
Using Distributed Pair
Programming in a Java Course

Stelios Xinogalos
Department of Applied Informatics,

School of Information Sciences, University of Macedonia,
Egnatia 156, 54636 Thessaloniki, Greece

stelios@uom.edu.gr

16th Workshop on "Software Engineering Education and Reverse Engineering"

Learning Programming
 Learning programming has always been difficult for novices.

 The difficulties are various and have been heavily studied in the literature.

 The main difficulties recorded refer to the intrinsic difficulties of
programming structures both in terms of their syntax and semantics, the
notional machine as defined by du Boulay, the programming environments
used that do not support novices in program development and debugging, as
well as the problems solved that do not engage students.

 For several decades, instructors and researchers made efforts to deal with
the aforementioned difficulties through specially designed programming
environments that utilized various forms of Educational Technology.

 All these environments aimed at making programming more accessible and
appealing to novices.

Jahorina, BiH, August 25th 2016 2

Educational Technology & Programming
Environments

 Programming microworlds

 Structure editors
 Syntax editors
 Iconic programming languages – flowchart-based programming

environments

 Software visualization – program animators

 Improved diagnostic capabilities of compilers

 Educational games

 Pair Programming & Distributed Pair Programming

 Computer Supported Collaborative Learning

DAAD Workshop 2013

DAAD Workshop 2014

DAAD Workshop 2016

Jahorina, BiH, August 25th 2016 3

Research at UOM

Jahorina, BiH, August 25th 2016 4

Presentation Contents

 Pair Programming, Distributed Pair Programming &
Collaboration Scripts

 The Educational DPP System of SCEPPSYs

 Using DPP in an “Object-Oriented Design and Programming”
course

 => student participation and performance

 Using DPP in an “Object-Oriented Programming” course

 => monitoring the course and students

Jahorina, BiH, August 25th 2016 5

Presentation Contents

 Pair Programming, Distributed Pair Programming &
Collaboration Scripts

 The Educational DPP System of SCEPPSYs

 Using DPP in an “Object-Oriented Design and Programming”
course

 => student participation and performance

 Using DPP in an “Object-Oriented Programming” course

 => monitoring the course and students

Jahorina, BiH, August 25th 2016 6

PP, DPP & Collaboration Scripts
Pair Programming

(PP)

• collaboration

• continuous
knowledge transfer,

• negotiation and
sharing of
programming skills

• production of higher
quality software in a
shorter time

• In academic settings:
students are more
confident, enjoy
programming and
improve academic
performance

Distributed Pair
Programming (DPP)

• remote collaboration

• DPP systems were
built for professional,
personal or academic
purposes

• DPP systems are
appropriate for
distance education
and eliminate
scheduling problems

• research studies
indicate that DPP
maintains most
benefits of PP

Collaboration Scripts

• Scaffolding technique
used in Computer
Supported
Collaborative Learning
(CSCL) for structuring
collaborative
interactions

• Collaboration scripts
were used in
SCEPPSys for dealing
with unequal student
engagement that has
been recorded for PP
and DPP

Jahorina, BiH, August 25th 2016 7

PP, DPP & Collaboration Scripts
 The adoption of PP in the classroom resulted in the development of a

considerable number of educational DPP systems.

 Some of them were built as standalone applications, such as:

 COLLECE

 COPPER

 The majority of educational DPP systems were built as plugins for the Eclipse

IDE, such as:

 Sangam

 RIPPLE

 Xpairtise

The evaluation of those systems generally reported positive findings on students’

attitude and program quality.

As a drawback, the evaluation of XPairtise revealed less active interactions between

pair programmers. Instead of equal contributions in the program code, the pairs did

rarely switch roles and one team member dominated each DPP session.

 Jahorina, BiH, August 25th 2016 8

Presentation Contents

 Pair Programming, Distributed Pair Programming &
Collaboration Scripts

 The Educational DPP System of SCEPPSYs

 Using DPP in an “Object-Oriented Design and Programming”
course

 => student participation and performance

 Using DPP in an “Object-Oriented Programming” course

 => monitoring the course and students

Jahorina, BiH, August 25th 2016 9

SCEPPSYs – an educational DPP system
 a server for dispatching

messages between the
clients

 a database for storing
user’s accounts,
information about
courses, groups and
assignments, shared
projects and statistics

 a web-based authoring
tool used by instructors
for scripting DPP

 an Eclipse plugin installed
by students

Available as an
open source

Eclipse-plugin

Supports basic

requirements of
DPP

Provides
administration
support for the

teacher

Embeds
Collaboration

Scripts

Scripted
Collaboration in an
Educational
Pair
Programming
System

https://sites.google.com/a/uom.edu.gr/despinats/

Jahorina, BiH, August 25th 2016 10

SCEPPSYs – setting up a course
 Administration panel: allows instructors

to organize programming assignments, to

monitor students’ progress and to extract

collaboration related analytics.

