Creativity and Innovation in Software Engineering

Teaching

Hussein Zedan
(©Software Technology Research Laboratory (STRL)
We acknowledge

@ the support of the SEDiLia project (Bulgaria) and
@ the collaboration with colleagues in the STRL and DMU (UK)

September 1, 2009

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Issues and Problems

@ Conceptual advances have always been the deriving force
behind progress. This, in turns, relies on creativity and the
ability to continue the production of new insights and novel
ideas.

@ This is even more so for the teaching processes and
techniques of any subject.

@ However, teaching is hard, specially of any science/engineering
subjects. It requires input from variety of different disciplines:
Education Theorists, Psychologists, Sociologists, etc.

@ Software engineering educators must teach students to think
creatively and to discover innovative solutions to real
problems.

@ This has become a crucial requirement as we are
advancing/progressing towards e/m-Learning modes of

education. Sz RL
Hussein Zedan Creativity and Innovation in Software Engineering Teaching

e Current teaching techniques (of software engineering) do not
encourage creativity. Indeed, in many situations, they do
hinder creativity!

@ In a phenomena-based teaching, we

@ start with explaining a phenomenon, with the help of
oversimplified (toy) examples.

@ This is followed by testing students using equally oversimplified
(toy) problems similar to those used in the explanation phase!

@ If still not clear AND there is time, simplify the toy examples
even more and go to (1)!

@ Both phases are done within the same context.

@ Lack of time, stringent educational policies, standard is
dropping , etc. are often attributed to the adoption of the
above.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

@ Fred Marlin has argued for more realistic educational context
for software engineering. He claims that teaching should be
interactive and collaborative, moving away from the
oversimplified toy examples.

@ Chuan-Hoo Tan has also argued that giving students
experience developing and delivering large-scale systems
under time constraints and shifting deadlines can better
prepare them for future challenges.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

e Many projects (at undergraduate and postgraduate levels)
lack both a fun/excitement factor to engage students and the
practical realism of engineering projects that include other
computer science disciplines such as networks and HCI.

@ Some have introduced courses (even degrees) on games
development.

@ lan Parberry and his colleagues explored the use of game
programming with art students , arguing that such an
approach creates the opportunity for diverse communities of
students to collaborate on joint projects.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

@ Similar experience was reported by Ming-Hsin Tsai on
applying game design in the education of art and design
students. Their students have made complete games and not
just oversimplified excercises or simple walk-through scenes.

@ The rethinking CS101 Project (www.cs101.org) claims that
most introductory programming courses - which typically
teach computation as sequential problem solving - are
outdated. Rather, such courses should emphasis interaction
among processes.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

e Whilst these approaches/recommendations for creative
teaching can help to some extent, they suffer some
drawbacks:

@ We talk of creative teaching yet we have no commonly agreed
understanding of the notion of creativity . In addition to a
lack of a scientific underpinning to support their claims.

@ Creativity has a temporal dimension. What might have been
creative then may not be creative now. Any approach must
enable students to cope with paradigm shifts.

© Creative teaching must have an individualistic dimension. The
suggested approaches have an implicit belief that it is
one-fits-all solution! Approaches for creative teaching should
be tailored to the need of individual student.

STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Computational Thinking - A General principle

@ Computational thinking builds on the power and limits of
computing processes, whether they are executed by human or
by a machine.

@ Computational models and methods give us the courage to
solve problems and design systems that no one of us would
been capable of tackling alone.

e Computational thinking is a fundamental skill for everyone.
To reading , writing and arithmetic, we should add
computational thinking to every child’s analytical ability.

@ Computational thinking involves solving problems, designing
systems and understanding human behaviour, by drawing on
the concepts fundamental to computer science.
Computational thinking includes a range of mental tools that
reflect the breadth of the field of computer science. STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Computational Thinking: Characteristics

o Computational thinking has the following characteristics:

@ Conceptualising, not programming/coding.
@ Fundamental, not rote skill.

o

© Complements and combines mathematical and engineering
thinking.

@ ldeas, not artifacts.

@ For everyone, everywhere.

@ These are all well known principles. However, they lack the
how:

How the adoption of the above leads to the enhancement of
creativity.

STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Research Questions

@ Can the discovery and analysis of creative processes enhance
the creative teaching techniques?

@ Do mechanisms of the creative processes cross the boundaries
of disciplines?

