
Experiences in the development and use of 
Annotated Functional Decomposition 

Zaharije Radivojević, Stefan Tubić, Miloš Cvetanović   

School of Electrical Engineering, Belgrade University 
 
 

Workshop  

“The impact of pandemic years to informatics education: 
review and next steps” 

 

Shkoder, Albania 

4-8 September 2023 



DAAD CAE 2023 2/22 

Agenda 

• Background, 

• Annotated Functional Decomposition,  

• Computational Thinking,  

• Example, 

• Evaluation, 

• Conclusion. 



DAAD CAE 2023 3/22 

Background 

The requirements gathering process 

• The first step in a project for developing a software 

product, 

• Takes 35% of the project time? 

• Omissions are most costly to recover if noticed deep 

into the project. 

 

• The important problem in requirements gathering  

is absence of a proper way of representing the 

functional requirements. 

 



DAAD CAE 2023 4/22 

Requirements gathering 

 



DAAD CAE 2023 5/22 

Background 

Currently, the requirements are represented 

either in textual format 

that is easy for clients to understand, 

but usually lacks sufficient information for engineers, 

or in graphical format 

that is preferred by engineers, 

but usually has complex semantics that clients hardly understand. 

 



DAAD CAE 2023 6/22 

Annotated Functional Decomposition 

• Annotated Functional Decomposition (AFD) 

is a new text-based language 

• that resembles natural languages  

 so, it is easy to use by clients, 

• that supports some semantics of computer languages  

 so, it is adequate for use by engineers. 

 

• In both cases, the result is jeopardized expectations 

between clients and engineers,  

that leaves plenty of room for errors and ambiguities. 



DAAD CAE 2023 7/22 

Annotated Functional Decomposition 

AFD provides solutions for two main problems 

1. functional requirements usually do not adequately 

recognize all functionalities, 

2. design specification does not meet all functional 

requirements. 

 

AFD is based on the existing design paradigm named 

Structured Design 

AFD builds upon methodological concepts introduced 

by Computational Thinking 

 



DAAD CAE 2023 8/22 

Structured Design 

 



DAAD CAE 2023 9/22 

Computational Thinking 

 

Decomposition 

Abstraction 

Algorithm Pattern recognition 



DAAD CAE 2023 10/22 

Computational Thinking 

four pillars 

1. Decomposition – breaking down complex problems 

into sub-problems 

2. Abstraction – focusing only on the details that are 

important, ignoring the rest 

3. Algorithm – creating steps or simple rules for solving 

each sub-problem 

4. Pattern recognition – identifying similar problems 

which were previously solved 

 



DAAD CAE 2023 11/22 

AFD Rules 

No Rule    

    1 Function ::= FunctionDef FunctionDecompEntry FunctionList FunctionDecompExit | FunctionDef; 

2 FunctionDecompEntry ::= INDENT; 

3 FunctionDecompExit ::= DEDENT; 

4 FunctionList ::= FunctionList Function | Function; 

5 FunctionDef ::= FunctionPrefix FunctionName DataFlows ResourceFlows Condition NEWLINE; 

6 FunctionPrefix ::= ID SPACE | FTYPE SPACE | ID FTYPE SPACE | ; 

7 FunctionName ::= NAME | NAME HASH | HASH NAME; 

8 Condition ::= SPACE CONDITION | ; 

9 DataFlows ::= LBRACE DataFlowList RBRACE | ; 

10 ResourceFlows ::= LSBRACE ResourceFlowList RSBRACE | ; 

11 DataFlowList ::= DataFlowList COMMA DataFlow | DataFlow; 

12 DataFlow ::= DIRECTION NAME; 

13 ResourceFlowList ::= ResourceFlowList COMMA ResourceFlow | ResourceFlow; 

14 ResourceFlow ::= RESOURCETYPE COLON NAME; 

… … 



DAAD CAE 2023 12/22 

Example 

  

PurchaseSeats 
 Input 
 PurchaseSeat 

  FindTicket 
  CheckTicketAvailability 
   HasTheTicketBeenPurchased 

   WhetherTheTicketWasReserved 
   WhetherTheTicketWasReservedByTheUser  
   ReturnAvailability 