 DPP is practiced in the form of

collaboration scripts that are adapted to

the requirements of DPP and can be

defined through the administration panel

of SCEPPSys.

 A collaboration script includes the

definition of participants, groups,

programming tasks and turn-taking

policies that specify the distribution of

the driver/navigator roles among the

programmers.

Jahorina, BiH, August 25th 2016 11

SCEPPSYs – carrying out a typical DPP session

the shared editor

embedded chat tool

the script instructions for the task
problem statement in Eclipse view

awareness indicators
of user status

assigned roles

Jahorina, BiH, August 25th 2016 12

SCEPPSYs – carrying out a typical DPP session

 Group members meet online and request a PP session.

 A shared project is automatically generated inside the workspace of both
students and the programming tasks are displayed in a separate area.

 Students solve the tasks by adopting the roles of the driver and navigator
and switch roles according to the task distribution policy.

 During the session a text-based chat provides a means of communication
and coordination between the team members.

 To motivate students, metrics like driving time and individual participation
rates are displayed and students may retrieve useful hints for each step
during the problem solving process.

 Students may submit the assignment on session close or continue the DPP
session at another time.

Jahorina, BiH, August 25th 2016 13

Presentation Contents

 Pair Programming, Distributed Pair Programming &
Collaboration Scripts

 The Educational DPP System of SCEPPSYs

 Using DPP in an “Object-Oriented Design and Programming”
course

 => student participation and performance

 Using DPP in an “Object-Oriented Programming” course

 => monitoring the course and students

Jahorina, BiH, August 25th 2016 14

Experimental Design
 Course: “Object-oriented design and programming” (2013-14)

 Department: Technology Management direction, Department of
Applied Informatics, University of Macedonia, Greece

 Semester: 4

 Duration: 13 weeks (1 hour lecture + 2 hours lab)

 Programming language: Java

 Participants: 74 students

Students were asked to solve eight projects in pairs instead of
individually as homework.

 SCEPPSYs was used for applying DPP.

 The projects counted for 20% of the final grade.

 Jahorina, BiH, August 25th 2016 15

Main Results
 The incorporation of DPP in the course significantly improved

course pass rates:

2011 2012 2013 2014
Pass Rate 43% 51% 37% 69%

 Students enjoy to work in teams and acknowledge the value of
DPP:
 83% of the students stated they would collaborate again in future

programming assignments

 As an overall experience, DPP was rated with an average score of 3.81 (SD
= 0.74) on a scale of 1 (very poor) to 5 (very good)

Jahorina, BiH, August 25th 2016 16

Main Results

With DPP… Mean

Students share knowledge and problem solving skills 3.83

Errors in program code can be found sooner 3.79

Learning programming is facilitated 3.74

Learning to program is more enjoyable 3.79

Students can solve more problems on their own 3.58

Students are more confident in their assignment solutions 3.61

Students become more responsible in completing the assignments 4.21

 Students confirmed the main benefits of DPP:

Student feedback on DPP and Collaboration (Likert scale: 1 (strongly disagree) – 5 (strongly agree))

Jahorina, BiH, August 25th 2016 17

Main Results
 Combining collaboration scripts and DPP yields comparable

student efforts:

Although previous PP and DPP studies report asymmetries in
student participation levels, the evaluation of SCEPPSys could
not confirm these findings.

 The use of collaboration scripts to distribute user roles during
DPP sessions, proved a successful approach to address the
most common problem of group work, and had a positive
impact on students’ contribution.

Jahorina, BiH, August 25th 2016 18

Presentation Contents

 Pair Programming, Distributed Pair Programming &
Collaboration Scripts

 The Educational DPP System of SCEPPSYs

 Using DPP in an “Object-Oriented Design and Programming”
course

 => student participation and performance

 Using DPP in an “Object-Oriented Programming” course

 => monitoring the course and students

Jahorina, BiH, August 25th 2016 19

Case Study

 Course: “Object-oriented programming” (2015-16)
 Department: Department of Applied Informatics, University of

Macedonia, Greece
 Semester: 3
 Programming language: Java
 Duration: 13 weeks (3 hours lab)
 Participants: 94 students (47 pairs) submitted at least one out

of the six projects assigned

 optional programming assignments
 (bonus in case of passing the final exams)

Jahorina, BiH, August 25th 2016 20

Statistics reported by SCEPPSYs

Status (project submitted, not submitted,
not found)

Contribution of first student (in %)

