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Overview of  the presentation

• Typical programming fundamentals

• Typical organization of  the assignments

• Software process models

• Analogy of  both waterfall models

• Analogy of  both incremental models

• Extension of  the analogies for prototyping, spiral model and agile software development

• Possibility to practically evaluate the suggested approaches

• Conclusion 
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Typical programming fundamentals

• Basic scalar data types, operators, flow control:
• Primitive data types: variables, constants, assignments, operators and expressions
• Input / output operations
• Mathematical functions, characters and strings
• Loops
• Control structures 
• Functions and recursion
• Arrays
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Waterfall model in software development 

Requirements

Design

Implementation

Verification

Maintenance
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Waterfall model for teaching programming 
fundamentals

Data types and 
I/O operations

Loops

Control structures

Functions and 
recursion

Arrays
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What can students solve after phase 1:
Data types and I/O operations

• Hello world 
• Variables, declarations, formatted I/O, arithmetic operators, incrementing / decrementing
• Tasks with mathematical formulas, swapping of  values
• Conversions:

• Degree / radian

• Centimeter / inch

• Uppercase / lowercase conversions

• Well formatted I/O
• More advanced: Result of  a logical operation
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What can students make after phase 2:
Loops

• Determination of  sum, average
• Nicely formatted tables with even / odd members
• Printing permutations of  numbers / characters
• Calculation of:

• Exponents 
• Functions with equidistant arguments
• Factorials, Fibonacci numbers, binomial series

• Estimation of  a value of  a function using Taylor series
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What can students make after phase 3:
Control structures

• Determination of:
• Positive / negative values

• Even / odd integers

• Vowels / consonants

• Determination of  minimum / maximum

• Sort algorithms
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What can students make after phase 4:
Functions and recursion

• Creation of  functions for the most important tasks solved in the previous 
phases

• Factorials, Binomial coefficients, Fibonacci numbers calculated using 
recursion
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What can students make after phase 5:
Arrays

• One-dimensional arrays:
• Scalar and vector multiplication

• Palindromes

• Creation of  various sort algorithms

• Two-dimensional arrays:
• Matrices (addition, multiplication)

• Calculation of  determinants

• Inverting matrices
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The analogy of  both waterfall models

• Both models are sequential

• The order is very strict

• Changes in the previous stages are (almost) impossible

• Running models are visible too late

• Problems arising in the first phases rapidly accumulate

• But, they are still massively used, particularly by those who are used to them
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Incremental model in software development 
(increment 1) 

Communication 
1

Planning 1

Modelling 1

Construction 1

Deployment 1

12



Incremental model in software development 
(increment 2) 

Communication 
2

Planning 2

Modelling 2

Construction 2

Deployment 2
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Incremental model in software development 
(increment n) 

Communication 
n

Planning n

Modelling n

Construction n

Deployment n
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Incremental model for teaching programming 
fundamentals (increment 1)
Integer and float 

variables 

I/O 
fundamentals

No loops

No control 
structures

Basic 
assignments 1
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Basic assignments after first increment

• Hello world 
• Variables, declarations, arithmetic operators, incrementing / decrementing
• Tasks with mathematical formulas, swapping of  values
• Conversions:

• Degree / radian
• Centimeter / inch
• Uppercase / lowercase conversions

• FIRST EVALUATION
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Incremental model for teaching programming 
fundamentals (increment 2)

Characters

More advanced 
I/O

For iteration

No control 
structures

Basic 
assignments 2
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Basic assignments after second increment

• Determination of  sum, average
• Well formatted tables with even / odd members
• Printing permutations of  numbers / characters
• Calculation of:

• Exponents 
• Functions with equidistant arguments
• Factorials, Fibonacci numbers, binomial series

• Estimation of  a value of  a function using Taylor series
• SECOND EVALUATION
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Incremental model for teaching programming 
fundamentals (increment 3)

Boolean variables

Formatted I/O

For iteration

If  statement

Assignments 3
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Basic assignments after third increment

• Well formatted I/O
• Result of  a logical operation
• Determination of:

• Positive / negative values
• Even / odd integers
• Vowels / consonants

• Determination of  minimum / maximum
• THIRD EVALUATION
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Incremental model for teaching programming 
fundamentals (increment 4)

Boolean operators

Formatted I/O

While iteration

If  - else

Assignments 4
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Incremental model for teaching programming 
fundamentals (increment 5)

Strings

Formatted I/O

Do-while iteration

Switch

Assignments 5
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Incremental model for teaching programming 
fundamentals (increment n)

...

