
FROM BUSINESS PROCESS MODELS
TO AGENT PROGRAMS

Amelia Bădică*, Costin Bădică*,
Florin Leon**, Ion Buligiu*

*University of Craiova, Romania
**Gheorghe Asachi Technical University, Iasi, Romania

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

TALK OUTLINE

 Introduction and Motivation

 Role Activity Diagrams - RAD

 AgentSpeak(L) and Jason

 Mapping RAD to Jason

 Conclusions

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

INTRODUCTION

Business organization = society of
cooperating agents that are collectively
carrying out a set of business activities
(business process) in order to meet
business objectives

16th Workshop on Software Engineering
Education, Jahorina, Bosnia, August 21-27, 2016

RESEARCH GOAL

Q: Can we apply state-of-the-art AOP
languages for modeling and enactment of
business processes ?

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

RAD NOTATION

Case
refinement

Part
refinement

Interaction

State

State
description

Activity

External event

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

EXAMPLE RAD New project approved

Agree TOR for
Designer and
delegate

Write TOR for
Designer

Prepare and
estimate

Receive and
estimate

Prepare a plan

Give Plan to
Designer

Choose a
method

Produce Design using Method

Carry out design quality check

okNot ok

Prepare Actual
Effort Figures

Pass Actual
Effort Figures

Produce Debrief
Report

Project completed
and debriefed

Agree TOR for project

Project Manager

Designer

Divisional Director

 Three roles:
 Divisional Director
 Project Manager
 Designer

16th Workshop on Software Engineering Education, Jahorina,
Bosnia, August 21-27, 2016

AGENT ORIENTED PROGRAMMING

 Historically, AOP was firstly proposed more than
20 years ago (Shoham, 1990) as:

A new programming paradigm, one based on cognitive and
societal view of computation

 Many models and implementations of AOP.

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

AGENTSPEAK(L) AND JASON

 AgentSpeak(L) is an
abstract AOP language,
introduced by Rao in 1996.

 Jason is an implementation,
as well as an extension of
AgentSpeak(L), based on
Java.

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

AGENT BELIEF BASE

 The agent belief base is composed of Prolog-like
facts and rules and it represents the “agent
memory”. The belief base is continuously updated
during the agent reasoning cycle.

 Beliefs are similar to logic programming rules:
h :- b1 & ... & bk k ≥ 0

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

AGENT PLANS

Plans define the agent know-how. A plan is:
e : c <- b

A plan is composed of event, context and
body:
The event triggers the plan if context is matching

beliefs.
The plan body is a sequence of actions: internal

actions, external actions, and goals.

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

AGENT GOALS

 The agent is working towards the reaching of achievement
goals !G.

 Test goals ?G are used to retrieve information from the
belief base using Prolog-like reasoning and unification.

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

EVENTS

Events trigger plan execution.
+belief
-belief
+!goal
-!goal
+?goal
-?goal

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

AGENT REASONING ENGINE

 Gets perception and communication
 Updates beliefs
 Selects an event
 Selects an applicable plan (option) and adds it to the

agenda
 Selects an intention (a stack of partially instantiated

plans) for execution from agenda
 Executes the next step of the top of the currently

selected intention.

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

RAD SYNTAX

 Role model = bipartite directed graph 〈A ∪ S, E〉 s.t.:
 A = finite set of action nodes
 S = finite set of state nodes
 E = finite set of arcs, E ⊆ (A × S) ∪ (S × A)

 Action nodes:
 Activities (including interactions)
 External events
 Conditions of case refinements
 Part refinements: originating points (forks), joining points (joins)

 State nodes => process states represented by state lines

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

RAD SEMANTICS

 Current state = “tokens” assigned to state lines.

 State transitions = tokens flowing from a state line to a
successor state line

 Action “consumes” and “produces” tokens.

 This behavior closely resembles Petri nets.

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

MAPPING OUTLINE

 RAD role => Jason agent. Example: d, dd and pm agents.
 State => agent belief base. Example: dd0, dd1, dd2, d0, d1,

…
 Action => agent plan:
+!advance : current state <-

state update
do activity
!!advance.

 RAD process => multi-agent program

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

MAPPING STATES AND ACTIVITIES

+!advance : dd0 <-

-dd0;

?task("New project approved");

+dd1;

!!advance.