@ How does cooperation/collaboration affect creativity?

To shed some light on the above questions, we provide a unifying
framework within which the creative processes (and hence
creativity) can be understood and analysed. The unification here is
in the sense that the proposed framework is discipline-independent.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

1. Biological sciences

gttgagggggtgtigagggcggagaaatgcaagtticattacaaaagttaacgtaacaaa
aatctggtagaagtgagttttggatagtaaaataagtttcgaactctggeacctttcaat
tttgtcgcactctecttgtttttgaca

atgcaatcatatgcttctgctatgttaagegtattcaacagegatgattacagtccaget
gtgcaagagaatattcccgetctccggagaagetcttecttectttgeactgaaagetgt
aactctaagtatcagtgtgaaacgggagaaaacagtaaaggcaacgtccaggatagagtg
aagcgacccatgaacgcattcatcegtgtggtctcgegatcagaggegeaagatggetcta
gagaatcccagaatgcgaaactcagagatcagcaageagetgggataccagtggaaaatg
cttactgaagccgaaaaatggecattcttccaggaggeacagaaattacaggecatgeac
agagagaaatacccgaattataagtatcgacctcgtcggaaggegaagatgetgecgaag
aattgcagtttgcttcccgecagatcecgettcggtactctgecagegaagtgeaactggac
aacaggttgtacagggatgactgtacgaaagccacacactcaagaatggagcaccagcta
ggccacttaccgcccatcaacgecagcecagctcaccgcagcaacgggaccgctacagecac
tggacaaagctgtag

gacaatcgggtaacattg
gctacaaagacctacctagatgctectttttacgataacttacagecctcactttcttat
gtttagtttcaatattgttttctttictctggctaataaaggecttattcatttca

STRL

Hussein Zedan Creativity and Innovation in Software Engineeri

2. Automated reasoning

@ Reasoning is the process of systematically drawing conclusions
from a number of given facts by applying a series of steps.

@ There is no doubt that those steps in any mathematical proof,
by their brevity and unexpected turns, may strike its reader as
being very ingenious constructions.

@ Dijkstra has observed that: * [...] many of those steps that
may seem surprising, at first sight, are, in fact, (almost)
dictated, as they are the only (or by far the simplest)
transformation that will enable to exploit one of the givens
that has to be taken into account.’
@ In this connection, he recommended that * [...] we maintain
as fine grained a bookkeeping as possible of what of the givens
we have used: what has not been used yet often indicates the
direction in which the proof should be completed.’ STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Interactivity vs Legacy Creation

@ One of the major outcomes is the construction process of
Creativity Maps which provide the necessary basis for studying
the creative processes and hence enhancing our understanding
of the creative phenomenon.

@ The creativity maps can be built in an incremental,
and a non-intrusive fashion (i.e., as the creation is being
developed).
For legacy creations, the maps can also be constructed a
posteriori but only if adequate information were available.
E.g. Mozart vs. Beethoven.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Forces and Challenges

@ Understanding and analysing creativity and the creative
processes are hard.

o At its core, creativity are both subjective and domain-oriented

@ Both novelty and value have often been attributed to
creativity. These attributes are very hard to evaluate.

@ Adding to the challenges is that creativity has a temporal
dimension.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

@ Some dismiss the notion that creativity can be described as a
sequence of steps in a model. But while such views are
strongly held, they are in the minority.

@ In business, where models are used for quality improvement,
strategic planning, re-engineering, and so on, are
well-positioned to deal with this apparent controversy. Whilst
models may appear to be useful and helpful in guiding our
efforts, they should not be used too rigidly for that is
perceived to constrain creativity.

@ On the other hand, even if we deviate substantially from a
model in a given situation, this does not render the model
useless. It is also important to understand that we should not
be too rigid about when one step of a model ends and the

next begins. S
Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Models - cont.

@ Anecdotal descriptions have been also used to identify
processes that are considered creative. Many discoveries,
specially in the sciences were linked to a sudden realisation or
unexplained divine intervention associated with what is
known as the AHA! response

@ For example, Newton's falling apple (which has been since
disputed!), Archimedes’ “Eureka” moment in a bath or
Mendeleev's dream are well known examples.

STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

@ Would it have been profitable if we had some records of what
Isaac Newton was thinking, together with, his moods “before’
and “after” the fall of that apple?