Task Distribution policy (roles rotating,
balanced knowledge, free)

Contribution of second student (in %)

Total time spent to solve a project (min) Number of steps solved according to role
distribution policy

Driving time spent to solve a project (min) Driving time of first student
Driving / Total time ratio Driving time of second student
Number of sync runs Non driving time of first student
Number of role switches Non driving time of second student
Number of retrieved hints Messages sent by first student
Contribution of first student (number of
characters)

Messages sent by second student

Contribution of second student (number of
characters)

Jahorina, BiH, August 25th 2016 21

Statistics reported by SCEPPSYs

The statistics calculated and reported by SCEPPSys in combination
with the projects’ grades can be used as metrics for:

 monitoring the fulfillment of the courses’ goals in general

 detecting difficulties with specific OOP concepts/constructs

 detecting students’ progress in programming

 detecting undesirable behaviors (e.g. plagiarism)

 detecting problems in collaboration between the members of a
pair

Jahorina, BiH, August 25th 2016 22

Indications provided by statistics
STATISTIC INDICATIONS

Total and driving time • level of difficulty of an assignment
• difficulties of students with the underlying OOP concepts
• help realize students’ workload

Driving/total time ratio detect odd or even extreme behaviors , such as “copying a
solution” or “working offline”

Number of retrieved
hints

• the more difficult an assignment is
• the less confident students are for their solution
a bigger number of hints is retrieved

Messages sent during
problem solving

• degree of cooperation and communication between the
 members of a pair
• difficulty of an assignment

Number of Synchronized
Program Executions

• monitor students’ problem solving strategies (e.g. incremental
 development and testing)
• in combination with other statistics can indicate potential
 difficulties in achieving the goals of an assignment

Jahorina, BiH, August 25th 2016 23

P
R

O
JE

C
T

LE
A

R
N

IN
G

U

N
IT

N
U

M
B

ER
 O

F
C

LA
SS

ES

(S
TE

P
S)

LO
C

 (
Li

n
es

 O
f

C
o

d
e

)

N
U

M
B

ER
 O

F
P

R
O

JE
C

TS

G
R

A
D

E

(i
n

 s
ca

le

0.
.1

0)

TO
TA

L
TI

M
E

(M
IN

)

D
R

IV
IN

G

TI
M

E
(M

IN
)

D
R

IV
IN

G
 /

TO

TA
L

TI
M

E
R

A
TI

O

N
U

M
B

ER
 O

F
SY

N
C

 R
U

N
S

N
U

M
B

ER
 O

F
R

ET
R

IE
V

ED

H
IN

TS

M
ES

SA
G

ES

SE
N

T
B

Y

EA
C

H
 G

R
O

U
P

#1 Class
definition,
main

2 (13) 90 45 9.25 190 36 25% 8 9 (69%) 103

#2 Class
associations -
relationship

3 (16) 120 46 8.72 231 55 28% 13 13
(81%)

106

#3 Object
collections –
ArrayList

3 (23) 160 39 9.15 262 63 30% 25 15
(65%)

153

#4 Inheritance &
polymorphism

4 (16) 114 35 9.21 127 40 35% 9 9 (56%) 86

#5 GUI, event
handling
(+inheritance)

6 (24) 135 28 9.36 243 50 25% 18 16
(67%)

128

#6 Binary files
(+inheritance,
ArrayList,
Comparator)

5 (5) 210 25 8.76 174 34 21% 15 - 100

Statistics for the projects

Jahorina, BiH, August 25th 2016 24

Case Study – results (1/4)

 Grades: students’ mean grades in all the projects were very
good (at least 8.72).

 Number of projects: students tend to give up the effort as the
course reaches the end (last two assignments):
 cognitively demanding course
 the cognitive overload of students leads a certain percentage of them in

dropping out of their responsibilities at some point
 assignments were not obligatory
 41% of the students had not passed the first semester “Procedural

Programming” course based on C.

Understanding the reasons for dropping out needs a much
deeper analysis of the available data in order to draw solid
conclusions.

Jahorina, BiH, August 25th 2016 25

Case Study – results (2/4)

 Duration: implementing programs is a time consuming activity -
students working in pairs spent approximately two to four
hours for writing the code for an assignment.
 nearly one fourth to one third of this time was spent on actually writing

code

 Number of sync runs: students do run the programs, but it

cannot be told in certainty that they do it during problem
solving for testing their program, or because they have to make
continuous corrections due to raised exceptions and/or logical
errors that lead to wrong output.
 at least 8 sync runs were recorded in average for each project, which is

an indication of incremental development and testing.

