
Creativity and Innovation in Software Engineering
Teaching

Hussein Zedan

c©Software Technology Research Laboratory (STRL)

We acknowledge

the support of the SEDiLia project (Bulgaria) and

the collaboration with colleagues in the STRL and DMU (UK)

September 1, 2009

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Issues and Problems

Conceptual advances have always been the deriving force
behind progress. This, in turns, relies on creativity and the
ability to continue the production of new insights and novel
ideas.

This is even more so for the teaching processes and
techniques of any subject.

However, teaching is hard, specially of any science/engineering
subjects. It requires input from variety of different disciplines:
Education Theorists, Psychologists, Sociologists, etc.

Software engineering educators must teach students to think
creatively and to discover innovative solutions to real
problems.

This has become a crucial requirement as we are
advancing/progressing towards e/m-Learning modes of
education.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Current teaching techniques (of software engineering) do not
encourage creativity. Indeed, in many situations, they do
hinder creativity!

In a phenomena-based teaching, we
1 start with explaining a phenomenon, with the help of

oversimplified (toy) examples.
2 This is followed by testing students using equally oversimplified

(toy) problems similar to those used in the explanation phase!
3 If still not clear AND there is time, simplify the toy examples

even more and go to (1)!

Both phases are done within the same context.

Lack of time, stringent educational policies, standard is
dropping , etc. are often attributed to the adoption of the
above.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Fred Marlin has argued for more realistic educational context
for software engineering. He claims that teaching should be
interactive and collaborative, moving away from the
oversimplified toy examples.

Chuan-Hoo Tan has also argued that giving students
experience developing and delivering large-scale systems
under time constraints and shifting deadlines can better
prepare them for future challenges.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Many projects (at undergraduate and postgraduate levels)
lack both a fun/excitement factor to engage students and the
practical realism of engineering projects that include other

computer science disciplines such as networks and HCI.

Some have introduced courses (even degrees) on games
development.

Ian Parberry and his colleagues explored the use of game
programming with art students , arguing that such an
approach creates the opportunity for diverse communities of
students to collaborate on joint projects.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Similar experience was reported by Ming-Hsin Tsai on
applying game design in the education of art and design
students. Their students have made complete games and not
just oversimplified excercises or simple walk-through scenes.

The rethinking CS101 Project (www.cs101.org) claims that
most introductory programming courses - which typically
teach computation as sequential problem solving - are
outdated. Rather, such courses should emphasis interaction
among processes.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Limitations

Whilst these approaches/recommendations for creative
teaching can help to some extent, they suffer some
drawbacks:

1 We talk of creative teaching yet we have no commonly agreed
understanding of the notion of creativity . In addition to a
lack of a scientific underpinning to support their claims.

2 Creativity has a temporal dimension. What might have been
creative then may not be creative now. Any approach must
enable students to cope with paradigm shifts.

3 Creative teaching must have an individualistic dimension. The
suggested approaches have an implicit belief that it is
one-fits-all solution! Approaches for creative teaching should
be tailored to the need of individual student.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Computational Thinking - A General principle

Computational thinking builds on the power and limits of
computing processes, whether they are executed by human or
by a machine.

Computational models and methods give us the courage to
solve problems and design systems that no one of us would
been capable of tackling alone.

Computational thinking is a fundamental skill for everyone.
To reading , writing and arithmetic, we should add
computational thinking to every child’s analytical ability.

Computational thinking involves solving problems, designing
systems and understanding human behaviour, by drawing on
the concepts fundamental to computer science.
Computational thinking includes a range of mental tools that
reflect the breadth of the field of computer science.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Computational Thinking: Characteristics

Computational thinking has the following characteristics:

1 Conceptualising, not programming/coding.
2 Fundamental, not rote skill.
3 A way that humans, not computers, think.
4 Complements and combines mathematical and engineering

thinking.
5 Ideas, not artifacts.
6 For everyone, everywhere.

These are all well known principles. However, they lack the
how:

How the adoption of the above leads to the enhancement of
creativity.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Research Questions

Can the discovery and analysis of creative processes enhance
the creative teaching techniques?