@ Equally, it would have been extremely interesting and useful
to have known Archimedes' moods “before” and “after” he
went to that famous bath! And surely, knowing

@ Mendeleev' states “before” and “after” sleeping might have
shed some lights on his discovery.

The “before” and “after” states of mind are very powerful
mechanisms to analyse creativity and the creative processes.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Models - cont.

@ Most of existing models have a common characteristic: they
depend on a balance between analytical and synthetic thinking
and usually describe the creative process as a sequence of
phases that alternate between these states.

@ The implied theory behind older models is that the creative
thinking is a subconscious process that cannot be directed,
and that creative and analytical thinking are complementary.
This is known as the AHA! response/factor.

@ Modern models however tend to imply purposeful generation
of new ideas, under the direct control of the thinker.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Axioms of Creativity

AOQ. Creativity is identified only by its product.

A1l. The value of creativity is determined only by the society it
receives it.

A2.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

1>

)

Multiple Views
(Universe!)

Hussein Zedan

STRL

Creativity and Innovation in Software Engineering Teaching

1>

€

Multiple Views
(Universe!)

Hussein Zedan

STRL

Creativity and Innovation in Software Engineering Teaching

Hopping J
-

N
_ N
// AN
(j N
N
AN
N

Hopping

Py @ Multiple Views

(Universe!)

STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Hopping
N\
7

STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Transitions & Transition Systems

@ Let X be a set of states ,
o € Y,
o; : Var — Val

@ A transition r (sometimes denoted by —,)
is a relation
reXxx

o
@ let Rbeasets-t. reR, ie,
R € P(IxY) r

O i1

STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

@ (X, R) is called a Transition System

Clock Knowledge
X’ " t r @
t4 K {r1, r2, r3}
1 Knowledge-transitions
ra k4
r
t3 /
r2
s ks ks
Var = Clock Var = Knowledge
Val =N Val = kl,kg,k3,...
— tintiy1=(tip1=ti+1) - ko ks = (ko= k3)
— tj r tip1 = (tip1 > t) - ko ky = (ki > ko)
r1, r» is a Clock-transition - ka r3 ks = (ks < ka)

STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Classic transition systems use fixed relation between states.
Actions are used to label transition.

//b'

In our Generalised Transition System, there may be more than one
relation between states.
Actions vary from one relation to another.

C

STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Operators & Functions

e For a given transition
gjraoj

St: I xY =X

ojraoj— 0o

Et: L xX—X
gjroj—oj K
5
Knowledge ki
St(rl) = 51.'(/’2) = ko r2
Et(rg) = k3
Et(rl) =k)

STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

@ Obviously

St(R)= | st(r)

rer

Et(R)= |] Et(r)

rer

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

e-transition

For any X, an e-transition is defined as

E
Vs€e¥Y: se€s. Q

ANY-transition

For any ¥, an Any-transition is defined as
ANY =YX x ¥

(all possible transitions)

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

NULL-transition

For any ¥, a NULL-transition, ¢, is
Vo,re X : —(o¢r)

@ ANY is maximal relation

@ ¢ is mininmal relation.

STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

—n + —n ={(0i,05) : (i =n 0j)V
(Uf —>r2 GJ)}

—n T —n = {(kz, k1)7 ki

(ka, ks)} /m

STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

—n T —n; St(_>r1) = St(_>r2)/\

G Et(—n) # Et(—n)
10) otherwise
I
Branching z
r2

—n T —n, Et(_>r1) = Et(_>r2)/\

+ =
® T TR St(—n) # St(—n)
¢ otherwise
Iy
Merge £

v STRL

Creativity and Innovation in Software Engineering Teaching

Hussein Zedan

Sequential

For any > and —,

018 —, 802 ; 030 >, 804 =
010 — 60 — 004 ,0 = 02 = 04

null , otherwise

STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Sequential-Path —*

For any ¥, —* is defined as:

~
—)*:

€+ —j—F

E r r

I3
I3

STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Creativity Laws |

NULL+ —,=—,=—, +NULL
Q@ ¢ —,=—,=—"€

o ANY+ —,= ANY =—, +ANY

NULL; —,= NULL =—,; NULL (finite)
NULL* =€

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Creativity Laws | - Cont.

o — (‘)t + *)W) = (*)r; Ht) + (*)r; HW)
o —, +(—>t + HW) = (*)r —+ Ht)Jr —w

@ —; (—)t; —)W) = (Hr; *)t); —w

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Creativity Laws | - Cont.