  PurchaseTicket 
   WhetherTheTicketWasReserved 

   RemoveReservation 
   Purchase 
 GetPurchasedSeatsForUser 

 Output 

 



DAAD CAE 2023 13/22 

Example 

  

1 PurchaseSeats 
 1 Input 
 2* PurchaseSeat /seat in seats 

  1 FindTicket 
  2 CheckTicketAvailability 
   1 HasTheTicketBeenPurchased 

   2? WhetherTheTicketWasReserved /purchased == false 
   3? WhetherTheTicketWasReservedByTheUser /purchased == false AND reserved 
== true 

   4 ReturnAvailability 
  3? PurchaseTicket /available == true 

   1 WhetherTheTicketWasReserved 
   2? RemoveReservation /reserved == true 
   3 Purchase 

 3 GetPurchasedSeatsForUser 
 4 Output 

 



DAAD CAE 2023 14/22 

Example 

  

1 PurchaseSeats(=>I.PS,<=O.PS) 
 1 Input(=>I.PS,<user,<event,<seats) 
 2* PurchaseSeat(>user,>event,>seat) /seat in seats 

  1 FindTicket(>event,>seat,<ticket) 
  2 CheckTicketAvailability(>user,>ticket,<available) 
   1 HasTheTicketBeenPurchased(>ticket,<purchased) 

   2? WhetherTheTicketWasReserved(>ticket,<reserved) /purchased == false 
   3? WhetherTheTicketWasReservedByTheUser(>user,>ticket,<reservedByUser) 
/purchased == false AND reserved == true 

   4 ReturnAvailability(>purchased,>reserved,>reservedByUser,<available) 
  3? PurchaseTicket(>user,>ticket) /available == true 

   1 WhetherTheTicketWasReserved(>ticket,<reserved) 
   2? RemoveReservation(>ticket) /reserved == true 
   3 Purchase(>user,>ticket) 

 3 GetPurchasedSeatsForUser(>user,<purchasedSeats) 
 4 Output(>purchasedSeats,<=O.PS) 

 



DAAD CAE 2023 15/22 

Example 

  

1 PurchaseSeats(=>I.PS,<=O.PS) 
 1 Input(=>I.PS,<user,<event,<seats) 
 2* PurchaseSeat(>user,>event,>seat) /seat in seats 

  1 FindTicket(>event,>seat,<ticket) 
  2 CheckTicketAvailability(>user,>ticket,<available) 
   1 HasTheTicketBeenPurchased(>ticket,<purchased) 

   2? WhetherTheTicketWasReserved#(>ticket,<reserved) /purchased == false 
   3? WhetherTheTicketWasReservedByTheUser(>user,>ticket,<reservedByUser) 
/purchased == false AND reserved == true 

   4 ReturnAvailability(>purchased,>reserved,>reservedByUser,<available) 
  3? PurchaseTicket(>user,>ticket) /available == true 

   1 #WhetherTheTicketWasReserved(>ticket,<reserved) 
   2? RemoveReservation(>ticket) /reserved == true 
   3 Purchase(>user,>ticket) 

 3 GetPurchasedSeatsForUser(>user,<purchasedSeats) 
 4 Output(>purchasedSeats,<=O.PS) 

 



DAAD CAE 2023 16/22 

Example 

 
 

1 PurchaseSeats(=>I.PS,<=O.PS)[C:BoxOffice] 
 1 Input(=>I.PS,<user,<event,<seats) 
 2* PurchaseSeat(>user,>event,>seat) /seat in seats 

  1 FindTicket(>event,>seat,<ticket)[C:Event] 
  2 CheckTicketAvailability(>user,>ticket,<available) 
   1 HasTheTicketBeenPurchased(>ticket,<purchased)[C:Ticket] 

   2? WhetherTheTicketWasReserved#(>ticket,<reserved)[C:Ticket] /purchased 
== false 
   3? 