Do mechanisms of the creative processes cross the boundaries
of disciplines?

Are there optimal conditions that may enhance the creativity
in Software Engineering education?

How does cooperation/collaboration affect creativity?

To shed some light on the above questions, we provide a unifying
framework within which the creative processes (and hence
creativity) can be understood and analysed. The unification here is
in the sense that the proposed framework is discipline-independent.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



1. Biological sciences

gttgagggggtgttgagggcggagaaatgcaagtttcattacaaaagttaacgtaacaaa
aatctggtagaagtgagttttggatagtaaaataagtttcgaactctggcacctttcaat
tttgtcgcactctccttgtttttgaca

atgcaatcatatgcttctgctatgttaagcgtattcaacagcgatgattacagtccagct
gtgcaagagaatattcccgctctccggagaagctcttccttcctttgcactgaaagctgt
aactctaagtatcagtgtgaaacgggagaaaacagtaaaggcaacgtccaggatagagtg
aagcgacccatgaacgcattcatcgtgtggtctcgcgatcagaggcgcaagatggctcta
gagaatcccagaatgcgaaactcagagatcagcaagcagctgggataccagtggaaaatg
cttactgaagccgaaaaatggccattcttccaggaggcacagaaattacaggccatgcac
agagagaaatacccgaattataagtatcgacctcgtcggaaggcgaagatgctgccgaag
aattgcagtttgcttcccgcagatcccgcttcggtactctgcagcgaagtgcaactggac
aacaggttgtacagggatgactgtacgaaagccacacactcaagaatggagcaccagcta
ggccacttaccgcccatcaacgcagccagctcaccgcagcaacgggaccgctacagccac
tggacaaagctgtag

gacaatcgggtaacattg
gctacaaagacctacctagatgctcctttttacgataacttacagccctcactttcttat
gtttagtttcaatattgttttcttttctctggctaataaaggccttattcatttca

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



2. Automated reasoning

Reasoning is the process of systematically drawing conclusions
from a number of given facts by applying a series of steps.

There is no doubt that those steps in any mathematical proof,
by their brevity and unexpected turns, may strike its reader as
being very ingenious constructions.

Dijkstra has observed that: ‘ [...] many of those steps that
may seem surprising, at first sight, are, in fact, (almost)
dictated, as they are the only (or by far the simplest)
transformation that will enable to exploit one of the givens
that has to be taken into account.’

In this connection, he recommended that ‘ [...] we maintain
as fine grained a bookkeeping as possible of what of the givens
we have used: what has not been used yet often indicates the
direction in which the proof should be completed.’

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Interactivity vs Legacy Creation

One of the major outcomes is the construction process of
Creativity Maps which provide the necessary basis for studying
the creative processes and hence enhancing our understanding
of the creative phenomenon.

The creativity maps can be built in an incremental, interactive
and a non-intrusive fashion (i.e., as the creation is being
developed).
For legacy creations, the maps can also be constructed a
posteriori but only if adequate information were available.
E.g. Mozart vs. Beethoven.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Forces and Challenges

Understanding and analysing creativity and the creative
processes are hard.

At its core, creativity are both subjective and domain-oriented
.

Both novelty and value have often been attributed to
creativity. These attributes are very hard to evaluate.

Adding to the challenges is that creativity has a temporal
dimension.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Models

Some dismiss the notion that creativity can be described as a
sequence of steps in a model. But while such views are
strongly held, they are in the minority.

In business, where models are used for quality improvement,
strategic planning, re-engineering, and so on, are
well-positioned to deal with this apparent controversy. Whilst
models may appear to be useful and helpful in guiding our
efforts, they should not be used too rigidly for that is
perceived to constrain creativity.

On the other hand, even if we deviate substantially from a
model in a given situation, this does not render the model
useless. It is also important to understand that we should not
be too rigid about when one step of a model ends and the
next begins.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Models - cont.

