
Plugging into Testovid

Ivan Pribela, Zoran Budimac

Content

• Automated assessment

• Testovid system

• Test anatomy

• Writing tests

• Conclusion

Content

• Automated assessment

• Testovid system

• Test anatomy

• Writing tests

• Conclusion

Automated assessment

• Assessment done by computers

• Assessment fazes

– question / assignment selection

– question / assessment deployment

– answer / solution gathering

– answer / solution grading

– student / teacher notification

– statistical analysis of results

Advantages (Large groups)

• Faster assessment

• Moving great amount of work load from
teachers

• Leaving more time for more productive
aspects of teaching

Advantages (Small groups)

• Enables self-assessment
• Teachers can easily note common problems and

difficult topics
• Question selection can be better adjusted to individual

needs
• Assessment results are immediate
• Same questions (assignments) can be repeated an

much times as needed
• Questions can contain graphics, sound, animations,

and other multimedia content
• Increase of assessment objectivity

Disadvantages

• Type of assessments supported

– short multiple choice tests

– fill-in-the-blanks tests with fixed correct answers

• Automated assessment is used more in
natural sciences, and rarely in social sciences,
where students write essays

Assessment of programming

• Programming assignments are perfect example
for automated assessment

• Besides generic, special systems for assessing of
computer programs were also developed

• There are two distinct types of computer
program assessment:
– correctness assessment

• does the student program solve given problem?

– optimality assessment
• how efficient the student program is?

Assessing correctness

• Oldest correctness assessment method is
– running student programs against various sets of input data
– comparing output form student program with correct one

• Input data
– created by teacher and given to the student
– created by the student
– hidden from the student

• Selecting input data
– fixed
– chosen randomly every time

• Output data
– compared with fixed data corresponding to given input
– compared with output from correct solution

Assessing optimality and style

• Early systems focused on execution speed and
precision of numeric results

• Recently attention has shifted towards
readability and code style

• Mostly based on absolute criteria
– identifier length

– line indentation

– ...

• Few attempts to use a program model

Content

• Automated assessment

• Testovid system

• Test anatomy

• Writing tests

• Conclusion

Testovid system

• Designed for assessment of programming

• Batch system

• Students can test solutions by themselves

• Teacher can test all assignments at once

• Generates execution reports

• Uses Apache Ant

• Designed to fit in Svetovid system

Apache Ant

• Apache Ant is a build process automation tool

• Similar to make, but written in Java

• Runs on Java virtual machine

• Most appropriate for Java projects

• Uses XML for description of build processes

• Open source

• Extensible

Implementation

• As a frame for domain-specific testers

• One domain-specific tester contains

– Apache Ant file with testing modules

– Configuration file with weights of every module

– Any accompanying files

• Modular and extensible

• Previous tests can be reused

Content

• Automated assessment

• Testovid system

• Test anatomy

• Writing tests

• Conclusion

Configuration file

targets.all = test01, test02, test03,
test04, test05, test06

test01.name = Compilation
test01.score= 1

test02.name = Up & Down methods
test02.score= 1

test03.name = Up – Upper restriction
test03.score= 2

test04.name = Down – Upper restriction
test04.score= 2

test05.name = Encapsulation
test05.score= 1

test06.name = Code style
test06.score= 1

• List of modules

• Name of every module

• Number of points for
each module

• All marks are binary

Testing module implementation

<target name="test06">

 <checkstyle
 file="Assignment5.java"
 failureProperty="test06.fail"
 maxErrors="15"/>

 <condition
 property="test06.advice"
 value="There are more than 15
 style errors.">
 <equals
 arg1="${test06.fail} "
 arg2="true"/>
 </condition>

</target>

• One module is one Ant
target

• Result of execution is
string that contains
message about an error

• Empty advice message
means all is ok

Any accompanying files

• Input and output files

• Program model (correct solution)

• Configuration files

• Helper applications and scripts

• …

Content

• Automated assessment

• Testovid system

• Test anatomy

• Writing tests

• Conclusion

Writing tests

<target name="testX">

 <!-- Run intended tasks -->

 ...

