac

Running Java application
— java

Executing Junit

— junit

Checking XML validity or
well formedness

— xmlvalidate

Transforming XML

— xslt

3" party tasks

<target name="testo2">

* Checking Java source
<checkstyle code Style

file="Assignment5.java"

failureProperty="test02.fail" — CheCkSty|e, ja |Opy

maxErrors="15"/>

e Scanning for standard
<condition . . t k
property="test02.advice" programmlng MISTaKes

value="There are more than 15

— pmd, xradar, hammurapi

style errors.">

<equals | * |Invoking the ANTLR
argl="%{test02.fail}"
arg2="true"/> Translator generator
</condition>
— antlr

</target>

Custom task implementation

public class MyTask extends Task {
private String advicePropertyName;
public void setAdvice(

String newValue) {
advicePropertyName = newValue;

}

public void execute() {

}

Extend
org.apache.tools.ant.Task

For each attribute, write a
setter method

For each nested element,
write an add method

Write the execute method

Custom task implementation usage

<taskdef name="mytesttask"

classname="MyTask" * Deflne the taSk
classpath="classes"/> _ Task name

— Task class

e Use the task under the
defined name

<target name="testo3">
<mytesttask advice="test03.advice"/>

</target>

Custom Java application

<target name="testo4">

ctrycatchs e Write standard Java
<ty application

<java classname="AnalyzeSolution" ° Run the application

failonerror="yes"

maxmemory="128m"/> — I\/Iemory limit
</try> — Environment variables
ceateh> — Arguments
<property

name="test04.advice"
value="The produced solution is
not correct."/>
</catch>
<finally/>
</trycatch>
</target>

Any native application

<target name="testo5">

e s * Call native applications

ctry> and commands

<exec executable="diff"> ° Platfor‘m dependent
<arg line="out.txt correct.txt"/>

</exec> * No Java security

</try> Manager

<catch>
<property

name="test05.advice"
value="The program output is
not correct."/>
</catch>
<finally/>
</trycatch>
</target>

Or a native script

<target name="testoe">
<trycatch>
<try>

<exec executable="cmd"
os="Windows">

<arg line="/c test.bat"/>

</exec>

</try>
<catch>
<property
name="test06.advice"
value="The produced solution is
not correct."/>
</catch>
<finally/>
</trycatch>
</target>

On Unix systems
— directly

On Windows or Cygwin
— execute the shell

— pass the batch file as
argument using /c or -c
switch

More platform

dependent

No Java security
manager

Content

Automated assessment
Testovid system

Test anatomy

Writing tests
Conclusion

Conclusion

* Advantages
— Platform independent
— Flexible and powerful
— Can be extended
— Domain-specific testers and modules are reusable

* Disadvantages
— Time must be invested to create testers
— Knowledge of Apache Ant is needed

Questions?

Thank you for your attention