WhetherTheTicketWasReservedByTheUser(>user,>ticket,<reservedByUser)[C:Ticket] /purchased == 
false AND reserved == true 

   4 ReturnAvailability(>purchased,>reserved,>reservedByUser,<available) 
  3? PurchaseTicket(>user,>ticket) /available == true 
   1 #WhetherTheTicketWasReserved(>ticket,<reserved)[C:Ticket] 

   2? RemoveReservation(>ticket)[C:Ticket] /reserved == true 
   3 Purchase(>user,>ticket) 
 3 GetPurchasedSeatsForUser(>user,<purchasedSeats)[C:User] 

 4 Output(>purchasedSeats,<=O.PS) 

 



DAAD CAE 2023 17/22 

Example 

1 PurchaseSeats(=>I.PS,<=O.PS)[C:BoxOffice(boxOffice.jar:BoxOffice)]^User@BoxOfficeServer:www.boxoffice.com 

 1 Input(=>I.PS,<user:User(users.jar:Users),<event:Event(:BoxOffice),<seats:{}Seat) 

 2* PurchaseSeat(>user,>event,>seat) /seat in seats 

  1 FindTicket(>event,>seat:Seat(:BoxOffice),<ticket:Ticket(:BoxOffice))[O:event] 

  2 CheckTicketAvailability(>user,>ticket,<available) 

   1 HasTheTicketBeenPurchased(>ticket,<purchased:bool)[O:ticket] 

   2? WhetherTheTicketWasReserved#(>ticket,<reserved:bool)[O:ticket] /purchased==false 

   3? WhetherTheTicketWasReservedByTheUser(>ticket,>user,<reservedByUser:bool)[O:ticket] 

     /purchased==false AND reserved==true 

   4 ReturnAvailability(>purchased,>reserved,>reservedByUser,<available:bool) 

  3? PurchaseTicket(>user,>ticket) /available==true 

   1 #WhetherTheTicketWasReserved(>ticket,<reserved:bool)[O:ticket]  

 2? RemoveReservation(>ticket)[O:ticket] /reserved==true 

   3 Purchase(>user,>ticket)[C:BankService(:BankService)]^System@BankServer:www.bank.com 

 3 GetPurchasedSeatsForUser(>user,<purchasedSeats:{}Seat)[O:user:getPurchasedSeats] 

 4 Output(>purchasedSeats,<=O.PS) 



DAAD CAE 2023 18/22 

Example 

 



DAAD CAE 2023 19/22 

Preliminary quantitative evaluation 

1. Whether using AFD facilitates focusing on required 

logical checks in comparison to UML 

2. Two groups of students, those who uses AFD 

(experimental), and UML (control) 

3. Three experiments each one involving more than 

100 students in total 

 Proble
m no. 

Group 
No. of 

students 
Average grade on a 

problem (0-10) 
Average grade 

during studies (6-10) 

1 
AFD 113 8.022 8.345 

UML 144 7.608 8.334 

2 
AFD 91 7.956 8.457 

UML 103 7.757 8.304 

3 
AFD 49 8.490 7.928 

UML 85 7.124 8.547 



DAAD CAE 2023 20/22 

Preliminary quantitative evaluation 

1. Two-way ANOVA test, 

- The main effect of the observation group factor is statistically 

significant (F (1, 579) = 16.007, P = 0.000) 

- The main effect of the observation problem factor is not 

statistically significant (F (2, 579) = 0.036, P = 0.964)  

2. Non-parametric Kruskal-Wallis tests, 

3. Experimental groups achieved higher average score 

than control groups.  



• AFD is a text-based language based on computational thinking 

that enables stepwise refinement of a software product 

specification 

• An approach that suggests using AFD language for software 

design (the first four levels) with an automatic mapping to UML 

diagrams for software development 

• Preliminary study shows that AFD facilitates problem-solving in 

the domain of a logical design of information systems (the 

students who used AFD achieved higher average grades than 

those who used UML for solving the same problems) 

• Plans for extending AFD and introducing new levels of 

decomposition in order to enable mapping with multiple UML 

diagrams 

DAAD CAE 2023 21/22 

Conclusion 



  

Thank you! 

Zaharije Radivojevic 