Jahorina, BiH, August 25th 2016 26

Case Study – results (3/4)

 Messages sent by each group: 86 to 153 messages were sent
by the members of each pair in average for each project,
although Skype and Facebook was also used.
 this is definitely a strong indication of collaborative work and exchange

of perceptions and knowledge.

 Coverage of syllabus (assignments): SCEPPSys helps the

instructor monitor the coverage of the intended OOP
concepts/constructs by reporting the frequency that each
learning goal has been addressed in the context of the
assignments.
 in the on-line questionnaire the majority of students agreed or

completely agreed that the quality of the assignments was good
(86.3%) and that the assignments covered in a high degree the content
of the course (84.5%).

Jahorina, BiH, August 25th 2016 27

Case Study – results (4/4)

 Difficulty of the assignments: taking into account the statistics
recorded (number of projects, total time, number of hints
retrieved, ..) in combination with the mean grade, conclusions
were drawn regarding the difficulty of the assignments.

 These were partly confirmed by students’ replies in the
questionnaire regarding the difficulty of the assignments:

P
R

O
JE

C
T

LE
A

R
N

IN
G

U

N
IT

N
O

T
SU

B
M

IT
TE

D

EA
SY

O
F

LO
W

D

IF
FI

C
U

LT
Y

O
F

M
ED

IU
M

D

IF
FI

C
U

LT
Y

D
IF

FI
C

U
LT

O
F

H
IG

H

D
IF

FI
C

U
LT

Y

#1 Class definition, main 6.90% 53.40% 29.30% 6.90% 3.40% 0%

#2 Class associations –
relationship

1.70% 36.20% 51.70% 8.60% 1.70% 0%

#3 Object collections – ArrayList 1.70% 17.20% 39.70% 37.90% 3.40% 0%

#4 Inheritance & polymorphism 5.20% 8.60% 20.70% 50% 13.80% 1.70%

#5 GUI, event handling
(+inheritance)

15.50% 0% 10.30% 15.50% 43.10% 15.50%

#6 Binary files (+inheritance,
ArrayList, Comparator)

17.20% 1.70% 5.20% 12.10% 32.00% 31%

Jahorina, BiH, August 25th 2016 28

Conclusions (1/2)

 Using DPP in a Java course:
 can improve students’ performance
 students enjoy team work
 students acknowledge the benefits of DPP

 Applying DPP with Collaboration Scripts solves the problem of

asymmetries in student participation levels.

 The statistics reported by SCEPPSys can be utilized for
monitoring:
 an OOP course based on Java
 difficulties with specific concepts
 the quality of collaboration between the members of a pair
 students’ progress in programming

Jahorina, BiH, August 25th 2016 29

Conclusions (2/2)

 An important extension of SCEPPSys would be the ability to
provide more advanced reports that would automate the
process of detecting:
 potential difficulties with specific OOP concepts/constructs: by

calculating the average grade achieved by students for each learning
goal.

 students’ progress in programming: by calculating and reporting
important changes in the grades of his/her projects, as well as the
contribution of a student in the projects.

 undesirable behaviors: by comparing the total and driving time for a
project, and also with a minimum required time defined by the
instructor.

Jahorina, BiH, August 25th 2016 30

References
Tsompanoudi, D., & Satratzemi, M. (2011). Enhancing Adaptivity and Intelligent Tutoring in
Distributed Pair Programming Systems to Support Novice Programmers, Proceedings of the 3rd
International Conference on Computer Supported Education, CSEDU 2011, pp. 339-344.

Tsompanoudi, D., Satratzemi, M., & Xinogalos, S. (2015). Distributed Pair Programming using
Collaboration Scripts: An Educational System and initial Results, Informatics in Education, Vol.
14, No 2, 291-314.

Xinogalos, S., Malliarakis, C., Tsompanoudi, D. and Satratzemi, M. (2015). Microworlds, Games
and Collaboration: three effective approaches to support novices in learning programming.
In Proceedings of the 7th Balkan Conference on Informatics Conference (BCI '15).ACM, New York,
NY, USA, Article 39, 8 pages.

Tsompanoudi, D., Satratzemi, M., & Xinogalos, S. (2016). Evaluating the Effects of Scripted
Distributed Pair Programming on Student Performance and Participation, IEEE Transactions on
Education, Volume 59, Number 1, 24-31, DOI: 10.1109/TE.2015.2419192.

Xinogalos, S., Satratzemi, Tsompanoudi, D. & Chatzigeorgiou, A. (2016). Monitoring an OOP
Course Through Assignments in a Distributed Pair Programming System, 5th Workshop of
Software Quality, Analysis, Monitoring, Improvement, and Applications, Budapest, Hungary, 29.-
31.08.2016.

Jahorina, BiH, August 25th 2016 31

Thank you!

