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TALK OUTLINE

 Introduction and Motivation

 Role Activity Diagrams - RAD

 AgentSpeak(L) and Jason

 Mapping RAD to Jason

 Conclusions
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INTRODUCTION

Business organization = society of  
cooperating agents that are collectively 
carrying out a set of  business activities 
(business process) in order to meet 
business objectives
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RESEARCH GOAL

Q: Can we apply state-of-the-art AOP 
languages for modeling and enactment of  
business processes ?
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RAD NOTATION

Case 
refinement

Part 
refinement

Interaction

State

State 
description

Activity

External event
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EXAMPLE RAD New project approved

Agree TOR for
Designer and
delegate

Write TOR for
Designer

Prepare and 
estimate

Receive and 
estimate

Prepare a plan

Give Plan to
Designer

Choose a
method

Produce Design using Method

Carry out design quality check

okNot ok

Prepare Actual
Effort Figures

Pass Actual
Effort Figures

Produce Debrief 
Report

Project completed 
and debriefed

Agree TOR for project

Project Manager

Designer

Divisional Director

 Three roles:
 Divisional Director
 Project Manager
 Designer
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AGENT ORIENTED PROGRAMMING

 Historically, AOP was firstly proposed more than 
20 years ago (Shoham, 1990) as:

A new programming paradigm, one based on cognitive and 
societal view of  computation

 Many models and implementations of  AOP.
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AGENTSPEAK(L) AND JASON

 AgentSpeak(L) is an 
abstract AOP language, 
introduced by Rao in 1996.

 Jason is an implementation, 
as well as an extension of  
AgentSpeak(L), based on 
Java.
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AGENT BELIEF BASE

 The agent belief  base is composed of  Prolog-like 
facts and rules and it represents the “agent 
memory”. The belief  base is continuously updated 
during the agent reasoning cycle.

 Beliefs are similar to logic programming rules:
h :- b1 & ... & bk k ≥ 0
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AGENT PLANS

Plans define the agent know-how. A plan is:
e : c <- b

A plan is composed of  event, context and 
body:
The event triggers the plan if  context is matching 

beliefs.
The plan body is a sequence of  actions: internal 

actions, external actions, and goals. 
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AGENT GOALS

 The agent is working towards the reaching of  achievement 
goals !G.

 Test goals ?G are used to retrieve information from the 
belief  base using Prolog-like reasoning and unification.
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EVENTS

Events trigger plan execution.
+belief
-belief
+!goal
-!goal
+?goal
-?goal
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AGENT REASONING ENGINE

 Gets perception and communication
 Updates beliefs
 Selects an event
 Selects an applicable plan (option) and adds it to the 

agenda
 Selects an intention (a stack of  partially instantiated 

plans) for execution from agenda 
 Executes the next step of  the top of  the currently 

selected intention.
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RAD SYNTAX

 Role model = bipartite directed graph 〈A ∪ S, E〉 s.t.: 
 A = finite set of  action nodes
 S = finite set of  state nodes
 E = finite set of  arcs, E ⊆ (A × S) ∪ (S × A)

 Action nodes: 
 Activities (including interactions)
 External events
 Conditions of  case refinements
 Part refinements: originating points (forks), joining points (joins)

 State nodes => process states represented by state lines
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RAD SEMANTICS

 Current state = “tokens” assigned to state lines.

 State transitions = tokens flowing from a state line to a 
successor state line

 Action “consumes” and “produces” tokens.

 This behavior closely resembles Petri nets. 

16th Workshop on Software Engineering Education, 
Jahorina, Bosnia, August 21-27, 2016



MAPPING OUTLINE

 RAD role => Jason agent. Example: d, dd and pm agents.
 State => agent belief  base. Example: dd0, dd1, dd2, d0, d1, 

…
 Action => agent plan:
+!advance : current state <-

state update
do activity
!!advance.

 RAD process => multi-agent program
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MAPPING STATES AND ACTIVITIES

+!advance : dd0 <-

-dd0;

?task("New project approved");

+dd1;

!!advance.

+!advance : start <-

-start;

?task("Starting ...");

+dd0;

!!advance.

+!advance : dd2 <-

-dd2;

?task("Stop").
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MAPPING CASE REFINEMENTS

+!advance : d9 <-

-d9;

?task("Carry out design quality check");

rad.choice([ok,nok],Result)

+d10(Result);

!!advance.

+!advance : d10(nok) <-

-d10(nok);

?task("Design quality not ok");

+d8;

!!advance.
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MAPPING PART REFINEMENTS

+!advance : d1 <-
-d1;

?task("Fork parallel threads");

+d2;

+d3;

!!advance.

+!advance : d6 & d7 <-
-d6;

-d7;

?task("Join parallel threads");

+d8;

!!advance.
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MAPPING INTERACTIONS

+!advance : start <-
-start;
?task("Starting ...");
+pm0;
.send(dd,tell,pm0);
!!advance.

+!advance : dd1 & pm0 <-
-dd1;
-pm0[source(pm)];
?task("Agree TOR for project");
+dd2;
!!advance.
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CONTINGENCY PLAN

+!advance : dd1 & pm0 <-

-dd1;

-pm0[source(pm)];

?task("Agree TOR for project");

+dd2;

!!advance.

-!advance : true.

+pm0 : true <- !!advance.
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MAPPING SUMMARY

 One proactive plan for agent starting and one proactive plan for 
agent stopping.

 A proactive plan for each action node.

 One contingency plan to deal with shared beliefs that have not 
yet arrived from peer agents.

 A reactive plan for handling the arrival of  each shared belief  
from peer agents.
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KNOWLEDGE-BASED BUSINESS AGENTS

 Generic knowledge-based business agent architecture – KB2A2.

 A knowledge base that captures the operational knowledge of  the 
agent according to a given RAD business process.

 A set of  template plans that capture the generic behavioral patterns 
of  business agents.
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KNOWLEDGE BASE

rule(Action, StateIn, StateOut).

rule(task("Fork parallel threads"), [d1],
[d2,d3]).

rule(task("Prepare and estimate"), [d3], 
[d4,s(pm,d4)]).

rule(task("Receive and estimate"),
[d4,r(pm,pm3)],[d5,s(pm,d5)]).

...
rule(choice("Carry out design quality check",
[ok,nok]), [d9], [[ok,d10(ok)], 
[nok, d10(nok)]]).
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PROACTIVE TEMPLATE PLANS

 Proactive template plans for handling agent actions that do 
(not) represent case refinements:

@plan_task[atomic,all_unifs] +!advance :
rule(task(Name),In,Out) & match(In) <-
!remove(In);
?task(Name);
!append(Out);
!continue(Out).
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REACTIVE TEMPLATE PLAN

 Reactive template plan for handling shared belief  
assertions from peer agents. 

@plan_wake +X : 
rule(_,In,_) & member(r(_,X),In) <-
!!advance.

 KB2A2 includes also the contingency plan introduced in 
the previous section.
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CONCLUSIONS

 We introduced a mapping of  RAD business processes 
expressed => Jason AOP language.

 We proposed a new architectural model knowledge-based 
business agents entitled KB2A2.

 We provided an intuitive presentation of  KB2A2 by example.
 Future works:

 to provide formal support to mathematically assess the 
mapping correctness

 to develop a software tool to assist knowledge engineers in 
creating and configuring KB2A2 agents.
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