

Using Agile Process Methods in
Virtual Software Engineering Course

Lessons Learned

Tarik Hrnjić

Core values of Agile Manifesto

1) Individuals and interactions over processes and tools.

2) Working software over comprehensive documentation.

3) Customer collaboration over contract negotiation.

4) Responding to change over following a plan.

Difficulties in virtual classrooms

● Lack of “hands-on” experience
● Reduced interaction with teaching staff
● Lack of student engagement
● Difficult to conduct exams

Sprints, not marathons

● Key principle of agile process is the incremental product
development.

● Whole semester long project is a marathon.
● Dividing marathon project into week long sprints enables us to

change & adapt.
● Every week students present “ready-to-ship” application

(deployed on the server, installed...) to the “customer” and get
feedback.

Lesson learned: The importance of weekly
sprints

● Students meet every week with the “customer” to report the
progress and discuss new user requirements.

● Must have something to show to the “customer”. If the
“customer” notices that certain features are not successfully
implemented after several sprints, requirements may be slightly
altered (we might be expecting something that is too complex).

● The idea is to establish rigorous framework that encourages
continuous work from each student (ideally every day, in
practice several days per week).

Lesson learned: Increase student engagement
by offering interesting project(s)

● In prior courses (Intro to programming, OOP, Web dev...)
students have done store/library/*insert similar generic
programming project name here* multiple times. In those
courses, learning outcomes are different compared to Software
Engineering course.

● The idea is to offer a project that is more complex and
engaging. We want students to have to research how to do
certain tasks.

● Example: “Snapshot” application

Lesson learned: Do not offer immediate
solutions to problems/conflicts – personal issues

● Initially, students come to us with questions
about implementation details related to the task
at hand (“How can I do this?” “I didn’t learn this
anywhere.”).

● Important to stress to students that this is not the
course where we teach programming, but
software engineering; and that numerous online
resources are available that address similar, if
not identical, problems.

● At this educational stage, the primary response
to a problem should be independent problem-
solving rather than seeking immediate
assistance from the teaching staff.

Lesson learned: Do not offer immediate
solutions to problems/conflicts – team issues

● Each team has a leader chosen by all team
members.

● Work (user stories) is assigned to the team.
Team members are expected to volunteer to
take on certain tasks.

● In the case of conflict (multiple team
members want to do same task, no team
member wants to complete certain task)
team leader is expected to resolve the
conflict. Each student should be able to
perform every role (coding, testing, writing
docs…).

● Very rare that the student does not show
any engagement during the entire semester.

Lesson learned: Do not offer immediate
solutions to problems/conflicts – cross-team

issues
● Most common problem (especially in the first

few sprints), develops as multiple teams work
on different parts of the same software and do
not communicate properly (front-end team does
not receive necessary routes from back-end
team).

● Crucial to emphasize to all teams that they are
collaborating on a single software product,
which must align with the “customer's”
expectations, rather than merely being a
collection of disparate parts.

● Grading is done based on the “customer’s”
satisfaction with the software product.

What we noticed

● Initially, reluctance to produce results every week:
– “Can we have two week sprints?”
– “Give us enough work (user stories) for two weeks, isn’t it the same

thing in the end?”
● After several (2 or 3) sprints students adjust to the work-flow:

– Important to not crumble and give in to student complaints early

What we noticed

● Improved time management:
– The importance of time management and prioritization is key

component in agile methods.
– Initially, effort/time estimates are highly inaccurate, leading to

(usually) only partially delivered sprints.
– By the end of the course, students learn to manage their time

effectively, they know what to prioritize. Scrum poker is more precise
and effective.

What we noticed

● The feeling of the project ownership is important:
– With every successive sprint, students become increasingly

invested in the project.
– Towards the conclusion of the course, at the weekly “customer”

meetings, students start offering suggestions on what can be
improved in the application. They are willing to put in the extra effort
to make it the best it can be.

What we noticed

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

