
Evolution of Teaching Strategies 
in a Software Quality and 
Testing University Course

Bojana Koteska & Anastas Mishev
University Ss. Cyril and Methodius

Faculty of Computer Science and Engineering, Skopje, N. Macedonia
e-mails: {bojana.koteska, anastas.mishev}@finki.ukim.mk



Outline

• Course timeline 
• Course organization and learning methods
• Student evaluation
• Evolution of student results
• Preparing students for software testing industry
• Acknowledgement



Course timeline

• 2008: Mandatory/elective course in third and last studying year for 
different 4-year and 3-year bachelor programs since 2008
• at Faculty of Natural Science and Informatics, Ss. Cyril and Methodious 

University

• 2011: moved to Faculty of Computer Science and Engineering as 
elective course
• 2020/2021: mandatory course in 6th semester – English and 

Macedonian classes 
• study program: Software engineering and information systems



Course organization

• Total 180 hours: 
• Lectures – theoretical teaching: 30 hours 
• Exercises, seminar papers, teamwork: 45 hours 
• Project Tasks: 15 hours 
• Independent Learning Tasks: 15 hours 
• Home learning: 75 hours

• 12 lecture weeks and 2 weeks for exams
• Weekly: 2 lecture hours + 1 exercise hour + 2 laboratory exercises 

hours for presentation of homework tasks
• 8 homework tasks + 1 group project + 1 seminar work (optional)



Learning methods

• Presentations
• Interactive lectures
• Exercises (using equipment and software packages)
• Teamwork
• Case studies
• Invited guest lecturers
• Independent preparation and defense of a project assignment and 

seminar work.



Lectures

• Goals: 
• understand the need for software testing
• different techniques of software testing
• Learn about verification, and validation
• Use the knowledge in practice: test real projects

• Books: 
• 2008 - 2016: First edition of “Introduction to Software Testing” by Paul 

Ammann and Jeff Offutt
• 2016 – now: Second edition of “Introduction to Software Testing” by Paul 

Ammann and Jeff Offutt



Lecture topics
• Why Do We Test Software?
• Model-Driven Test Design
• Putting Testing First
• Criteria-Based Test Design
• Input Space Partitioning
• Graph Coverage
• Logic Coverage
• Syntax-based Testing



Exercises

• Before: “theoretical” exercises (paper-based)
• Now: computer-based testing tasks of real software programs using 

the latest software testing packages and frameworks
• Unit testing: Junit 5
• Selenium (Web automation testing)
• Mockito (Mock objects and testing)
• Pitclipse (Mutation Testing)
• Graph Coverage (source code)
• Input Space Partitioning (source code)
• Logic Coverage (source code)



Practical projects and seminar work

• Before: project assignments were same for all students (mathematical 
tasks or testing the same simple software system)
• Now: each team have to choose different real software system for 

testing

• Seminar work: Make a research about some tool (technique) for 
testing and demonstrate it practically



Student evaluation

• Before: more points for midterm exams 
• Now: the accent is put on the practical project and homework
• 8 homework (100 points)
• Seminar work (20 points) – optional
• Practical project (100 points) 
• 2 midterm exams (150 points) 

• Total: 350 points



Sample exam – practical task

Do the following for the given source 
code:
a) Draw the graph (with clearly marked 
nodes)
b) Use the given graph to denote all def 
and use for the variable n
c) Find the minimum test set that 
achieves the All-du-paths-Coverage for 
n. Specify the procedure for creating all-
du-paths in details.



Sample exam – practical task

See the following code in which operational mutants 
are defined. The given code is a function that 
computes the sum of the elements of a string.

Answer the following questions:
• a) Find the conditions for reachability, infection and 

propagation for each mutant.
• b) Propose appropriate tests that kill mutants. Give 

a specific test with explanation.
• c) For each mutant individually, if possible, find 

values that meet infection but not propagation.
• d) Can you create an equivalent mutant for the 

given code? Please provide a test to confirm your 
answer.



Sample homework - Selenium

Create a Selenium script that will create automated tests with the following requirements:

• Open the web site http://zero.webappsecurity.com/
• Log in accordingly using the following credentials: username, password
• Go to the Pay bills link
• Go to the Purchase foreign currency tab
• Select Canadian dollars
• Enter a value of 100
• Choose US dollars
• Click on Calculate Costs
• Confirm: $ 94.19 (CAD) = 100.00 U.S. dollar (USD)

http://zero.webappsecurity.com/


Sample homework - JUnit

Write a function that checks whether a word is a palindrome
public Boolean palindrome (String word)

which returns a Boolean variable which if true indicates that the word is a palindrome and if false it 
is not a palindrome.

Using JUnit to do the following:

• Create tests for the given function;
• Answer whether the tests created reveal possible deficiencies and outliers of the written 

function;
• Fix the tests to find out the failures and errors of the written function.
• Create parameterized tests
• Create exception tests



Sample projects (chosen by students)

Unit testing an arbitrary job executor with Moq and Nunit; code coverage by 
using Coverlet..

Testing the e-Health system using Selenium and Mockito…

jStockMiner tool testing..

Youtube.com web page testing..

Cineplexx.mk web page testing



Sample seminar works (chosen by students)

• How to use Appium Tool
• TestComplete framework
• Robot framework 
• Tool for automated testing Sikuli
• TestNG testing framework…



Evolution of student results

Total number of enrolled students: 644 
*only in the June session

Year Enrolled Students Students with grade Average Grade

2018/ 2019 * 88 8% 8.14
2017/2018 53 58% 8.19
2016/2017 38 71% 8.15
2015/2016 67 85% 8.14
2014/2015 38 79% 8.33
2013/2014 59 75% 8.02
2012/2013 37 62% 7.74
2011/2012 65 86% 7.34
2010/2011 67 / /

2009/2010 64 / /

2008/2009 68 / /



Invited lectures

• Endava – Skopje: UI Test automation using Selenium (JAVA)
• ITLabs – Skopje: Page Object Model Practical implementation with 

Selenium
• Endava – Skopje: API testing
• Seavus – Skopje: Java Technology Line Manager



Preparing students for software industry

• Direct communication with IT companies, learning from practice
• Invitations for summer internships with the possibility for 

employment 
• Practical lessons and learning new testing tools
• Working on real projects



Acknowledgement

• Special thanks goes to my colleagues prof. Anastas Mishev and prof. 
Hristina Mihajloska for the successful local delivery of the course.
• We really appreciate the motivation of the companies to present their 

work and to offer internships and employments.
• Thank you for your attention.