Anecdotal descriptions have been also used to identify
processes that are considered creative. Many discoveries,
specially in the sciences were linked to a sudden realisation or
unexplained divine intervention associated with what is
known as the AHA! response

For example, Newton’s falling apple (which has been since
disputed!), Archimedes’ “Eureka” moment in a bath or
Mendeleev’s dream are well known examples.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Would it have been profitable if we had some records of what
Isaac Newton was thinking, together with, his moods “before”
and “after” the fall of that apple?

Equally, it would have been extremely interesting and useful
to have known Archimedes’ moods “before” and “after” he
went to that famous bath! And surely, knowing

Mendeleev’ states “before” and “after” sleeping might have
shed some lights on his discovery.

The “before” and “after” states of mind are very powerful
mechanisms to analyse creativity and the creative processes.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Models - cont.

Most of existing models have a common characteristic: they
depend on a balance between analytical and synthetic thinking
and usually describe the creative process as a sequence of
phases that alternate between these states.

The implied theory behind older models is that the creative
thinking is a subconscious process that cannot be directed,
and that creative and analytical thinking are complementary.
This is known as the AHA! response/factor.

Modern models however tend to imply purposeful generation
of new ideas, under the direct control of the thinker.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Axioms of Creativity

A0. Creativity is identified only by its product.

A1. The value of creativity is determined only by the society it
receives it.

A2. Creativity is an emergent phenomenon.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Transitions & Transition Systems

Let Σ be a set of states ,
σi ∈ Σ,

σi : Var → Val

A transition r (sometimes denoted by →r )
is a relation

r ∈ ΣxΣ

Let R be a set s · t. r ∈ R, i.e.,
R ∈ P(ΣxΣ)

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



(Σ,R) is called a Transition System

Clock

Var = Clock
Val = N
→ ti r1 ti+1 =̂ (ti+1 = ti + 1)

→ ti r2 ti+1 =̂ (ti+1 ≥ ti )

r1, r2 is a Clock-transition

Knowledge

Var = Knowledge
Val = k1, k2, k3, ...

- k2 r2 k3 =̂ (k2 = k3)

- k2 r1 k1 =̂ (k1 > k2)

- k4 r3 k5 =̂ (k5 ≤ k4)

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Classic transition systems use fixed relation between states.
Actions are used to label transition.

In our Generalised Transition System, there may be more than one
relation between states.
Actions vary from one relation to another.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Operators & Functions

For a given transition

σi r σj

St: Σ× Σ→ Σ
σi r σj 7→ σi

Et: Σ× Σ→ Σ
σi r σj 7→ σj

Knowledge

St(r1) = St(r2) = k2

Et(r2) = k3

Et(r1) = k1

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Obviously

St(R)=̂
⋃
r∈R

St(r)

Et(R)=̂
⋃
r∈R

Et(r)

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



ε-transition

For any Σ, an ε-transition is defined as

∀s ∈ Σ : s ∈ s.

ANY-transition

For any Σ, an Any-transition is defined as

ANY =̂ Σ× Σ

(all possible transitions)

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



NULL-transition

For any Σ, a NULL-transition, φ, is

∀σ, r ∈ Σ : ¬(σφr)

ANY is maximal relation

φ is mininmal relation.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



OR:

→r1 +→r2 =̂ {(σi , σj) : (σi →r1 σj)∨
(σi →r2 σj)}

→r1 +→r2 = {(k2, k1),
(k4, k5)}

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



→r1 +̃→r2 =̂


→r1 +→r2 , St(→r1) = St(→r2)∧

Et(→r1) 6= Et(→r2)
φ otherwise

Branching

→r1
+˜ →r2 =̂


→r1 +→r2 , Et(→r1) = Et(→r2)∧

St(→r1) 6= St(→r2)
φ otherwise

Merge

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Sequential

For any Σ and →ri ,

σ1• →ri •σ2 ; σ3• →rj •σ4 =̂
σ1• → •σ → •σ4 , σ = σ2 = σ4

null , otherwise

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Sequential-Path →∗

For any Σ,→∗ is defined as:

→∗ =̂ ∈ +→ j →∗

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Creativity Laws I

NULL+→r =→r =→r +NULL

ε;→r =→r =→r ; ε

ANY +→r = ANY =→r +ANY

NULL;→r = NULL =→r ; NULL (finite)

NULL∗ = ε

ε∗ = ε

ANY ∗ = T (T = (Σ× Σ)∗)

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Creativity Laws I - Cont.