+!advance : start <-

-start;

?task("Starting ...");

+dd0;

!!advance.

+!advance : dd2 <-

-dd2;

?task("Stop").

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

MAPPING CASE REFINEMENTS

+!advance : d9 <-

-d9;

?task("Carry out design quality check");

rad.choice([ok,nok],Result)

+d10(Result);

!!advance.

+!advance : d10(nok) <-

-d10(nok);

?task("Design quality not ok");

+d8;

!!advance.

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

MAPPING PART REFINEMENTS

+!advance : d1 <-
-d1;

?task("Fork parallel threads");

+d2;

+d3;

!!advance.

+!advance : d6 & d7 <-
-d6;

-d7;

?task("Join parallel threads");

+d8;

!!advance.

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

MAPPING INTERACTIONS

+!advance : start <-
-start;
?task("Starting ...");
+pm0;
.send(dd,tell,pm0);
!!advance.

+!advance : dd1 & pm0 <-
-dd1;
-pm0[source(pm)];
?task("Agree TOR for project");
+dd2;
!!advance.

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

CONTINGENCY PLAN

+!advance : dd1 & pm0 <-

-dd1;

-pm0[source(pm)];

?task("Agree TOR for project");

+dd2;

!!advance.

-!advance : true.

+pm0 : true <- !!advance.

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

MAPPING SUMMARY

 One proactive plan for agent starting and one proactive plan for
agent stopping.

 A proactive plan for each action node.

 One contingency plan to deal with shared beliefs that have not
yet arrived from peer agents.

 A reactive plan for handling the arrival of each shared belief
from peer agents.

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

KNOWLEDGE-BASED BUSINESS AGENTS

 Generic knowledge-based business agent architecture – KB2A2.

 A knowledge base that captures the operational knowledge of the
agent according to a given RAD business process.

 A set of template plans that capture the generic behavioral patterns
of business agents.

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

KNOWLEDGE BASE

rule(Action, StateIn, StateOut).

rule(task("Fork parallel threads"), [d1],
[d2,d3]).

rule(task("Prepare and estimate"), [d3],
[d4,s(pm,d4)]).

rule(task("Receive and estimate"),
[d4,r(pm,pm3)],[d5,s(pm,d5)]).

...
rule(choice("Carry out design quality check",
[ok,nok]), [d9], [[ok,d10(ok)],
[nok, d10(nok)]]).

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

PROACTIVE TEMPLATE PLANS

 Proactive template plans for handling agent actions that do
(not) represent case refinements:

@plan_task[atomic,all_unifs] +!advance :
rule(task(Name),In,Out) & match(In) <-
!remove(In);
?task(Name);
!append(Out);
!continue(Out).

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

REACTIVE TEMPLATE PLAN

 Reactive template plan for handling shared belief
assertions from peer agents.

@plan_wake +X :
rule(_,In,_) & member(r(_,X),In) <-
!!advance.

 KB2A2 includes also the contingency plan introduced in
the previous section.

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

CONCLUSIONS

 We introduced a mapping of RAD business processes
expressed => Jason AOP language.

 We proposed a new architectural model knowledge-based
business agents entitled KB2A2.

 We provided an intuitive presentation of KB2A2 by example.
 Future works:

 to provide formal support to mathematically assess the
mapping correctness

 to develop a software tool to assist knowledge engineers in
creating and configuring KB2A2 agents.

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

16th Workshop on Software Engineering Education,
Jahorina, Bosnia, August 21-27, 2016

	 From Business Process Models to Agent Programs
	Talk Outline
	Introduction
	RESEARCH GOAL
	RAD Notation
	EXAMPLE RAD
	Agent Oriented Programming
	AgentSpeak(L) and Jason
	Agent Belief Base
	Agent Plans
	Agent Goals
	Events
	Agent Reasoning Engine
	RAD Syntax
	RAD Semantics
	Mapping Outline
	Mapping States and Activities
	Mapping Case Refinements
	Mapping Part Refinements
	Mapping Interactions
	Contingency Plan
	Mapping Summary
	Knowledge-Based Business Agents
	Knowledge Base
	Proactive Template Plans
	Reactive Template Plan
	Conclusions
	Foliennummer 28