 <!-- Set the advice -->

 <property

 name="testX.advice"

 value="This is the advice."/>

</target>

• One module is one target

• Write Ant target

• Run intended tasks
– Compile student program

– Run student program

– Run correct solution

– Check the outputs

– Check student files

– Check style

• Set advice or leave it blank

Types of tasks to use

• Built-in tasks

• 3rd party tasks

• Custom tasks

• Java application

• Native application

• Native script

Built-in tasks

<target name="test01">

 <trycatch>

 <try>

 <javac srcdir="." destdir="."

 source="1.5" target="1.5"/>

 </try>

 <catch>

 <property

 name="test01.advice"

 value="There are compilation

 errors."/>

 </catch>

 <finally/>

 </trycatch>

</target>

• Running Java compiler
– javac

• Running Java application
– java

• Executing Junit
– junit

• Checking XML validity or
well formedness
– xmlvalidate

• Transforming XML
– xslt

3rd party tasks

<target name="test02">

 <checkstyle

 file="Assignment5.java"

 failureProperty="test02.fail"

 maxErrors="15"/>

 <condition

 property="test02.advice"

 value="There are more than 15

 style errors.">

 <equals

 arg1="${test02.fail}"

 arg2="true"/>

 </condition>

</target>

• Checking Java source
code style

– checkstyle, jalopy

• Scanning for standard
programming mistakes

– pmd, xradar, hammurapi

• Invoking the ANTLR
Translator generator

– antlr

Custom task implementation

public class MyTask extends Task {

 private String advicePropertyName;

 public void setAdvice(

 String newValue) {

 advicePropertyName = newValue;

 }

 public void execute() {

 // Task implementation

 }

}

• Extend
org.apache.tools.ant.Task

• For each attribute, write a
setter method

• For each nested element,
write an add method

• Write the execute method

Custom task implementation usage

<taskdef name="mytesttask"

 classname="MyTask"

 classpath="classes"/>

<target name="test03">

 <mytesttask advice="test03.advice"/>

</target>

• Define the task

– Task name

– Task class

• Use the task under the
defined name

Custom Java application

<target name="test04">

 <trycatch>

 <try>

 <java classname="AnalyzeSolution"

 failonerror="yes"

 maxmemory="128m"/>

 </try>

 <catch>

 <property

 name="test04.advice"

 value="The produced solution is

 not correct."/>

 </catch>

 <finally/>

 </trycatch>

</target>

• Write standard Java
application

• Run the application

– Memory limit

– Environment variables

– Arguments

Any native application

<target name="test05">

 <trycatch>

 <try>

 <exec executable="diff">

 <arg line="out.txt correct.txt"/>

 </exec>

 </try>

 <catch>

 <property

 name="test05.advice"

 value="The program output is

 not correct."/>

 </catch>

 <finally/>

 </trycatch>

</target>

• Call native applications
and commands

• Platform dependent

• No Java security
manager

Or a native script

<target name="test06">

 <trycatch>

 <try>

 <exec executable="cmd"

 os="Windows">

 <arg line="/c test.bat"/>

 </exec>

 </try>

 <catch>

 <property

 name="test06.advice"

 value="The produced solution is

 not correct."/>

 </catch>

 <finally/>

 </trycatch>

</target>

• On Unix systems

– directly

• On Windows or Cygwin

– execute the shell

– pass the batch file as
argument using /c or -c
switch

• More platform
dependent

• No Java security
manager

Content

• Automated assessment

• Testovid system

• Test anatomy

• Writing tests

• Conclusion

Conclusion

• Advantages

– Platform independent

– Flexible and powerful

– Can be extended

– Domain-specific testers and modules are reusable

• Disadvantages

– Time must be invested to create testers

– Knowledge of Apache Ant is needed

Questions?

Thank you for your attention