→r ; (→t +→w ) = (→r ;→t) + (→r ;→w )

→r +(→t +→w ) = (→r +→t)+→w

→r ; (→t ;→w ) = (→r ;→t);→w

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Creativity Laws I - Cont.

→∗r = ε+→r ;→∗r
= ε+→∗;→r

(→t +→r )∗ =→∗t ; (→r ;→∗t )∗

→r1 +→r1=→r1

PLUS Many More!

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Representations

The creative process maps can be represented graphically as well
as be expressed algebraically.

The following algebraic expressions correctly describes the same
maps:

PI =̂→I ; (→E +→C )

PIns=̂→Ins ; (→De +→A +→D).

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Mainipulation

The map

PIns=̂→Ins ; (→De +→A +→D).

was originally created from the composition of two sub-maps:

PIns1=̂→Ins ;→De

and

PIns2=̂→Ins ; (→A +→D).

using the distribution role of ; over the + which results in

PIns=̂PIns1 + PIns2

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



We can also use this rule for decomposing a given map:
PI =̂ →I ; (→E +→C ) = (→I ;→E ) + (→I ;→C )

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Creative Behaviours and Paths

The traditional view of a behaviour is one of a sequence of
states where the behaviours < σ1 σ2 σ3 >, < σ1 σ3 σ2 > and
< σ1 σ1 σ2 > are all distinct.

Due to the multi-views nature of creativity, a single sequence
of states will not adequately describe creative behaviours.
Instead, a behaviour in our settings is treated as a set of
sequences of states, where its elements reflect the various
viewpoints of interest.

A behaviour B is thus defined as B ⊂ (Σ× Σ)∗ .

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Creative Behaviours and Paths - Cont.

{ < Contemplate Create Contemplate Acquiring > , <
Contemplate Create Acquiring Contemplate > } is a
behaviour that is equivalent to
{ < Contemplate Create Acquiring Contemplate > , <
Contemplate Create Contemplate Acquiring > }

Obviously,
{ < Contemplate Create Contemplate Acquiring > , <
Contemplate Create Contemplate Acquiring > }
and
{ < Contemplate Create Acquiring Contemplate > }are
two identical behaviours.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Creative Behaviours and Paths - Cont.

It is obviously clear that a creative path is a single behaviour.

Note here that a behaviour contains all or some of the viewpoints
of interest. The above behaviour for example contains a recording
of red, blue and black viewpoints. Additionally, we note that
(Σ× Σ)∗ gives the set of all possible behaviours or creative paths
of the system.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Creative structures and Their Construction

Let V =
⋃
i

Vi be the set of all possible viewpoints of interest.

We define a creative structure, < C ,→c>, as

< C ,→C> =̂ < T ,→T> ×
⋃
i

< Vi ,→Vi
>

where

< A,→A> × < B,→B> =̂ < A× B,→A × →B>, and

< A,→A> ∪ < B,→B> =̂ < A ∪ B,→A ∪ →B> such that
→A × →B =̂{< < a1, b1 > , < a2, b2 > > : ai ∈ A, bi ∈
B ∧ a1 →A a2 ∧ b1 →B b2}

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Creative structures and Their Construction - Example

Let us consider three specific viewpoints of interest:

Time - denotes the elapse time of the creation, with
< T ,→T> as its transition system,

Knowledge, represents the fact that the creator has gained
knowledge (either by hopping from zone to another,
contemplating, etc.), with < K ,→K> and

Artifact- represents the process of creating or the production
of the particular artifact with its system < A,→A>.

