Adaptive E-learning System for Language Learning: Architecture Overview

Božidar Kovačić, Vanja Slavuj

Department of Informatics
University of Rijeka, Rijeka, Croatia
Outline

• Introduction
 • computers in language learning
 • computer-based language learning

• Tutoring
 • vs. teaching
 • software
 • intelligent tutoring systems

• Architecture proposition
 • system characteristics
 • roles and implementation of system models and modules

• Conclusion
Introduction – computers in LL

• Using computers for language teaching/learning may be designated as
 (1) computer-enhanced language learning, or
 (2) computer-based language learning.

• Although similar, a distinction may be drawn between the two terms
Computer-enhanced language learning

- Using computer software as teaching aide to support and complement day-to-day activities
- Technologies/tools:
 - spell checkers,
 - digital dictionaries or glossaries,
 - wikis,
 - blogs,
 - social networks, etc.
- These help teachers (and students) to carry out language learning activities with increased efficacy and efficiency
Computer-based language learning

- Characterised by the use of advanced language learning software (web-based or standalone)
- The software acts independently in constructing learners’ linguistic knowledge and developing language competences and skills
- The computer acts as a tutor, role different than that of a teacher in the traditional sense
Tutoring role

- Learning process is adapted to the needs of individual students – *personalisation*
- Tutor’s tasks include:
 - monitoring the learner,
 - inferring learner’s characteristics,
 - making appropriate on-the-spot adjustments to the teaching process.
Tutoring software

- Intelligent computer assisted language learning (ICALL) field deals with the development of tutoring software and research of its effects on teaching/learning

- Technology able to address tutoring requirements is intelligent tutoring systems (ITSs)
 - represent a micro-adaptive approach to adaptivity;
 - evaluate learner actions during the entire course of learning;
 - keep an up-to-date learner model of relevant learner characteristics;
 - make informed decisions on how learning is adapted to learners’ needs;
 - traditionally consist of 4 models: domain model, learner model, instructional model and interface model.
Language tutoring systems in use

- Often developed for commercial purposes
 - costs,
 - complexity of design, implementation and maintenance,
 - multidisciplinary context.
- Relevant literature reveals a number of systems developed for research purposes
- Systems differ in adaptation methods employed
 - individualised feedback (TAGARELLA, E-Tutor);
 - transforming learning content (AL-TESL-e-learning system, UoLmP);
 - adjusting the sequence of learning activities (VocabTutor, PIMS).
Language tutoring systems – issues

• Existing systems exhibit certain issues
 • horizontal restriction,
 • vertical restriction, and
 • overt focus on curriculum.

• The emphasis today is on the **integrative approach** to language teaching and learning, bringing together language skills, general and language strategies, and linguistic knowledge for the purpose of enabling communication.
Adaptive e-learning system - overview

• Main characteristics of the system:
 • adaptive,
 • web-based,
 • enriched traditional ITS structure,
 • teaching/learning English,
 • for learners with different level of language competence,
 • under development.

• The system has a twofold purpose:
 1. identification of the level of a learner’s language competence, and
 2. systematic learning support through guidance (based on CEFR competence level of learners)
Architecture of the proposed system

- **User Interface (Browser)**
 - Language learner
 - Interaction results/products

- **Controller module**
 - Selected object
 - Learning request

- **Evaluation module**
 - Answer analysis
 - Correct answers
 - Evaluator
 - Evaluated results of learner interaction

- **Learner model**
 - Learning data
 - Update
 - Learner characteristics database

- **Instructional model**
 - Selected values of learner characteristics
 - Rules for adapting feedback messages
 - Rules for adapting learning process

- **Domain model**
 - Domain concepts
 - Request for and delivery of learning materials or tests

- **Domain designer**
 - Test item

- **Initial test items/Item results**
 - Learner model initialisation module
 - Stereotype activator
 - Adaptive testing procedure

- **Domain organisation**
 - Learning content and test items

- **Learning (object) sequencing**
 - Feedback
 - Learning
 - Testing

- **Domain designer**
 - Evaluator

- **Evaluation module**
 - Learner model
 - Stereotypes/evaluated answers
Proposed system components 2/4

- **Learner model initialization** module
 - deals with the initial lack of knowledge about the learner;
 - adaptive computerised test with Item Response Theory as the basis.
Proposed system components 1/4

- **Domain model**
 - implementation in two parts: (1) domain organisation part, and (2) a database containing all learning materials;
 - designed based on the Common European Framework of Reference for Languages (CEFR), for each skill separately;
 - enables highly granular monitoring of learner progress;
 - focus shifted from achievement to proficiency.

- **Learner model**
 - represented by an up-to-date database of each learner’s characteristics and domain coverage by the same learner – a version of the well-known overlay model;
 - initialisation problem solved by implementing an adaptive testing procedure.
Proposed system components 3/4

- **Instructional model**
 - central point of the system and the educational process;
 - defines the logic of system behaviour;
 - implemented as a repository of heuristic rules concerning tutoring/teaching;
 - rules are activated according to the values stored in the learner model.

- **Controller module**
 - coordinates the work of the entire adaptive system;
 - responsible for checking values stored in the learner model, selecting rules and applying them during the learning process;
 - also able to deal with possible learner requests for learning.
Proposed system components 4/4

- **Evaluation module**
 - evaluates the accuracy of learner activities;
 - proscribes how learner activity will be mapped onto the learner model (i.e., how it is updated).

- **Interface model**
 - communication point between the learner and the system;
 - access using a web-browser;
 - client-side technologies (AJAX) in implementation.
Conclusion & future work

- Architecture overview of an adaptive e-learning system for language learning
 - enriched traditional ITS architecture
- System addresses issues detected in other adaptive language-learning systems in use
- Aims to detect the CEFR competence level of learners and guide them towards higher levels of proficiency
- Future work
 - completion of the system,
 - testing the system with learners.
Questions

Thank you for your attention.