*__ . *
0 —, = e+ —,; —,

— k.
=€+ =", —,

PLUS Many More!

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Representations

The creative process maps can be represented graphically as well
as be expressed algebraically.

| [Ins
E

The following algebraic expressions correctly describes the same
maps:

Pi=—(—=e + —c¢)

'Dlns2 —Ins» (_>De + —a+ _)D)-

STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Mainipulation

The map

Pins= —nsi (—Dpe + —a + —p).
was originally created from the composition of two sub-maps:
Pins1= —Ins; —De
and
Pins2= —ins; (—A + —p)-
using the distribution role of ; over the + which results in

Plnsgplnsl + Plns2

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

We can also use this rule for decomposing a given map:
P[= —)/;(—>E+—>C) — (—)l;—>E)+(_>I;_>C)

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Creative Behaviours and Paths

@ The traditional view of a behaviour is one of a sequence of
states where the behaviours < o1 05 03 >, < 01 03 05 > and
< 01 01 oo > are all distinct.

@ Due to the multi-views nature of creativity, a single sequence
of states will not adequately describe creative behaviours.
Instead, a behaviour in our settings is treated as a set of
sequences of states, where its elements reflect the various
viewpoints of interest.

@ A behaviour B is thus defined as B C (X x X)*

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Creative Behaviours and Paths - Cont.

e { < Contemplate Create Contemplate Acquiring > , <
Contemplate Create Acquiring Contemplate >} is a
behaviour that is equivalent to
{ < Contemplate Create Acquiring Contemplate > , <
Contemplate Create Contemplate Acquiring >}

@ Obviously,
{ < Contemplate Create Contemplate Acquiring >, <
Contemplate Create Contemplate Acquiring > }
and
{ < Contemplate Create Acquiring Contemplate > }are
two identical behaviours.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Creative Behaviours and Paths - Cont.

It is obviously clear that a creative path is a single behaviour.

-

Note here that a behaviour contains all or some of the viewpoints
of interest. The above behaviour for example contains a recording
of red, blue and black viewpoints. Additionally, we note that

(X x X)* gives the set of all possible behaviours or creative paths
of the system.

STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Creative structures and Their Construction

@ Let V= U V; be the set of all possible viewpoints of interest.
i
We define a creative structure, < C, —.>, as

<C,me>=<T,=r> x| < Vi, —y>

1

where
o <A —a>X<B,—g>=<AXB,—4 X —pg>, and

e <A —a>U<B,—g>=<AUB,—4U—pg> such that
—>A><—>5’£{<<é)1,[31>7 <32,b2>>2 aj € A,b,’ S
B/\alﬂAaQ/\blﬂgbg}

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Creative structures and Their Construction - Example

Let us consider three specific viewpoints of interest:

@ Time - denotes the elapse time of the creation, with
< T,— 7> as its transition system,

@ Knowledge, represents the fact that the creator has gained
knowledge (either by hopping from zone to another,
contemplating, etc.), with < K, —x> and

° - represents the process of creating or the production
of the particular artifact with its system

The resulting creative structure is thus defined and can be formed
as:
<Co=c>=<T,—-1> X[< A —=a> U< K, —k>]

STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Operations Over Creative Structures and Co-creation

@ The Operations over transitions presented above can be lifted
over creative systems.

o Let 1= < A, — 4> and Q= < B, —pg> be two creative
systems. These systems may represent either two different
creations or a collaborative creation made by two different
creators.

o % = (e+t—ai(=a)) + (e+—si(—8))
= e +
(=ai(—=a)) +
(—Bi(—8)") +

(=ai(=a)) + (=si(—=8)).
One can observe that the composition could either be empty
(e), A, B or composition of two paths. If the composition is
either A or B, hopping did not occur. L

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Operations Over Creative Structures and Co-creation -

Cont.