The resulting creative structure is thus defined and can be formed
as:
< C ,→C> =̂ < T ,→T> ×[< A,→A> ∪ < K ,→K>]

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Operations Over Creative Structures and Co-creation

The Operations over transitions presented above can be lifted
over creative systems.

Let Ω1=̂ < A,→A> and Ω2=̂ < B,→B> be two creative
systems. These systems may represent either two different
creations or a collaborative creation made by two different
creators.

Ω1 ; Ω2 =̂ ( ε+→A; (→A)∗) ; (ε+→B ; (→B)∗)

= ε +

(→A; (→A)∗) +

(→B ; (→B)∗) +

(→A; (→A)∗) ; (→B ; (→B)∗).
One can observe that the composition could either be empty
(ε), A, B or composition of two paths. If the composition is
either A or B, hopping did not occur.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Operations Over Creative Structures and Co-creation -
Cont.

For a trueparallelism we have all possible combination from
the two transition systems:
Ω1 ‖ Ω2 =̂ < A× B,→A × →B>.

For interleaving semantics, we can take a transition from
either A, B or both ((→A ∧ →B)):
Ω1 l Ω2 =̂ < A× B,→A l →B> , where
<→A l →B> =̂ (εA∧ →A) ∨ (εB∧ →B) ∨
(→A ∧ →B)

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Creativity Laws - II

Ω1lΩ2 = Ω2lΩ1

Ω1‖Ω2 = Ω2‖Ω1

Ω1l(Ω2lΩ3) = (Ω1lΩ2)lΩ3

Ω1‖(Ω2‖Ω3) = (Ω1‖Ω2)‖Ω3

Ω1; (Ω2lΩ3) = (Ω1; Ω2)l(Ω1; Ω3)

Ω1; (Ω2‖Ω3) = (Ω1; Ω2)‖(Ω1; Ω3)

Ω1; (Ω2; Ω3) = (Ω1; Ω2); Ω3

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Collaboration

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Analysis

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



The De Montfort Creativity Assistant

The De Montfort Creativity Assistant is a tool set which was built
to support the analysis of creative behaviours and processes. It has
two major components:

De Montfort Creative Environment and

De Montfort Creativity Mapper

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



The De Montfort Creativity Assistant - Cont.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



The De Montfort Creativity Assistant - Cont.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



The De Montfort Creativity Assistant - Cont.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



The De Montfort Creativity Assistant - Cont.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



The De Montfort Creativity Assistant - Cont.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Creative Writing

C E ECt E E Ct E Rt E Ct Br E E

Rt Br

E

Rt

E

RtRt
Rt

E Rt E
E

E

E

E

Rt

E E
E E E

Rt
E E E ERt Rt Rt

E E ERt Rt Rt E

E Rt RtE Comp Br

E

Action Description

Editing

Contemplating

Conceptualising

Comparing

Reading through

Break

E

Ct

C

Rt

Br

Comp

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Creative Writing

C E EC C E Ct E C C E

E
A EC

Ct

Action Description

Editing

Contemplating

Conceptualising

Awaiting

E

Ct

C

A

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Creative Writing

C Ct CtE E

C

E Ct E Ct E Ct E C Ct

E Ct Ct EE Ct EE

E
E

E

Ct
E

Ct
E

C
Ct E Ct

Ct
CtE E

Ct

Action Description

Editing

Contemplating

Conceptualising

E

Ct

C

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Creative Writing

C LtI CtC E E Ct E EE

Comp
ECt

E

Comp

Ct CtComp CompE E E E

Action Description

Editing

Contemplating

Conceptualising

Comparing

Listening to Instructions

E

Ct

C

Comp

LtI

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Creative Writing

C Ot EC C Ct E Ct E Ct Q Ct E Ct

E E

E

Ct

R
E R R R

Ct E Comp QCt E E

R

E
E

E
E E

Ct E E Ct E

R

E E E

E R E R E R E E R

E

E E

E

Action Description

Editing

Contemplating

Conceptualising

Comparing

Reading

Questioning

Other

E

Ct

C

Comp

R

Ot

Q

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Experiments: Music Composition

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Experiments: Music Composition - Cont.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Experiments: Music Composition - Cont.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Experiments: Music Composition - Cont.