…

…

…

Assignments  n
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Incremental model for teaching programming 
fundamentals (final increment)

All data variables

All I/O operations

All control structures

All loops

Pool of  assignments
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The analogy of  both incremental models (1)

• Each iteration leads to a cheap functional model (software / learning)

• After each iteration (regression) testing / knowledge evaluation can be 
conducted

• Testing / knowledge evaluation identifies the deficiencies immediately

• Debugging / extra lessons are provided very soon, because very small 
changes have been made compared with the previous iteration
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The analogy of  both incremental models (2)

• Management is more complex

• Quick success of  the initial iterations can lead to more ambitious final 
product / learning outcome

• Latter can be a problem to those students which can’t stick to the pace
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Prototyping

• Initial activity of  this model is the creation of  a prototype, i.e. an incomplete 
runnable version of  the software, which can be thrown away

• The most convenient types of  prototyping to make the analogy with the 
learning process are:

• Incremental prototyping 

• Extreme prototyping
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Incremental prototyping

• Training is identical to incremental learning of  programming fundamentals

• The crucial difference are the tasks students can solve

• Tasks should be directed to visible, running models

• They should not stimulate algorithmic approach that leads to mathematical 
problems

• On a contrary, the tasks should be very practical

• Incremental prototyping is appropriate for extra-curricular programming courses
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Extreme prototyping

• Extreme prototyping is used for Web development

• Therefore, the approach can deal with teaching the initial Web development 
language (Ruby, Python, PHP)

• Tasks should initially stimulate the design, with no functionalities at all

• Second increment will deal with the navigation

• Each new increment will add new functionalities, starting from trivial towards more 
complex

• Extreme prototyping is appropriate for extra-curricular design courses
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Spiral model

• Risk-driven process model

• Slightly unsuitable for compulsory programming courses

• Extension of  the incremental model, with an advanced starting point

• Spiral model is convenient for the preparation of  prospective competitors, who 
have already shown great competence in understanding the basic algorithms

• Spiral model has a great potential for parallelism, so it can be implemented to 
prepare students for team competitions too
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Agile model

• Implementation of  the spiral model to prepare team competitors is very time consuming for 
the instructors, because they should carefully prepare the iterations, and distribute them 
among the team members

• If  the spiral model can’t be organized thoroughly and successfully in advance, then the 
collaborative effort of  prospective competitors should be stimulated 

• The cross-functional teams can be organized for every training task
• Students’ self-initiative should also be stimulated
• In such case, the ultimate goal of  the instructor is to observe the progress wisely and 

thoroughly
• This approach is analogous to agile software development 
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Possibility to practically evaluate the suggested 
approaches

• Many of  prospective computer science students have no programming skills
• Some faculties organize preparatory programming courses for those prospective 

students who are interested to improve their skills before starting their studies
• Division of  the students into two groups can enable the stimulation of  incremental 

model and comparison of  obtained results
• Prototyping can be implemented during extra-curricular activities in secondary 

schools
• Alternative models can be implemented with the competitors in secondary schools 

and in academia
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Conclusion

• C was invented in 1969, Java in 1995

• The order for delivering the contents is analogous to waterfall software 
developing model

• Although old-fashioned, it is still very effective

• Current teachers gained their programming skills implementing the old-
fashioned manner

• It is time to start experimenting with alternative models, isn’t it?
33



Thank you for your attention



Have you got any questions?
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