@ For a trueparallelism we have all possible combination from
the two transition systems:
Q || Q = <AXB,—p X —p>.

e For interleaving semantics, we can take a transition from
either A, B or both ((—a A —B)):

QI D = < AxB,—al —p>, where
<—al —p> = (EA/\ _’A) V (EB/\ _’B) vV
(—a A —B)

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Creativity Laws - I

(] Ql/Qg = Qg/Ql
o 01| = Q||
(] 91/(92/93) = (Q]_/QQ)/Q3

Q1[|(22]123) = (21]/€22)[/23

Q1; (22/93) = (Q1;22)1(Q1;23)
Q1; (Q2]|23) = (215 22) (215 Q23)

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Collaboration

STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

a az

b,

b,

b5 b5

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

The De Montfort Creativity Assistant

The De Montfort Creativity Assistant is a tool set which was built
to support the analysis of creative behaviours and processes. It has
two major components:

@ De Montfort Creative Environment and

e De Montfort Creativity Mapper

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

ntfort Creativity Assistant - Co

Access Control Instant Messaging and
Management Whiteboard facilities

Pend-It-Notes with
File Operations reminder facilities

(new file, delete file) Creative Environment

(= paper
= research
= intr i The project browser
chapter1
chapter2

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

ntfort Creativity Assistant - Cont.

De Montfort Creative Environment

/;;?\ Pend-It Notes /W) Collaboratlve Ednor

Data Presentation

Creativity Mining Engine

Knowledge Repository

Data Version | External
Repository Control | Repository \\ —

Internet)
Library {

(__Documents)
\ SN r~

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

The De Montfort Creativity Assistant - Cont.

(@& [+ [rimes New Roman |+ |12 ~] | » |

Dreamer | Maker | Critic | Collaborator
Creativity

(Croaiy o aeaivncssd s meniat prcess g e grarton e e concaot oo siaions o edhe mindiahocn oieing dece

~|| | coaborators

W sora
) somen

diine intervention,
the social environment, personaliy rats, and chance Caccident, "ssrendipi). e soon asod v genius, mental ilness and humour. Some say tis a rait

. itis is important in professions such as business,
economics, architecture, industial design, science and enginsering. DeSpID, o PTHaps becauso of, s bt and muKl-dmansional natur of roathay, entre

@9 9060

| Definitions of creativity

re and itis beyond the
of the word in English and atin creatus, iterally 1o have arown”

creatiy in the he production of ple, 3 ascienic hypothesis) thatis
both oniginal and useful.

®

Each is activiy This , who sugg dimensions
™ iy, unusuainess, usefuiness, and appropriateness in relation to the creative

broduct and ntellectual leadership on the part of he creative agant

Often implied n the noton of creaty s concomitant |
| presence of inspiration, cognifive leaps, or intitve insight as a par of ereative thought and action. Pop psychalogy sometimes associates creaiiy it rght or

| o o

q

STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

The De Montfort Creativity Assistant - Cont.

oreamer | Make Coaborator | 3] Reviions |
evsns = e = Fosson |_Dato || @)
» T wer

Creativity - | Creativity B - 2
ness) ty iE
5

orconcepts.
concarts. D
ety
i A . 12
‘simply tne act of making something new. -
Ithas been A
1has b !
. losagty, histo,scanomis, s
phiasosry, o a s o o o amonciners. e sties nave H
Smong atnérs , Unihe =
5
} s no :
Py e :
Counive proces s, ns sl ntonment personally ats,and chance Social srtonmen, personaly s, and chance Caccint, “sersndpty). I has
Caccident "serendipity). =
Rev.s
Paragraph
e e e e e] e e

The De Montfort Creativity Assistant - Cont.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

EX)

]

o B= RN D'”ﬂm,,g Sy
O O O O
2 2
O
4
O
P o [l
O O @) ©)
=
O
Innovation in Software Engineer Teaching

(B Creativity Map
[ole]| [a]o]x]| 4= L £

[eI

[l

Hussein Zedan

STRL

Creativity and Innovation in Software Engineering Teaching

Creative Writing

Action Description
e Editing
- Contemplating
— Conceptualising
o Comparing
—= Reading through
— Break

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Creative Writing

Hussein Zedan

Action Description
— Editing
o Contemplating
— Conceptualising
— Awaiting

Creative Writing

Hussein Zedan

Action Description
— Editing
" Contemplating
— Conceptualising

Creative Writing

Comp

o E Comp

Hussein Zedan

o

Action Description
— Editing
— - -
— Conceptualising
= Comparing

o

Listening to Instructions|

Creative Writing

Action Description
— Editing
— Contemplating
— Conceptualising
o Comparing

= Reading
— Questioning
— Other

Hussein Zedan

Experiments: Music Composition

STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Experiments: Music Composition - Cont.

2

% 3 3 |
= —

oJ

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Experiments: Music Composition - Cont.

STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Experiments: Music Composition - Cont.

Cr

C
(Cu = [TIR: (CTTTENF

STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Experiment: Software Design - FermaT

STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Experiment: Software Design - FermaT
D o—»% | '—’PZ’D'

D Ins
. e
A
—~"Ins
L\ SN
\B.
De Ins
A
.—Be P.—?. Ins De.
D D
P T
D D
‘—’P< . e
T |

The whole FeramT¢ creative process can also be described as an

expression in our algebraic setting as
(FermaTc = [T | [N; (IN1C I N)]J* STRL
Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Discussion and Insights

@ Creativity Data Bank
o Creativity, Emergence and Diversity

o data, knowledge and information.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Discussion and Insights - Cont.

@ Assigning ‘importance’ to creativity boxes allows us to study
the frequency of its occurrence in that map and in other maps
of the same and/or other creators within the same discipline.

@ Similar findings may be obtained across different disciplines.
This may reveal important knowledge about the creator, in
addition to allowing us to build a taxonomy of creative
processes.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Discussion and Insights - Cont.

@ Once a statistically significant data set, a probabilistic
creativity map for a given creator can be produced. Such a
map will assign a probabilistic attribute to boxes and be able
to infer some probabilistic properties about the creativity map.

@ The choice of the labels, which describe the mood of the
creator, presents us with the difficulties of terminology
alignment. There are many existing techniques that can be
use to address this issue utilising for example self organising
map or alignment algorithms in the ontology domain.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Discussion and Insights - Cont.

@ Each transition system in a creative map can be associated
with an action set, which in turns adds more expressive power

to our formalism.
At a particular level of analysis, we may only be interested in
discovering, for example
@ the order of transitions, i.e. a Create activity is followed by
three inspirational:
—Create 1 ~lInspiration 1 ~Inspiration 1 " Inspiration
@ the occurrence frequency of a particular transition (i.e. over
the duration of the creation, 40% of transitions was

— Prototyping) .

@ We can achieve this by decorating the transition by an
appropriate action: —4,, e.g.

Jogging . Praying . . Sleeping .
(_)lnspiration ! _>lnspiration) 1+~ Development (Inspiration))

— Development S TRL
Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Educational Requirements

@ These approaches introduce some important educational
requirements of software engineering:

@ Provide a rich, more realistic and engaging development
context. For example, establishing hard deadlines, teaches the
ability to frame problems and solutions more realistically while
working in groups teaches working in teams.

@ Students should develop their own designs through rapid
prototyping. This will help identifying inconsistency and
incompleteness in their ideas.

© Use didactic method that supports creative thinking.

e But

© what is creative thinking?
@ How do we ensure it has been achieved?
© How do validate and verify its implementation?

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Didactic Principles

Support exploration. Let users try many alternatives before
settling on a final design.

Support low thresholds, high ceilings, and wide walls. Make
it easy for beginners to start, but also let experts work on
more complicated projects, and support a wide range of
explorations.

Support many paths and many styles. Assist learners with
different styles and approaches.

Support collaboration. Encourage teamwork.

Support open interchange. Diverse tools that support creative
work should be inter-operable.

STRL

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

Didactic Principles - Cont.

@ Make it as simple as possibleand maybe even simpler. Avoid
making tools too complex by adding unnecessary features.

@ Choose black boxes carefully. Carefully select the primitives
that users will manipulate.

@ Invent things that you would want to use. Use your own
experience in creative work.

@ Balance user suggestions with observation and participatory
processes. Involve end users in the design process.

@ lterate, iteratethen iterate again. Support iterative design
using prototypes.

@ Design for designers. Build tools that let others design.

@ Evaluate your tools. Use empirical testing methods; do not

rely on intuition.
Hussein Zedan Creativity and Innovation in Software Engineering Teaching

@ Software engineering educators can also use examples from
interactive art projects and hacking to demonstrate innovation
and nontraditional problem solving. To find these examples,
we looked at electronic art conferences, such as Ars
Electronica (www.aec.at), the Dutch Electronic Arts Festival
(DEAF, www.deaf07.nl), and ACMs Multimedia Interactive
Arts track. We also look at hacking conferences, such as
Blackhat (www. blackhat.com) and Chaos Computer
Congresses (www.ccc.de).

Hussein Zedan Creativity and Innovation in Software Engineering Teaching