CM = [T ‖ [R ; (C l I l E )]]∗

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Experiment: Software Design - FermaT

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Experiment: Software Design - FermaT

The whole FeramTC creative process can also be described as an
expression in our algebraic setting as

FermaTC = [T ‖ [N ; (IN l C l N)]]∗

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Discussion and Insights

Creativity Data Bank

Creativity, Emergence and Diversity

data, knowledge and information.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Discussion and Insights - Cont.

Assigning ‘importance’ to creativity boxes allows us to study
the frequency of its occurrence in that map and in other maps
of the same and/or other creators within the same discipline.

Similar findings may be obtained across different disciplines.
This may reveal important knowledge about the creator, in
addition to allowing us to build a taxonomy of creative
processes.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Discussion and Insights - Cont.

Once a statistically significant data set, a probabilistic
creativity map for a given creator can be produced. Such a
map will assign a probabilistic attribute to boxes and be able
to infer some probabilistic properties about the creativity map.

The choice of the labels, which describe the mood of the
creator, presents us with the difficulties of terminology
alignment. There are many existing techniques that can be
use to address this issue utilising for example self organising
map or alignment algorithms in the ontology domain.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Discussion and Insights - Cont.

Each transition system in a creative map can be associated
with an action set, which in turns adds more expressive power
to our formalism.
At a particular level of analysis, we may only be interested in
discovering, for example

1 the order of transitions, i.e. a Create activity is followed by
three inspirational:
→Create ; →Inspiration ; →Inspiration ; →Inspiration

2 the occurrence frequency of a particular transition (i.e. over
the duration of the creation, 40% of transitions was
→Prototyping ).

We can achieve this by decorating the transition by an
appropriate action: →A

α, e.g.

(→Jogging
Inspiration ; →Praying

Inspiration) ; →Development ; (→Sleeping
Inspiration) ;

→Development

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Educational Requirements

These approaches introduce some important educational
requirements of software engineering:

1 Provide a rich, more realistic and engaging development
context. For example, establishing hard deadlines, teaches the
ability to frame problems and solutions more realistically while
working in groups teaches working in teams.

2 Students should develop their own designs through rapid
prototyping. This will help identifying inconsistency and
incompleteness in their ideas.

3 Use didactic method that supports creative thinking.

But
1 what is creative thinking?
2 How do we ensure it has been achieved?
3 How do validate and verify its implementation?

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Didactic Principles

Support exploration. Let users try many alternatives before
settling on a final design.

Support low thresholds, high ceilings, and wide walls. Make
it easy for beginners to start, but also let experts work on
more complicated projects, and support a wide range of
explorations.

Support many paths and many styles. Assist learners with
different styles and approaches.

Support collaboration. Encourage teamwork.

Support open interchange. Diverse tools that support creative
work should be inter-operable.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Didactic Principles - Cont.

Make it as simple as possibleand maybe even simpler. Avoid
making tools too complex by adding unnecessary features.

Choose black boxes carefully. Carefully select the primitives
that users will manipulate.

Invent things that you would want to use. Use your own
experience in creative work.

Balance user suggestions with observation and participatory
processes. Involve end users in the design process.

Iterate, iteratethen iterate again. Support iterative design
using prototypes.

Design for designers. Build tools that let others design.

Evaluate your tools. Use empirical testing methods; do not
rely on intuition.

Hussein Zedan Creativity and Innovation in Software Engineering Teaching



Software engineering educators can also use examples from
interactive art projects and hacking to demonstrate innovation
and nontraditional problem solving. To find these examples,
we looked at electronic art conferences, such as Ars
Electronica (www.aec.at), the Dutch Electronic Arts Festival
(DEAF, www.deaf07.nl), and ACMs Multimedia Interactive
Arts track. We also look at hacking conferences, such as
Blackhat (www. blackhat.com) and Chaos Computer
Congresses (www.ccc.de).

Hussein Zedan Creativity and Innovation in Software Engineering Teaching


